(* Author: Sébastien Gouëzel sebastien.gouezel@univ-rennes1.fr Author: Johannes Hölzl (TUM) -- ported to Limsup License: BSD*)theory Essential_Supremumimports "HOL-Analysis.Analysis"beginlemma ae_filter_eq_bot_iff: "ae_filter M = bot \<longleftrightarrow> emeasure M (space M) = 0" by (simp add: AE_iff_measurable trivial_limit_def)section {*The essential supremum*}text {*In this paragraph, we define the essential supremum and give its basic properties. Theessential supremum of a function is its maximum value if one is allowed to throw away a setof measure $0$. It is convenient to define it to be infinity for non-measurable functions, asit allows for neater statements in general. This is a prerequisiste to define the space $L^\infty$.*}definition esssup::"'a measure \<Rightarrow> ('a \<Rightarrow> 'b::{second_countable_topology, dense_linorder, linorder_topology, complete_linorder}) \<Rightarrow> 'b" where "esssup M f = (if f \<in> borel_measurable M then Limsup (ae_filter M) f else top)"lemma esssup_non_measurable: "f \<notin> M \<rightarrow>\<^sub>M borel \<Longrightarrow> esssup M f = top" by (simp add: esssup_def)lemma esssup_eq_AE: assumes f: "f \<in> M \<rightarrow>\<^sub>M borel" shows "esssup M f = Inf {z. AE x in M. f x \<le> z}" unfolding esssup_def if_P[OF f] Limsup_defproof (intro antisym INF_greatest Inf_greatest; clarsimp) fix y assume "AE x in M. f x \<le> y" then have "(\<lambda>x. f x \<le> y) \<in> {P. AE x in M. P x}" by simp then show "(INF P:{P. AE x in M. P x}. SUP x:Collect P. f x) \<le> y" by (rule INF_lower2) (auto intro: SUP_least)next fix P assume P: "AE x in M. P x" show "Inf {z. AE x in M. f x \<le> z} \<le> (SUP x:Collect P. f x)" proof (rule Inf_lower; clarsimp) show "AE x in M. f x \<le> (SUP x:Collect P. f x)" using P by (auto elim: eventually_mono simp: SUP_upper) qedqedlemma esssup_eq: "f \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> esssup M f = Inf {z. emeasure M {x \<in> space M. f x > z} = 0}" by (auto simp add: esssup_eq_AE not_less[symmetric] AE_iff_measurable[OF _ refl] intro!: arg_cong[where f=Inf])lemma esssup_zero_measure: "emeasure M {x \<in> space M. f x > esssup M f} = 0"proof (cases "esssup M f = top") case True then show ?thesis by autonext case False then have f[measurable]: "f \<in> M \<rightarrow>\<^sub>M borel" unfolding esssup_def by meson have "esssup M f < top" using False by (auto simp: less_top) have *: "{x \<in> space M. f x > z} \<in> null_sets M" if "z > esssup M f" for z proof - have "\<exists>w. w < z \<and> emeasure M {x \<in> space M. f x > w} = 0" using `z > esssup M f` f by (auto simp: esssup_eq Inf_less_iff) then obtain w where "w < z" "emeasure M {x \<in> space M. f x > w} = 0" by auto then have a: "{x \<in> space M. f x > w} \<in> null_sets M" by auto have b: "{x \<in> space M. f x > z} \<subseteq> {x \<in> space M. f x > w}" using `w < z` by auto show ?thesis using null_sets_subset[OF a _ b] by simp qed obtain u::"nat \<Rightarrow> 'b" where u: "\<And>n. u n > esssup M f" "u \<longlonglongrightarrow> esssup M f" using approx_from_above_dense_linorder[OF `esssup M f < top`] by auto have "{x \<in> space M. f x > esssup M f} = (\<Union>n. {x \<in> space M. f x > u n})" using u apply auto apply (metis (mono_tags, lifting) order_tendsto_iff eventually_mono LIMSEQ_unique) using less_imp_le less_le_trans by blast also have "... \<in> null_sets M" using *[OF u(1)] by auto finally show ?thesis by autoqedlemma esssup_AE: "AE x in M. f x \<le> esssup M f"proof (cases "f \<in> M \<rightarrow>\<^sub>M borel") case True then show ?thesis by (intro AE_I[OF _ esssup_zero_measure[of _ f]]) autoqed (simp add: esssup_non_measurable)lemma esssup_pos_measure: "f \<in> borel_measurable M \<Longrightarrow> z < esssup M f \<Longrightarrow> emeasure M {x \<in> space M. f x > z} > 0" using Inf_less_iff mem_Collect_eq not_gr_zero by (force simp: esssup_eq)lemma esssup_I [intro]: "f \<in> borel_measurable M \<Longrightarrow> AE x in M. f x \<le> c \<Longrightarrow> esssup M f \<le> c" unfolding esssup_def by (simp add: Limsup_bounded)lemma esssup_AE_mono: "f \<in> borel_measurable M \<Longrightarrow> AE x in M. f x \<le> g x \<Longrightarrow> esssup M f \<le> esssup M g" by (auto simp: esssup_def Limsup_mono)lemma esssup_mono: "f \<in> borel_measurable M \<Longrightarrow> (\<And>x. f x \<le> g x) \<Longrightarrow> esssup M f \<le> esssup M g" by (rule esssup_AE_mono) autolemma esssup_AE_cong: "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> AE x in M. f x = g x \<Longrightarrow> esssup M f = esssup M g" by (auto simp: esssup_def intro!: Limsup_eq)lemma esssup_const: "emeasure M (space M) \<noteq> 0 \<Longrightarrow> esssup M (\<lambda>x. c) = c" by (simp add: esssup_def Limsup_const ae_filter_eq_bot_iff)lemma esssup_cmult: assumes "c > (0::real)" shows "esssup M (\<lambda>x. c * f x::ereal) = c * esssup M f"proof - have "(\<lambda>x. ereal c * f x) \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> f \<in> M \<rightarrow>\<^sub>M borel" proof (subst measurable_cong) fix \<omega> show "f \<omega> = ereal (1/c) * (ereal c * f \<omega>)" using \<open>0 < c\<close> by (cases "f \<omega>") auto qed auto then have "(\<lambda>x. ereal c * f x) \<in> M \<rightarrow>\<^sub>M borel \<longleftrightarrow> f \<in> M \<rightarrow>\<^sub>M borel" by(safe intro!: borel_measurable_ereal_times borel_measurable_const) with \<open>0<c\<close> show ?thesis by (cases "ae_filter M = bot") (auto simp: esssup_def bot_ereal_def top_ereal_def Limsup_ereal_mult_left)qedlemma esssup_add: "esssup M (\<lambda>x. f x + g x::ereal) \<le> esssup M f + esssup M g"proof (cases "f \<in> borel_measurable M \<and> g \<in> borel_measurable M") case True then have [measurable]: "(\<lambda>x. f x + g x) \<in> borel_measurable M" by auto have "f x + g x \<le> esssup M f + esssup M g" if "f x \<le> esssup M f" "g x \<le> esssup M g" for x using that ereal_add_mono by auto then have "AE x in M. f x + g x \<le> esssup M f + esssup M g" using esssup_AE[of f M] esssup_AE[of g M] by auto then show ?thesis using esssup_I by autonext case False then have "esssup M f + esssup M g = \<infinity>" unfolding esssup_def top_ereal_def by auto then show ?thesis by autoqedlemma esssup_zero_space: "emeasure M (space M) = 0 \<Longrightarrow> f \<in> borel_measurable M \<Longrightarrow> esssup M f = (- \<infinity>::ereal)" by (simp add: esssup_def ae_filter_eq_bot_iff[symmetric] bot_ereal_def)end