(* Title: HOL/Inductive.thy Author: Markus Wenzel, TU Muenchen*)section \<open>Knaster-Tarski Fixpoint Theorem and inductive definitions\<close>theory Inductive imports Complete_Lattices Ctr_Sugar keywords "inductive" "coinductive" "inductive_cases" "inductive_simps" :: thy_decl and "monos" and "print_inductives" :: diag and "old_rep_datatype" :: thy_goal and "primrec" :: thy_declbeginsubsection \<open>Least fixed points\<close>context complete_latticebegindefinition lfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where "lfp f = Inf {u. f u \<le> u}"lemma lfp_lowerbound: "f A \<le> A \<Longrightarrow> lfp f \<le> A" unfolding lfp_def by (rule Inf_lower) simplemma lfp_greatest: "(\<And>u. f u \<le> u \<Longrightarrow> A \<le> u) \<Longrightarrow> A \<le> lfp f" unfolding lfp_def by (rule Inf_greatest) simpendlemma lfp_fixpoint: assumes "mono f" shows "f (lfp f) = lfp f" unfolding lfp_defproof (rule order_antisym) let ?H = "{u. f u \<le> u}" let ?a = "\<Sqinter>?H" show "f ?a \<le> ?a" proof (rule Inf_greatest) fix x assume "x \<in> ?H" then have "?a \<le> x" by (rule Inf_lower) with \<open>mono f\<close> have "f ?a \<le> f x" .. also from \<open>x \<in> ?H\<close> have "f x \<le> x" .. finally show "f ?a \<le> x" . qed show "?a \<le> f ?a" proof (rule Inf_lower) from \<open>mono f\<close> and \<open>f ?a \<le> ?a\<close> have "f (f ?a) \<le> f ?a" .. then show "f ?a \<in> ?H" .. qedqedlemma lfp_unfold: "mono f \<Longrightarrow> lfp f = f (lfp f)" by (rule lfp_fixpoint [symmetric])lemma lfp_const: "lfp (\<lambda>x. t) = t" by (rule lfp_unfold) (simp add: mono_def)lemma lfp_eqI: "mono F \<Longrightarrow> F x = x \<Longrightarrow> (\<And>z. F z = z \<Longrightarrow> x \<le> z) \<Longrightarrow> lfp F = x" by (rule antisym) (simp_all add: lfp_lowerbound lfp_unfold[symmetric])subsection \<open>General induction rules for least fixed points\<close>lemma lfp_ordinal_induct [case_names mono step union]: fixes f :: "'a::complete_lattice \<Rightarrow> 'a" assumes mono: "mono f" and P_f: "\<And>S. P S \<Longrightarrow> S \<le> lfp f \<Longrightarrow> P (f S)" and P_Union: "\<And>M. \<forall>S\<in>M. P S \<Longrightarrow> P (Sup M)" shows "P (lfp f)"proof - let ?M = "{S. S \<le> lfp f \<and> P S}" from P_Union have "P (Sup ?M)" by simp also have "Sup ?M = lfp f" proof (rule antisym) show "Sup ?M \<le> lfp f" by (blast intro: Sup_least) then have "f (Sup ?M) \<le> f (lfp f)" by (rule mono [THEN monoD]) then have "f (Sup ?M) \<le> lfp f" using mono [THEN lfp_unfold] by simp then have "f (Sup ?M) \<in> ?M" using P_Union by simp (intro P_f Sup_least, auto) then have "f (Sup ?M) \<le> Sup ?M" by (rule Sup_upper) then show "lfp f \<le> Sup ?M" by (rule lfp_lowerbound) qed finally show ?thesis .qedtheorem lfp_induct: assumes mono: "mono f" and ind: "f (inf (lfp f) P) \<le> P" shows "lfp f \<le> P"proof (induct rule: lfp_ordinal_induct) case mono show ?case by factnext case (step S) then show ?case by (intro order_trans[OF _ ind] monoD[OF mono]) autonext case (union M) then show ?case by (auto intro: Sup_least)qedlemma lfp_induct_set: assumes lfp: "a \<in> lfp f" and mono: "mono f" and hyp: "\<And>x. x \<in> f (lfp f \<inter> {x. P x}) \<Longrightarrow> P x" shows "P a" by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp]) (auto intro: hyp)lemma lfp_ordinal_induct_set: assumes mono: "mono f" and P_f: "\<And>S. P S \<Longrightarrow> P (f S)" and P_Union: "\<And>M. \<forall>S\<in>M. P S \<Longrightarrow> P (\<Union>M)" shows "P (lfp f)" using assms by (rule lfp_ordinal_induct)text \<open>Definition forms of \<open>lfp_unfold\<close> and \<open>lfp_induct\<close>, to control unfolding.\<close>lemma def_lfp_unfold: "h \<equiv> lfp f \<Longrightarrow> mono f \<Longrightarrow> h = f h" by (auto intro!: lfp_unfold)lemma def_lfp_induct: "A \<equiv> lfp f \<Longrightarrow> mono f \<Longrightarrow> f (inf A P) \<le> P \<Longrightarrow> A \<le> P" by (blast intro: lfp_induct)lemma def_lfp_induct_set: "A \<equiv> lfp f \<Longrightarrow> mono f \<Longrightarrow> a \<in> A \<Longrightarrow> (\<And>x. x \<in> f (A \<inter> {x. P x}) \<Longrightarrow> P x) \<Longrightarrow> P a" by (blast intro: lfp_induct_set)text \<open>Monotonicity of \<open>lfp\<close>!\<close>lemma lfp_mono: "(\<And>Z. f Z \<le> g Z) \<Longrightarrow> lfp f \<le> lfp g" by (rule lfp_lowerbound [THEN lfp_greatest]) (blast intro: order_trans)subsection \<open>Greatest fixed points\<close>context complete_latticebegindefinition gfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where "gfp f = Sup {u. u \<le> f u}"lemma gfp_upperbound: "X \<le> f X \<Longrightarrow> X \<le> gfp f" by (auto simp add: gfp_def intro: Sup_upper)lemma gfp_least: "(\<And>u. u \<le> f u \<Longrightarrow> u \<le> X) \<Longrightarrow> gfp f \<le> X" by (auto simp add: gfp_def intro: Sup_least)endlemma lfp_le_gfp: "mono f \<Longrightarrow> lfp f \<le> gfp f" by (rule gfp_upperbound) (simp add: lfp_fixpoint)lemma gfp_fixpoint: assumes "mono f" shows "f (gfp f) = gfp f" unfolding gfp_defproof (rule order_antisym) let ?H = "{u. u \<le> f u}" let ?a = "\<Squnion>?H" show "?a \<le> f ?a" proof (rule Sup_least) fix x assume "x \<in> ?H" then have "x \<le> f x" .. also from \<open>x \<in> ?H\<close> have "x \<le> ?a" by (rule Sup_upper) with \<open>mono f\<close> have "f x \<le> f ?a" .. finally show "x \<le> f ?a" . qed show "f ?a \<le> ?a" proof (rule Sup_upper) from \<open>mono f\<close> and \<open>?a \<le> f ?a\<close> have "f ?a \<le> f (f ?a)" .. then show "f ?a \<in> ?H" .. qedqedlemma gfp_unfold: "mono f \<Longrightarrow> gfp f = f (gfp f)" by (rule gfp_fixpoint [symmetric])lemma gfp_const: "gfp (\<lambda>x. t) = t" by (rule gfp_unfold) (simp add: mono_def)lemma gfp_eqI: "mono F \<Longrightarrow> F x = x \<Longrightarrow> (\<And>z. F z = z \<Longrightarrow> z \<le> x) \<Longrightarrow> gfp F = x" by (rule antisym) (simp_all add: gfp_upperbound gfp_unfold[symmetric])subsection \<open>Coinduction rules for greatest fixed points\<close>text \<open>Weak version.\<close>lemma weak_coinduct: "a \<in> X \<Longrightarrow> X \<subseteq> f X \<Longrightarrow> a \<in> gfp f" by (rule gfp_upperbound [THEN subsetD]) autolemma weak_coinduct_image: "a \<in> X \<Longrightarrow> g`X \<subseteq> f (g`X) \<Longrightarrow> g a \<in> gfp f" apply (erule gfp_upperbound [THEN subsetD]) apply (erule imageI) donelemma coinduct_lemma: "X \<le> f (sup X (gfp f)) \<Longrightarrow> mono f \<Longrightarrow> sup X (gfp f) \<le> f (sup X (gfp f))" apply (frule gfp_unfold [THEN eq_refl]) apply (drule mono_sup) apply (rule le_supI) apply assumption apply (rule order_trans) apply (rule order_trans) apply assumption apply (rule sup_ge2) apply assumption donetext \<open>Strong version, thanks to Coen and Frost.\<close>lemma coinduct_set: "mono f \<Longrightarrow> a \<in> X \<Longrightarrow> X \<subseteq> f (X \<union> gfp f) \<Longrightarrow> a \<in> gfp f" by (rule weak_coinduct[rotated], rule coinduct_lemma) blast+lemma gfp_fun_UnI2: "mono f \<Longrightarrow> a \<in> gfp f \<Longrightarrow> a \<in> f (X \<union> gfp f)" by (blast dest: gfp_fixpoint mono_Un)lemma gfp_ordinal_induct[case_names mono step union]: fixes f :: "'a::complete_lattice \<Rightarrow> 'a" assumes mono: "mono f" and P_f: "\<And>S. P S \<Longrightarrow> gfp f \<le> S \<Longrightarrow> P (f S)" and P_Union: "\<And>M. \<forall>S\<in>M. P S \<Longrightarrow> P (Inf M)" shows "P (gfp f)"proof - let ?M = "{S. gfp f \<le> S \<and> P S}" from P_Union have "P (Inf ?M)" by simp also have "Inf ?M = gfp f" proof (rule antisym) show "gfp f \<le> Inf ?M" by (blast intro: Inf_greatest) then have "f (gfp f) \<le> f (Inf ?M)" by (rule mono [THEN monoD]) then have "gfp f \<le> f (Inf ?M)" using mono [THEN gfp_unfold] by simp then have "f (Inf ?M) \<in> ?M" using P_Union by simp (intro P_f Inf_greatest, auto) then have "Inf ?M \<le> f (Inf ?M)" by (rule Inf_lower) then show "Inf ?M \<le> gfp f" by (rule gfp_upperbound) qed finally show ?thesis .qedlemma coinduct: assumes mono: "mono f" and ind: "X \<le> f (sup X (gfp f))" shows "X \<le> gfp f"proof (induct rule: gfp_ordinal_induct) case mono then show ?case by factnext case (step S) then show ?case by (intro order_trans[OF ind _] monoD[OF mono]) autonext case (union M) then show ?case by (auto intro: mono Inf_greatest)qedsubsection \<open>Even Stronger Coinduction Rule, by Martin Coen\<close>text \<open>Weakens the condition @{term "X \<subseteq> f X"} to one expressed using both @{term lfp} and @{term gfp}\<close>lemma coinduct3_mono_lemma: "mono f \<Longrightarrow> mono (\<lambda>x. f x \<union> X \<union> B)" by (iprover intro: subset_refl monoI Un_mono monoD)lemma coinduct3_lemma: "X \<subseteq> f (lfp (\<lambda>x. f x \<union> X \<union> gfp f)) \<Longrightarrow> mono f \<Longrightarrow> lfp (\<lambda>x. f x \<union> X \<union> gfp f) \<subseteq> f (lfp (\<lambda>x. f x \<union> X \<union> gfp f))" apply (rule subset_trans) apply (erule coinduct3_mono_lemma [THEN lfp_unfold [THEN eq_refl]]) apply (rule Un_least [THEN Un_least]) apply (rule subset_refl, assumption) apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption) apply (rule monoD, assumption) apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto) donelemma coinduct3: "mono f \<Longrightarrow> a \<in> X \<Longrightarrow> X \<subseteq> f (lfp (\<lambda>x. f x \<union> X \<union> gfp f)) \<Longrightarrow> a \<in> gfp f" apply (rule coinduct3_lemma [THEN [2] weak_coinduct]) apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst]) apply simp_all donetext \<open>Definition forms of \<open>gfp_unfold\<close> and \<open>coinduct\<close>, to control unfolding.\<close>lemma def_gfp_unfold: "A \<equiv> gfp f \<Longrightarrow> mono f \<Longrightarrow> A = f A" by (auto intro!: gfp_unfold)lemma def_coinduct: "A \<equiv> gfp f \<Longrightarrow> mono f \<Longrightarrow> X \<le> f (sup X A) \<Longrightarrow> X \<le> A" by (iprover intro!: coinduct)lemma def_coinduct_set: "A \<equiv> gfp f \<Longrightarrow> mono f \<Longrightarrow> a \<in> X \<Longrightarrow> X \<subseteq> f (X \<union> A) \<Longrightarrow> a \<in> A" by (auto intro!: coinduct_set)lemma def_Collect_coinduct: "A \<equiv> gfp (\<lambda>w. Collect (P w)) \<Longrightarrow> mono (\<lambda>w. Collect (P w)) \<Longrightarrow> a \<in> X \<Longrightarrow> (\<And>z. z \<in> X \<Longrightarrow> P (X \<union> A) z) \<Longrightarrow> a \<in> A" by (erule def_coinduct_set) autolemma def_coinduct3: "A \<equiv> gfp f \<Longrightarrow> mono f \<Longrightarrow> a \<in> X \<Longrightarrow> X \<subseteq> f (lfp (\<lambda>x. f x \<union> X \<union> A)) \<Longrightarrow> a \<in> A" by (auto intro!: coinduct3)text \<open>Monotonicity of @{term gfp}!\<close>lemma gfp_mono: "(\<And>Z. f Z \<le> g Z) \<Longrightarrow> gfp f \<le> gfp g" by (rule gfp_upperbound [THEN gfp_least]) (blast intro: order_trans)subsection \<open>Rules for fixed point calculus\<close>lemma lfp_rolling: assumes "mono g" "mono f" shows "g (lfp (\<lambda>x. f (g x))) = lfp (\<lambda>x. g (f x))"proof (rule antisym) have *: "mono (\<lambda>x. f (g x))" using assms by (auto simp: mono_def) show "lfp (\<lambda>x. g (f x)) \<le> g (lfp (\<lambda>x. f (g x)))" by (rule lfp_lowerbound) (simp add: lfp_unfold[OF *, symmetric]) show "g (lfp (\<lambda>x. f (g x))) \<le> lfp (\<lambda>x. g (f x))" proof (rule lfp_greatest) fix u assume u: "g (f u) \<le> u" then have "g (lfp (\<lambda>x. f (g x))) \<le> g (f u)" by (intro assms[THEN monoD] lfp_lowerbound) with u show "g (lfp (\<lambda>x. f (g x))) \<le> u" by auto qedqedlemma lfp_lfp: assumes f: "\<And>x y w z. x \<le> y \<Longrightarrow> w \<le> z \<Longrightarrow> f x w \<le> f y z" shows "lfp (\<lambda>x. lfp (f x)) = lfp (\<lambda>x. f x x)"proof (rule antisym) have *: "mono (\<lambda>x. f x x)" by (blast intro: monoI f) show "lfp (\<lambda>x. lfp (f x)) \<le> lfp (\<lambda>x. f x x)" by (intro lfp_lowerbound) (simp add: lfp_unfold[OF *, symmetric]) show "lfp (\<lambda>x. lfp (f x)) \<ge> lfp (\<lambda>x. f x x)" (is "?F \<ge> _") proof (intro lfp_lowerbound) have *: "?F = lfp (f ?F)" by (rule lfp_unfold) (blast intro: monoI lfp_mono f) also have "\<dots> = f ?F (lfp (f ?F))" by (rule lfp_unfold) (blast intro: monoI lfp_mono f) finally show "f ?F ?F \<le> ?F" by (simp add: *[symmetric]) qedqedlemma gfp_rolling: assumes "mono g" "mono f" shows "g (gfp (\<lambda>x. f (g x))) = gfp (\<lambda>x. g (f x))"proof (rule antisym) have *: "mono (\<lambda>x. f (g x))" using assms by (auto simp: mono_def) show "g (gfp (\<lambda>x. f (g x))) \<le> gfp (\<lambda>x. g (f x))" by (rule gfp_upperbound) (simp add: gfp_unfold[OF *, symmetric]) show "gfp (\<lambda>x. g (f x)) \<le> g (gfp (\<lambda>x. f (g x)))" proof (rule gfp_least) fix u assume u: "u \<le> g (f u)" then have "g (f u) \<le> g (gfp (\<lambda>x. f (g x)))" by (intro assms[THEN monoD] gfp_upperbound) with u show "u \<le> g (gfp (\<lambda>x. f (g x)))" by auto qedqedlemma gfp_gfp: assumes f: "\<And>x y w z. x \<le> y \<Longrightarrow> w \<le> z \<Longrightarrow> f x w \<le> f y z" shows "gfp (\<lambda>x. gfp (f x)) = gfp (\<lambda>x. f x x)"proof (rule antisym) have *: "mono (\<lambda>x. f x x)" by (blast intro: monoI f) show "gfp (\<lambda>x. f x x) \<le> gfp (\<lambda>x. gfp (f x))" by (intro gfp_upperbound) (simp add: gfp_unfold[OF *, symmetric]) show "gfp (\<lambda>x. gfp (f x)) \<le> gfp (\<lambda>x. f x x)" (is "?F \<le> _") proof (intro gfp_upperbound) have *: "?F = gfp (f ?F)" by (rule gfp_unfold) (blast intro: monoI gfp_mono f) also have "\<dots> = f ?F (gfp (f ?F))" by (rule gfp_unfold) (blast intro: monoI gfp_mono f) finally show "?F \<le> f ?F ?F" by (simp add: *[symmetric]) qedqedsubsection \<open>Inductive predicates and sets\<close>text \<open>Package setup.\<close>lemmas basic_monos = subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj Collect_mono in_mono vimage_monolemma le_rel_bool_arg_iff: "X \<le> Y \<longleftrightarrow> X False \<le> Y False \<and> X True \<le> Y True" unfolding le_fun_def le_bool_def using bool_induct by autolemma imp_conj_iff: "((P \<longrightarrow> Q) \<and> P) = (P \<and> Q)" by blastlemma meta_fun_cong: "P \<equiv> Q \<Longrightarrow> P a \<equiv> Q a" by autoML_file "Tools/inductive.ML"lemmas [mono] = imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj imp_mono not_mono Ball_def Bex_def induct_rulify_fallbacksubsection \<open>The Schroeder-Bernstein Theorem\<close>text \<open> See also: \<^item> \<^file>\<open>$ISABELLE_HOME/src/HOL/ex/Set_Theory.thy\<close> \<^item> \<^url>\<open>http://planetmath.org/proofofschroederbernsteintheoremusingtarskiknastertheorem\<close> \<^item> Springer LNCS 828 (cover page)\<close>theorem Schroeder_Bernstein: fixes f :: "'a \<Rightarrow> 'b" and g :: "'b \<Rightarrow> 'a" and A :: "'a set" and B :: "'b set" assumes inj1: "inj_on f A" and sub1: "f ` A \<subseteq> B" and inj2: "inj_on g B" and sub2: "g ` B \<subseteq> A" shows "\<exists>h. bij_betw h A B"proof (rule exI, rule bij_betw_imageI) define X where "X = lfp (\<lambda>X. A - (g ` (B - (f ` X))))" define g' where "g' = the_inv_into (B - (f ` X)) g" let ?h = "\<lambda>z. if z \<in> X then f z else g' z" have X: "X = A - (g ` (B - (f ` X)))" unfolding X_def by (rule lfp_unfold) (blast intro: monoI) then have X_compl: "A - X = g ` (B - (f ` X))" using sub2 by blast from inj2 have inj2': "inj_on g (B - (f ` X))" by (rule inj_on_subset) auto with X_compl have *: "g' ` (A - X) = B - (f ` X)" by (simp add: g'_def) from X have X_sub: "X \<subseteq> A" by auto from X sub1 have fX_sub: "f ` X \<subseteq> B" by auto show "?h ` A = B" proof - from X_sub have "?h ` A = ?h ` (X \<union> (A - X))" by auto also have "\<dots> = ?h ` X \<union> ?h ` (A - X)" by (simp only: image_Un) also have "?h ` X = f ` X" by auto also from * have "?h ` (A - X) = B - (f ` X)" by auto also from fX_sub have "f ` X \<union> (B - f ` X) = B" by blast finally show ?thesis . qed show "inj_on ?h A" proof - from inj1 X_sub have on_X: "inj_on f X" by (rule subset_inj_on) have on_X_compl: "inj_on g' (A - X)" unfolding g'_def X_compl by (rule inj_on_the_inv_into) (rule inj2') have impossible: False if eq: "f a = g' b" and a: "a \<in> X" and b: "b \<in> A - X" for a b proof - from a have fa: "f a \<in> f ` X" by (rule imageI) from b have "g' b \<in> g' ` (A - X)" by (rule imageI) with * have "g' b \<in> - (f ` X)" by simp with eq fa show False by simp qed show ?thesis proof (rule inj_onI) fix a b assume h: "?h a = ?h b" assume "a \<in> A" and "b \<in> A" then consider "a \<in> X" "b \<in> X" | "a \<in> A - X" "b \<in> A - X" | "a \<in> X" "b \<in> A - X" | "a \<in> A - X" "b \<in> X" by blast then show "a = b" proof cases case 1 with h on_X show ?thesis by (simp add: inj_on_eq_iff) next case 2 with h on_X_compl show ?thesis by (simp add: inj_on_eq_iff) next case 3 with h impossible [of a b] have False by simp then show ?thesis .. next case 4 with h impossible [of b a] have False by simp then show ?thesis .. qed qed qedqedsubsection \<open>Inductive datatypes and primitive recursion\<close>text \<open>Package setup.\<close>ML_file "Tools/Old_Datatype/old_datatype_aux.ML"ML_file "Tools/Old_Datatype/old_datatype_prop.ML"ML_file "Tools/Old_Datatype/old_datatype_data.ML"ML_file "Tools/Old_Datatype/old_rep_datatype.ML"ML_file "Tools/Old_Datatype/old_datatype_codegen.ML"ML_file "Tools/BNF/bnf_fp_rec_sugar_util.ML"ML_file "Tools/Old_Datatype/old_primrec.ML"ML_file "Tools/BNF/bnf_lfp_rec_sugar.ML"text \<open>Lambda-abstractions with pattern matching:\<close>syntax (ASCII) "_lam_pats_syntax" :: "cases_syn \<Rightarrow> 'a \<Rightarrow> 'b" ("(%_)" 10)syntax "_lam_pats_syntax" :: "cases_syn \<Rightarrow> 'a \<Rightarrow> 'b" ("(\<lambda>_)" 10)parse_translation \<open> let fun fun_tr ctxt [cs] = let val x = Syntax.free (fst (Name.variant "x" (Term.declare_term_frees cs Name.context))); val ft = Case_Translation.case_tr true ctxt [x, cs]; in lambda x ft end in [(@{syntax_const "_lam_pats_syntax"}, fun_tr)] end\<close>end