(* Title: Pure/more_thm.ML
Author: Makarius
Further operations on type ctyp/cterm/thm, outside the inference kernel.
*)
infix aconvc;
signature BASIC_THM =
sig
include BASIC_THM
val show_consts: bool Config.T
val show_hyps: bool Config.T
val show_tags: bool Config.T
val aconvc: cterm * cterm -> bool
type attribute = Context.generic * thm -> Context.generic option * thm option
end;
signature THM =
sig
include THM
val eq_ctyp: ctyp * ctyp -> bool
val aconvc: cterm * cterm -> bool
val add_tvars: thm -> ctyp TVars.table -> ctyp TVars.table
val add_vars: thm -> cterm Vars.table -> cterm Vars.table
val dest_funT: ctyp -> ctyp * ctyp
val strip_type: ctyp -> ctyp list * ctyp
val all_name: Proof.context -> string * cterm -> cterm -> cterm
val all: Proof.context -> cterm -> cterm -> cterm
val mk_binop: cterm -> cterm -> cterm -> cterm
val dest_binop: cterm -> cterm * cterm
val dest_implies: cterm -> cterm * cterm
val dest_equals: cterm -> cterm * cterm
val dest_equals_lhs: cterm -> cterm
val dest_equals_rhs: cterm -> cterm
val lhs_of: thm -> cterm
val rhs_of: thm -> cterm
val is_reflexive: thm -> bool
val eq_thm: thm * thm -> bool
val eq_thm_prop: thm * thm -> bool
val eq_thm_strict: thm * thm -> bool
val equiv_thm: theory -> thm * thm -> bool
val class_triv: theory -> class -> thm
val of_sort: ctyp * sort -> thm list
val is_dummy: thm -> bool
val add_thm: thm -> thm list -> thm list
val del_thm: thm -> thm list -> thm list
val merge_thms: thm list * thm list -> thm list
val item_net: thm Item_Net.T
val item_net_intro: thm Item_Net.T
val item_net_elim: thm Item_Net.T
val declare_hyps: cterm -> Proof.context -> Proof.context
val assume_hyps: cterm -> Proof.context -> thm * Proof.context
val unchecked_hyps: Proof.context -> Proof.context
val restore_hyps: Proof.context -> Proof.context -> Proof.context
val undeclared_hyps: Context.generic -> thm -> term list
val check_hyps: Context.generic -> thm -> thm
val declare_term_sorts: term -> Proof.context -> Proof.context
val extra_shyps': Proof.context -> thm -> sort list
val check_shyps: Proof.context -> thm -> thm
val weaken_sorts': Proof.context -> cterm -> cterm
val elim_implies: thm -> thm -> thm
val forall_intr_name: string * cterm -> thm -> thm
val forall_elim_var: int -> thm -> thm
val forall_elim_vars: int -> thm -> thm
val instantiate_frees: ctyp TFrees.table * cterm Frees.table -> thm -> thm
val instantiate': ctyp option list -> cterm option list -> thm -> thm
val forall_intr_frees: thm -> thm
val forall_intr_vars: thm -> thm
val unvarify_global: theory -> thm -> thm
val unvarify_axiom: theory -> string -> thm
val rename_params_rule: string list * int -> thm -> thm
val rename_boundvars: term -> term -> thm -> thm
val add_axiom: Proof.context -> binding * term -> theory -> (string * thm) * theory
val add_axiom_global: binding * term -> theory -> (string * thm) * theory
val add_def: Defs.context -> bool -> bool -> binding * term -> theory -> (string * thm) * theory
val add_def_global: bool -> bool -> binding * term -> theory -> (string * thm) * theory
type attribute = Context.generic * thm -> Context.generic option * thm option
type binding = binding * attribute list
val tag_rule: string * string -> thm -> thm
val untag_rule: string -> thm -> thm
val is_free_dummy: thm -> bool
val tag_free_dummy: thm -> thm
val def_name: string -> string
val def_name_optional: string -> string -> string
val def_binding: Binding.binding -> Binding.binding
val def_binding_optional: Binding.binding -> Binding.binding -> Binding.binding
val make_def_binding: bool -> Binding.binding -> Binding.binding
val has_name_hint: thm -> bool
val get_name_hint: thm -> string
val put_name_hint: string -> thm -> thm
val theoremK: string
val legacy_get_kind: thm -> string
val kind_rule: string -> thm -> thm
val rule_attribute: thm list -> (Context.generic -> thm -> thm) -> attribute
val declaration_attribute: (thm -> Context.generic -> Context.generic) -> attribute
val mixed_attribute: (Context.generic * thm -> Context.generic * thm) -> attribute
val apply_attribute: attribute -> thm -> Context.generic -> thm * Context.generic
val attribute_declaration: attribute -> thm -> Context.generic -> Context.generic
val theory_attributes: attribute list -> thm -> theory -> thm * theory
val proof_attributes: attribute list -> thm -> Proof.context -> thm * Proof.context
val no_attributes: 'a -> 'a * 'b list
val simple_fact: 'a -> ('a * 'b list) list
val tag: string * string -> attribute
val untag: string -> attribute
val kind: string -> attribute
val register_proofs: thm list lazy -> theory -> theory
val consolidate_theory: theory -> unit
val expose_theory: theory -> unit
val show_consts: bool Config.T
val show_hyps: bool Config.T
val show_tags: bool Config.T
val pretty_thm_raw: Proof.context -> {quote: bool, show_hyps: bool} -> thm -> Pretty.T
val pretty_thm: Proof.context -> thm -> Pretty.T
val pretty_thm_item: Proof.context -> thm -> Pretty.T
val pretty_thm_global: theory -> thm -> Pretty.T
val string_of_thm: Proof.context -> thm -> string
val string_of_thm_global: theory -> thm -> string
end;
structure Thm: THM =
struct
(** basic operations **)
(* collecting ctyps and cterms *)
val eq_ctyp = op = o apply2 Thm.typ_of;
val op aconvc = op aconv o apply2 Thm.term_of;
val add_tvars =
Thm.fold_atomic_ctyps {hyps = false} Term.is_TVar (fn cT => fn tab =>
let val v = Term.dest_TVar (Thm.typ_of cT)
in tab |> not (TVars.defined tab v) ? TVars.add (v, cT) end);
val add_vars =
Thm.fold_atomic_cterms {hyps = false} Term.is_Var (fn ct => fn tab =>
let val v = Term.dest_Var (Thm.term_of ct)
in tab |> not (Vars.defined tab v) ? Vars.add (v, ct) end);
(* ctyp operations *)
fun dest_funT cT =
(case Thm.typ_of cT of
Type ("fun", _) => let val [A, B] = Thm.dest_ctyp cT in (A, B) end
| T => raise TYPE ("dest_funT", [T], []));
(* ctyp version of strip_type: maps [T1,...,Tn]--->T to ([T1,T2,...,Tn], T) *)
fun strip_type cT =
(case Thm.typ_of cT of
Type ("fun", _) =>
let
val (cT1, cT2) = dest_funT cT;
val (cTs, cT') = strip_type cT2
in (cT1 :: cTs, cT') end
| _ => ([], cT));
(* cterm operations *)
fun all_name ctxt (x, t) A =
let
val T = Thm.typ_of_cterm t;
val all_const = Thm.cterm_of ctxt (Const ("Pure.all", (T --> propT) --> propT));
in Thm.apply all_const (Thm.lambda_name (x, t) A) end;
fun all ctxt t A = all_name ctxt ("", t) A;
fun mk_binop c a b = Thm.apply (Thm.apply c a) b;
fun dest_binop ct = (Thm.dest_arg1 ct, Thm.dest_arg ct);
fun dest_implies ct =
(case Thm.term_of ct of
Const ("Pure.imp", _) $ _ $ _ => dest_binop ct
| _ => raise TERM ("dest_implies", [Thm.term_of ct]));
fun dest_equals ct =
(case Thm.term_of ct of
Const ("Pure.eq", _) $ _ $ _ => dest_binop ct
| _ => raise TERM ("dest_equals", [Thm.term_of ct]));
fun dest_equals_lhs ct =
(case Thm.term_of ct of
Const ("Pure.eq", _) $ _ $ _ => Thm.dest_arg1 ct
| _ => raise TERM ("dest_equals_lhs", [Thm.term_of ct]));
fun dest_equals_rhs ct =
(case Thm.term_of ct of
Const ("Pure.eq", _) $ _ $ _ => Thm.dest_arg ct
| _ => raise TERM ("dest_equals_rhs", [Thm.term_of ct]));
val lhs_of = dest_equals_lhs o Thm.cprop_of;
val rhs_of = dest_equals_rhs o Thm.cprop_of;
(* equality *)
fun is_reflexive th = op aconv (Logic.dest_equals (Thm.prop_of th))
handle TERM _ => false;
val eq_thm = is_equal o Thm.thm_ord;
val eq_thm_prop = op aconv o apply2 Thm.full_prop_of;
fun eq_thm_strict ths =
eq_thm ths andalso
Context.eq_thy_id (apply2 Thm.theory_id ths) andalso
op = (apply2 Thm.maxidx_of ths) andalso
op = (apply2 Thm.get_tags ths);
(* pattern equivalence *)
fun equiv_thm thy ths =
Pattern.equiv thy (apply2 (Thm.full_prop_of o Thm.transfer thy) ths);
(* type classes and sorts *)
fun class_triv thy c =
Thm.of_class (Thm.global_ctyp_of thy (TVar ((Name.aT, 0), [c])), c);
fun of_sort (T, S) = map (fn c => Thm.of_class (T, c)) S;
(* misc operations *)
fun is_dummy thm =
(case try Logic.dest_term (Thm.concl_of thm) of
NONE => false
| SOME t => Term.is_dummy_pattern (Term.head_of t));
(* collections of theorems in canonical order *)
val add_thm = update eq_thm_prop;
val del_thm = remove eq_thm_prop;
val merge_thms = merge eq_thm_prop;
val item_net = Item_Net.init eq_thm_prop (single o Thm.full_prop_of);
val item_net_intro = Item_Net.init eq_thm_prop (single o Thm.concl_of);
val item_net_elim = Item_Net.init eq_thm_prop (single o Thm.major_prem_of);
(** declared hyps and sort hyps **)
structure Hyps = Proof_Data
(
type T = {checked_hyps: bool, hyps: Termtab.set, shyps: sort Ord_List.T};
fun init _ : T = {checked_hyps = true, hyps = Termtab.empty, shyps = []};
);
fun map_hyps f = Hyps.map (fn {checked_hyps, hyps, shyps} =>
let val (checked_hyps', hyps', shyps') = f (checked_hyps, hyps, shyps)
in {checked_hyps = checked_hyps', hyps = hyps', shyps = shyps'} end);
(* hyps *)
fun declare_hyps raw_ct ctxt = ctxt |> map_hyps (fn (checked_hyps, hyps, shyps) =>
let
val ct = Thm.transfer_cterm (Proof_Context.theory_of ctxt) raw_ct;
val hyps' = Termtab.update (Thm.term_of ct, ()) hyps;
in (checked_hyps, hyps', shyps) end);
fun assume_hyps ct ctxt = (Thm.assume ct, declare_hyps ct ctxt);
val unchecked_hyps = map_hyps (fn (_, hyps, shyps) => (false, hyps, shyps));
fun restore_hyps ctxt =
map_hyps (fn (_, hyps, shyps) => (#checked_hyps (Hyps.get ctxt), hyps, shyps));
fun undeclared_hyps context th =
Thm.hyps_of th
|> filter_out
(case context of
Context.Theory _ => K false
| Context.Proof ctxt =>
(case Hyps.get ctxt of
{checked_hyps = false, ...} => K true
| {hyps, ...} => Termtab.defined hyps));
fun check_hyps context th =
(case undeclared_hyps context th of
[] => th
| undeclared =>
error (Pretty.string_of (Pretty.big_list "Undeclared hyps:"
(map (Pretty.item o single o Syntax.pretty_term (Syntax.init_pretty context)) undeclared))));
(* shyps *)
fun declare_term_sorts t =
map_hyps (fn (checked_hyps, hyps, shyps) =>
(checked_hyps, hyps, Sorts.insert_term t shyps));
fun extra_shyps' ctxt th =
Sorts.subtract (#shyps (Hyps.get ctxt)) (Thm.extra_shyps th);
fun check_shyps ctxt raw_th =
let
val th = Thm.strip_shyps raw_th;
val extra_shyps = extra_shyps' ctxt th;
in
if null extra_shyps then th
else error (Pretty.string_of (Pretty.block (Pretty.str "Pending sort hypotheses:" ::
Pretty.brk 1 :: Pretty.commas (map (Syntax.pretty_sort ctxt) extra_shyps))))
end;
val weaken_sorts' = Thm.weaken_sorts o #shyps o Hyps.get;
(** basic derived rules **)
(*Elimination of implication
A A \<Longrightarrow> B
------------
B
*)
fun elim_implies thA thAB = Thm.implies_elim thAB thA;
(* forall_intr_name *)
fun forall_intr_name (a, x) th =
let
val th' = Thm.forall_intr x th;
val prop' = (case Thm.prop_of th' of all $ Abs (_, T, b) => all $ Abs (a, T, b));
in Thm.renamed_prop prop' th' end;
(* forall_elim_var(s) *)
local
val used_frees =
Name.build_context o
Thm.fold_terms {hyps = true} Term.declare_term_frees;
fun used_vars i =
Name.build_context o
(Thm.fold_terms {hyps = false} o Term.fold_aterms)
(fn Var ((x, j), _) => i = j ? Name.declare x | _ => I);
fun dest_all ct used =
(case Thm.term_of ct of
Const ("Pure.all", _) $ Abs (x, _, _) =>
let
val (x', used') = Name.variant x used;
val (v, ct') = Thm.dest_abs_fresh x' (Thm.dest_arg ct);
in SOME ((x, Thm.ctyp_of_cterm v), (ct', used')) end
| _ => NONE);
fun dest_all_list ct used =
(case dest_all ct used of
NONE => ([], used)
| SOME (v, (ct', used')) =>
let val (vs, used'') = dest_all_list ct' used'
in (v :: vs, used'') end);
fun forall_elim_vars_list vars i th =
let
val (vars', _) =
(vars, used_vars i th) |-> fold_map (fn (x, T) => fn used =>
let val (x', used') = Name.variant x used
in (Thm.var ((x', i), T), used') end);
in fold Thm.forall_elim vars' th end;
in
fun forall_elim_vars i th =
forall_elim_vars_list (#1 (dest_all_list (Thm.cprop_of th) (used_frees th))) i th;
fun forall_elim_var i th =
let
val vars =
(case dest_all (Thm.cprop_of th) (used_frees th) of
SOME (v, _) => [v]
| NONE => raise THM ("forall_elim_var", i, [th]));
in forall_elim_vars_list vars i th end;
end;
(* instantiate frees *)
fun instantiate_frees (instT, inst) th =
if TFrees.is_empty instT andalso Frees.is_empty inst then th
else
let
val idx = Thm.maxidx_of th + 1;
fun index ((a, A), b) = (((a, idx), A), b);
val insts =
(TVars.build (TFrees.fold (TVars.add o index) instT),
Vars.build (Frees.fold (Vars.add o index) inst));
val tfrees = Names.build (TFrees.fold (Names.add_set o #1 o #1) instT);
val frees = Names.build (Frees.fold (Names.add_set o #1 o #1) inst);
val hyps = Thm.chyps_of th;
val inst_cterm =
Thm.generalize_cterm (tfrees, frees) idx #>
Thm.instantiate_cterm insts;
in
th
|> fold_rev Thm.implies_intr hyps
|> Thm.generalize (tfrees, frees) idx
|> Thm.instantiate insts
|> fold (elim_implies o Thm.assume o inst_cterm) hyps
end;
(* instantiate by left-to-right occurrence of variables *)
fun instantiate' cTs cts thm =
let
fun err msg =
raise TYPE ("instantiate': " ^ msg,
map_filter (Option.map Thm.typ_of) cTs,
map_filter (Option.map Thm.term_of) cts);
fun zip_vars xs ys =
zip_options xs ys handle ListPair.UnequalLengths =>
err "more instantiations than variables in thm";
val instT = zip_vars (build_rev (Thm.fold_terms {hyps = false} Term.add_tvars thm)) cTs;
val thm' = Thm.instantiate (TVars.make instT, Vars.empty) thm;
val inst = zip_vars (build_rev (Thm.fold_terms {hyps = false} Term.add_vars thm')) cts;
in Thm.instantiate (TVars.empty, Vars.make inst) thm' end;
(* implicit generalization over variables -- canonical order *)
fun forall_intr_vars th =
let val vars = Cterms.build (Cterms.add_vars th)
in fold_rev Thm.forall_intr (Cterms.list_set vars) th end;
fun forall_intr_frees th =
let
val fixed =
Frees.build
(fold Frees.add_frees (Thm.terms_of_tpairs (Thm.tpairs_of th)) #>
fold Frees.add_frees (Thm.hyps_of th));
val is_fixed = Frees.defined fixed o Term.dest_Free o Thm.term_of;
val frees =
Cterms.build (th |> Thm.fold_atomic_cterms {hyps = false} Term.is_Free
(fn ct => not (is_fixed ct) ? Cterms.add_set ct));
in fold_rev Thm.forall_intr (Cterms.list_set frees) th end;
(* unvarify_global: global schematic variables *)
fun unvarify_global thy th =
let
val prop = Thm.full_prop_of th;
val _ = map Logic.unvarify_global (prop :: Thm.hyps_of th)
handle TERM (msg, _) => raise THM (msg, 0, [th]);
val cert = Thm.global_cterm_of thy;
val certT = Thm.global_ctyp_of thy;
val instT =
TVars.build (prop |> (Term.fold_types o Term.fold_atyps)
(fn T => fn instT =>
(case T of
TVar (v as ((a, _), S)) =>
if TVars.defined instT v then instT
else TVars.add (v, TFree (a, S)) instT
| _ => instT)));
val cinstT = TVars.map (K certT) instT;
val cinst =
Vars.build (prop |> Term.fold_aterms
(fn t => fn inst =>
(case t of
Var ((x, i), T) =>
let val T' = Term_Subst.instantiateT instT T
in Vars.add (((x, i), T'), cert (Free ((x, T')))) inst end
| _ => inst)));
in Thm.instantiate (cinstT, cinst) th end;
fun unvarify_axiom thy = unvarify_global thy o Thm.axiom thy;
(* user renaming of parameters in a subgoal *)
(*The names, if distinct, are used for the innermost parameters of subgoal i;
preceding parameters may be renamed to make all parameters distinct.*)
fun rename_params_rule (names, i) st =
let
val (_, Bs, Bi, C) = Thm.dest_state (st, i);
val params = map #1 (Logic.strip_params Bi);
val short = length params - length names;
val names' =
if short < 0 then error "More names than parameters in subgoal!"
else Name.variant_list names (take short params) @ names;
val free_names = Term.fold_aterms (fn Free (x, _) => insert (op =) x | _ => I) Bi [];
val Bi' = Logic.list_rename_params names' Bi;
in
(case duplicates (op =) names of
a :: _ => (warning ("Can't rename. Bound variables not distinct: " ^ a); st)
| [] =>
(case inter (op =) names free_names of
a :: _ => (warning ("Can't rename. Bound/Free variable clash: " ^ a); st)
| [] => Thm.renamed_prop (Logic.list_implies (Bs @ [Bi'], C)) st))
end;
(* preservation of bound variable names *)
fun rename_boundvars pat obj th =
(case Term.rename_abs pat obj (Thm.prop_of th) of
NONE => th
| SOME prop' => Thm.renamed_prop prop' th);
(** specification primitives **)
(* rules *)
fun stripped_sorts thy t =
let
val tfrees = build_rev (Term.add_tfrees t);
val tfrees' = map (fn a => (a, [])) (Name.variant_list [] (map #1 tfrees));
val recover =
map2 (fn (a', S') => fn (a, S) => (((a', 0), S'), Thm.global_ctyp_of thy (TVar ((a, 0), S))))
tfrees' tfrees;
val strip = map (apply2 TFree) (tfrees ~~ tfrees');
val t' = Term.map_types (Term.map_atyps (perhaps (AList.lookup (op =) strip))) t;
in (strip, recover, t') end;
fun add_axiom ctxt (b, prop) thy =
let
val _ = Sign.no_vars ctxt prop;
val (strip, recover, prop') = stripped_sorts thy prop;
val constraints = map (fn (TFree (_, S), T) => (T, S)) strip;
val of_sorts = maps (fn (T as TFree (_, S), _) => of_sort (Thm.ctyp_of ctxt T, S)) strip;
val thy' = thy
|> Theory.add_axiom ctxt (b, Logic.list_implies (maps Logic.mk_of_sort constraints, prop'));
val axm_name = Sign.full_name thy' b;
val axm' = Thm.axiom thy' axm_name;
val thm =
Thm.instantiate (TVars.make recover, Vars.empty) axm'
|> unvarify_global thy'
|> fold elim_implies of_sorts;
in ((axm_name, thm), thy') end;
fun add_axiom_global arg thy = add_axiom (Syntax.init_pretty_global thy) arg thy;
fun add_def (context as (ctxt, _)) unchecked overloaded (b, prop) thy =
let
val _ = Sign.no_vars ctxt prop;
val prems = map (Thm.cterm_of ctxt) (Logic.strip_imp_prems prop);
val (_, recover, concl') = stripped_sorts thy (Logic.strip_imp_concl prop);
val thy' = Theory.add_def context unchecked overloaded (b, concl') thy;
val axm_name = Sign.full_name thy' b;
val axm' = Thm.axiom thy' axm_name;
val thm =
Thm.instantiate (TVars.make recover, Vars.empty) axm'
|> unvarify_global thy'
|> fold_rev Thm.implies_intr prems;
in ((axm_name, thm), thy') end;
fun add_def_global unchecked overloaded arg thy =
add_def (Defs.global_context thy) unchecked overloaded arg thy;
(** theorem tags **)
(* add / delete tags *)
fun tag_rule tg = Thm.map_tags (insert (op =) tg);
fun untag_rule s = Thm.map_tags (filter_out (fn (s', _) => s = s'));
(* free dummy thm -- for abstract closure *)
val free_dummyN = "free_dummy";
fun is_free_dummy thm = Properties.defined (Thm.get_tags thm) free_dummyN;
val tag_free_dummy = tag_rule (free_dummyN, "");
(* def_name *)
fun def_name c = c ^ "_def";
fun def_name_optional c "" = def_name c
| def_name_optional _ name = name;
val def_binding = Binding.map_name def_name #> Binding.reset_pos;
fun def_binding_optional b name = if Binding.is_empty name then def_binding b else name;
fun make_def_binding cond b = if cond then def_binding b else Binding.empty;
(* unofficial theorem names *)
fun has_name_hint thm = AList.defined (op =) (Thm.get_tags thm) Markup.nameN;
fun the_name_hint thm = the (AList.lookup (op =) (Thm.get_tags thm) Markup.nameN);
fun get_name_hint thm = if has_name_hint thm then the_name_hint thm else "??.unknown";
fun put_name_hint name = untag_rule Markup.nameN #> tag_rule (Markup.nameN, name);
(* theorem kinds *)
val theoremK = "theorem";
fun legacy_get_kind thm = the_default "" (Properties.get (Thm.get_tags thm) Markup.kindN);
fun kind_rule k = tag_rule (Markup.kindN, k) o untag_rule Markup.kindN;
(** attributes **)
(*attributes subsume any kind of rules or context modifiers*)
type attribute = Context.generic * thm -> Context.generic option * thm option;
type binding = binding * attribute list;
fun rule_attribute ths f (x, th) =
(NONE,
(case find_first is_free_dummy (th :: ths) of
SOME th' => SOME th'
| NONE => SOME (f x th)));
fun declaration_attribute f (x, th) =
(if is_free_dummy th then NONE else SOME (f th x), NONE);
fun mixed_attribute f (x, th) =
let val (x', th') = f (x, th) in (SOME x', SOME th') end;
fun apply_attribute (att: attribute) th x =
let val (x', th') = att (x, check_hyps x (Thm.transfer'' x th))
in (the_default th th', the_default x x') end;
fun attribute_declaration att th x = #2 (apply_attribute att th x);
fun apply_attributes mk dest =
let
fun app [] th x = (th, x)
| app (att :: atts) th x = apply_attribute att th (mk x) ||> dest |-> app atts;
in app end;
val theory_attributes = apply_attributes Context.Theory Context.the_theory;
val proof_attributes = apply_attributes Context.Proof Context.the_proof;
fun no_attributes x = (x, []);
fun simple_fact x = [(x, [])];
fun tag tg = rule_attribute [] (K (tag_rule tg));
fun untag s = rule_attribute [] (K (untag_rule s));
fun kind k = rule_attribute [] (K (k <> "" ? kind_rule k));
(** forked proofs **)
structure Proofs = Theory_Data
(
type T = thm list lazy Inttab.table;
val empty = Inttab.empty;
val merge = Inttab.merge (K true);
);
fun reset_proofs thy =
if Inttab.is_empty (Proofs.get thy) then NONE
else SOME (Proofs.put Inttab.empty thy);
val _ = Theory.setup (Theory.at_begin reset_proofs);
fun register_proofs ths thy =
let val entry = (serial (), Lazy.map_finished (map Thm.trim_context) ths)
in (Proofs.map o Inttab.update) entry thy end;
fun force_proofs thy =
Proofs.get thy |> Inttab.dest |> maps (map (Thm.transfer thy) o Lazy.force o #2);
val consolidate_theory = Thm.consolidate o force_proofs;
fun expose_theory thy =
if Proofterm.export_enabled ()
then Thm.expose_proofs thy (force_proofs thy) else ();
(** print theorems **)
(* options *)
val show_consts = Config.declare_option_bool ("show_consts", \<^here>);
val show_hyps = Config.declare_bool ("show_hyps", \<^here>) (K false);
val show_tags = Config.declare_bool ("show_tags", \<^here>) (K false);
(* pretty_thm etc. *)
fun pretty_tag (name, arg) = Pretty.strs [name, quote arg];
val pretty_tags = Pretty.list "[" "]" o map pretty_tag;
fun pretty_thm_raw ctxt {quote, show_hyps = show_hyps'} raw_th =
let
val show_tags = Config.get ctxt show_tags;
val show_hyps = Config.get ctxt show_hyps;
val th = raw_th
|> perhaps (try (Thm.transfer' ctxt))
|> perhaps (try Thm.strip_shyps);
val hyps = if show_hyps then Thm.hyps_of th else undeclared_hyps (Context.Proof ctxt) th;
val extra_shyps = extra_shyps' ctxt th;
val tags = Thm.get_tags th;
val tpairs = Thm.tpairs_of th;
val q = if quote then Pretty.quote else I;
val prt_term = q o Syntax.pretty_term ctxt;
val hlen = length extra_shyps + length hyps + length tpairs;
val hsymbs =
if hlen = 0 then []
else if show_hyps orelse show_hyps' then
[Pretty.brk 2, Pretty.list "[" "]"
(map (q o Syntax.pretty_flexpair ctxt) tpairs @ map prt_term hyps @
map (Syntax.pretty_sort ctxt) extra_shyps)]
else [Pretty.brk 2, Pretty.str ("[" ^ replicate_string hlen "." ^ "]")];
val tsymbs =
if null tags orelse not show_tags then []
else [Pretty.brk 1, pretty_tags tags];
in Pretty.block (prt_term (Thm.prop_of th) :: (hsymbs @ tsymbs)) end;
fun pretty_thm ctxt = pretty_thm_raw ctxt {quote = false, show_hyps = true};
fun pretty_thm_item ctxt th = Pretty.item [pretty_thm ctxt th];
fun pretty_thm_global thy =
pretty_thm_raw (Syntax.init_pretty_global thy) {quote = false, show_hyps = false};
val string_of_thm = Pretty.string_of oo pretty_thm;
val string_of_thm_global = Pretty.string_of oo pretty_thm_global;
open Thm;
end;
structure Basic_Thm: BASIC_THM = Thm;
open Basic_Thm;