(* Title: HOL/Auth/Event
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1996 University of Cambridge
Datatype of events; function "spies"; freshness
"bad" agents have been broken by the Spy; their private keys and internal
stores are visible to him
*)(*<*)
header{*Theory of Events for Security Protocols*}
theory Event imports Message begin
consts (*Initial states of agents -- parameter of the construction*)
initState :: "agent => msg set"
datatype
event = Says agent agent msg
| Gets agent msg
| Notes agent msg
consts
bad :: "agent set" (*compromised agents*)
knows :: "agent => event list => msg set"
text{*The constant "spies" is retained for compatibility's sake*}
abbreviation (input)
spies :: "event list => msg set" where
"spies == knows Spy"
text{*Spy has access to his own key for spoof messages, but Server is secure*}
specification (bad)
Spy_in_bad [iff]: "Spy \<in> bad"
Server_not_bad [iff]: "Server \<notin> bad"
by (rule exI [of _ "{Spy}"], simp)
primrec
knows_Nil: "knows A [] = initState A"
knows_Cons:
"knows A (ev # evs) =
(if A = Spy then
(case ev of
Says A' B X => insert X (knows Spy evs)
| Gets A' X => knows Spy evs
| Notes A' X =>
if A' \<in> bad then insert X (knows Spy evs) else knows Spy evs)
else
(case ev of
Says A' B X =>
if A'=A then insert X (knows A evs) else knows A evs
| Gets A' X =>
if A'=A then insert X (knows A evs) else knows A evs
| Notes A' X =>
if A'=A then insert X (knows A evs) else knows A evs))"
(*
Case A=Spy on the Gets event
enforces the fact that if a message is received then it must have been sent,
therefore the oops case must use Notes
*)
consts
(*Set of items that might be visible to somebody:
complement of the set of fresh items*)
used :: "event list => msg set"
primrec
used_Nil: "used [] = (UN B. parts (initState B))"
used_Cons: "used (ev # evs) =
(case ev of
Says A B X => parts {X} \<union> used evs
| Gets A X => used evs
| Notes A X => parts {X} \<union> used evs)"
--{*The case for @{term Gets} seems anomalous, but @{term Gets} always
follows @{term Says} in real protocols. Seems difficult to change.
See @{text Gets_correct} in theory @{text "Guard/Extensions.thy"}. *}
lemma Notes_imp_used [rule_format]: "Notes A X \<in> set evs --> X \<in> used evs"
apply (induct_tac evs)
apply (auto split: event.split)
done
lemma Says_imp_used [rule_format]: "Says A B X \<in> set evs --> X \<in> used evs"
apply (induct_tac evs)
apply (auto split: event.split)
done
subsection{*Function @{term knows}*}
(*Simplifying
parts(insert X (knows Spy evs)) = parts{X} \<union> parts(knows Spy evs).
This version won't loop with the simplifier.*)
lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs", standard]
lemma knows_Spy_Says [simp]:
"knows Spy (Says A B X # evs) = insert X (knows Spy evs)"
by simp
text{*Letting the Spy see "bad" agents' notes avoids redundant case-splits
on whether @{term "A=Spy"} and whether @{term "A\<in>bad"}*}
lemma knows_Spy_Notes [simp]:
"knows Spy (Notes A X # evs) =
(if A:bad then insert X (knows Spy evs) else knows Spy evs)"
by simp
lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs"
by simp
lemma knows_Spy_subset_knows_Spy_Says:
"knows Spy evs \<subseteq> knows Spy (Says A B X # evs)"
by (simp add: subset_insertI)
lemma knows_Spy_subset_knows_Spy_Notes:
"knows Spy evs \<subseteq> knows Spy (Notes A X # evs)"
by force
lemma knows_Spy_subset_knows_Spy_Gets:
"knows Spy evs \<subseteq> knows Spy (Gets A X # evs)"
by (simp add: subset_insertI)
text{*Spy sees what is sent on the traffic*}
lemma Says_imp_knows_Spy [rule_format]:
"Says A B X \<in> set evs --> X \<in> knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
lemma Notes_imp_knows_Spy [rule_format]:
"Notes A X \<in> set evs --> A: bad --> X \<in> knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
text{*Elimination rules: derive contradictions from old Says events containing
items known to be fresh*}
lemmas knows_Spy_partsEs =
Says_imp_knows_Spy [THEN parts.Inj, THEN revcut_rl, standard]
parts.Body [THEN revcut_rl, standard]
lemmas Says_imp_analz_Spy = Says_imp_knows_Spy [THEN analz.Inj]
text{*Compatibility for the old "spies" function*}
lemmas spies_partsEs = knows_Spy_partsEs
lemmas Says_imp_spies = Says_imp_knows_Spy
lemmas parts_insert_spies = parts_insert_knows_A [of _ Spy]
subsection{*Knowledge of Agents*}
lemma knows_Says: "knows A (Says A B X # evs) = insert X (knows A evs)"
by simp
lemma knows_Notes: "knows A (Notes A X # evs) = insert X (knows A evs)"
by simp
lemma knows_Gets:
"A \<noteq> Spy --> knows A (Gets A X # evs) = insert X (knows A evs)"
by simp
lemma knows_subset_knows_Says: "knows A evs \<subseteq> knows A (Says A' B X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_Notes: "knows A evs \<subseteq> knows A (Notes A' X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_Gets: "knows A evs \<subseteq> knows A (Gets A' X # evs)"
by (simp add: subset_insertI)
text{*Agents know what they say*}
lemma Says_imp_knows [rule_format]: "Says A B X \<in> set evs --> X \<in> knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
text{*Agents know what they note*}
lemma Notes_imp_knows [rule_format]: "Notes A X \<in> set evs --> X \<in> knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
text{*Agents know what they receive*}
lemma Gets_imp_knows_agents [rule_format]:
"A \<noteq> Spy --> Gets A X \<in> set evs --> X \<in> knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
text{*What agents DIFFERENT FROM Spy know
was either said, or noted, or got, or known initially*}
lemma knows_imp_Says_Gets_Notes_initState [rule_format]:
"[| X \<in> knows A evs; A \<noteq> Spy |] ==> EX B.
Says A B X \<in> set evs | Gets A X \<in> set evs | Notes A X \<in> set evs | X \<in> initState A"
apply (erule rev_mp)
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
text{*What the Spy knows -- for the time being --
was either said or noted, or known initially*}
lemma knows_Spy_imp_Says_Notes_initState [rule_format]:
"[| X \<in> knows Spy evs |] ==> EX A B.
Says A B X \<in> set evs | Notes A X \<in> set evs | X \<in> initState Spy"
apply (erule rev_mp)
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) \<subseteq> used evs"
apply (induct_tac "evs", force)
apply (simp add: parts_insert_knows_A knows_Cons add: event.split, blast)
done
lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro]
lemma initState_into_used: "X \<in> parts (initState B) ==> X \<in> used evs"
apply (induct_tac "evs")
apply (simp_all add: parts_insert_knows_A split add: event.split, blast)
done
lemma used_Says [simp]: "used (Says A B X # evs) = parts{X} \<union> used evs"
by simp
lemma used_Notes [simp]: "used (Notes A X # evs) = parts{X} \<union> used evs"
by simp
lemma used_Gets [simp]: "used (Gets A X # evs) = used evs"
by simp
lemma used_nil_subset: "used [] \<subseteq> used evs"
apply simp
apply (blast intro: initState_into_used)
done
text{*NOTE REMOVAL--laws above are cleaner, as they don't involve "case"*}
declare knows_Cons [simp del]
used_Nil [simp del] used_Cons [simp del]
text{*For proving theorems of the form @{term "X \<notin> analz (knows Spy evs) --> P"}
New events added by induction to "evs" are discarded. Provided
this information isn't needed, the proof will be much shorter, since
it will omit complicated reasoning about @{term analz}.*}
lemmas analz_mono_contra =
knows_Spy_subset_knows_Spy_Says [THEN analz_mono, THEN contra_subsetD]
knows_Spy_subset_knows_Spy_Notes [THEN analz_mono, THEN contra_subsetD]
knows_Spy_subset_knows_Spy_Gets [THEN analz_mono, THEN contra_subsetD]
lemmas analz_impI = impI [where P = "Y \<notin> analz (knows Spy evs)", standard]
ML
{*
val analz_mono_contra_tac =
rtac @{thm analz_impI} THEN'
REPEAT1 o (dresolve_tac @{thms analz_mono_contra})
THEN' mp_tac
*}
lemma knows_subset_knows_Cons: "knows A evs \<subseteq> knows A (e # evs)"
by (induct e, auto simp: knows_Cons)
lemma initState_subset_knows: "initState A \<subseteq> knows A evs"
apply (induct_tac evs, simp)
apply (blast intro: knows_subset_knows_Cons [THEN subsetD])
done
text{*For proving @{text new_keys_not_used}*}
lemma keysFor_parts_insert:
"[| K \<in> keysFor (parts (insert X G)); X \<in> synth (analz H) |]
==> K \<in> keysFor (parts (G \<union> H)) | Key (invKey K) \<in> parts H";
by (force
dest!: parts_insert_subset_Un [THEN keysFor_mono, THEN [2] rev_subsetD]
analz_subset_parts [THEN keysFor_mono, THEN [2] rev_subsetD]
intro: analz_subset_parts [THEN subsetD] parts_mono [THEN [2] rev_subsetD])
method_setup analz_mono_contra = {*
Scan.succeed (K (SIMPLE_METHOD (REPEAT_FIRST analz_mono_contra_tac))) *}
"for proving theorems of the form X \<notin> analz (knows Spy evs) --> P"
subsubsection{*Useful for case analysis on whether a hash is a spoof or not*}
lemmas syan_impI = impI [where P = "Y \<notin> synth (analz (knows Spy evs))", standard]
ML
{*
val knows_Cons = thm "knows_Cons"
val used_Nil = thm "used_Nil"
val used_Cons = thm "used_Cons"
val Notes_imp_used = thm "Notes_imp_used";
val Says_imp_used = thm "Says_imp_used";
val Says_imp_knows_Spy = thm "Says_imp_knows_Spy";
val Notes_imp_knows_Spy = thm "Notes_imp_knows_Spy";
val knows_Spy_partsEs = thms "knows_Spy_partsEs";
val spies_partsEs = thms "spies_partsEs";
val Says_imp_spies = thm "Says_imp_spies";
val parts_insert_spies = thm "parts_insert_spies";
val Says_imp_knows = thm "Says_imp_knows";
val Notes_imp_knows = thm "Notes_imp_knows";
val Gets_imp_knows_agents = thm "Gets_imp_knows_agents";
val knows_imp_Says_Gets_Notes_initState = thm "knows_imp_Says_Gets_Notes_initState";
val knows_Spy_imp_Says_Notes_initState = thm "knows_Spy_imp_Says_Notes_initState";
val usedI = thm "usedI";
val initState_into_used = thm "initState_into_used";
val used_Says = thm "used_Says";
val used_Notes = thm "used_Notes";
val used_Gets = thm "used_Gets";
val used_nil_subset = thm "used_nil_subset";
val analz_mono_contra = thms "analz_mono_contra";
val knows_subset_knows_Cons = thm "knows_subset_knows_Cons";
val initState_subset_knows = thm "initState_subset_knows";
val keysFor_parts_insert = thm "keysFor_parts_insert";
val synth_analz_mono = thm "synth_analz_mono";
val knows_Spy_subset_knows_Spy_Says = thm "knows_Spy_subset_knows_Spy_Says";
val knows_Spy_subset_knows_Spy_Notes = thm "knows_Spy_subset_knows_Spy_Notes";
val knows_Spy_subset_knows_Spy_Gets = thm "knows_Spy_subset_knows_Spy_Gets";
val synth_analz_mono_contra_tac =
rtac @{thm syan_impI} THEN'
REPEAT1 o
(dresolve_tac
[@{thm knows_Spy_subset_knows_Spy_Says} RS @{thm synth_analz_mono} RS @{thm contra_subsetD},
@{thm knows_Spy_subset_knows_Spy_Notes} RS @{thm synth_analz_mono} RS @{thm contra_subsetD},
@{thm knows_Spy_subset_knows_Spy_Gets} RS @{thm synth_analz_mono} RS @{thm contra_subsetD}])
THEN'
mp_tac
*}
method_setup synth_analz_mono_contra = {*
Scan.succeed (K (SIMPLE_METHOD (REPEAT_FIRST synth_analz_mono_contra_tac))) *}
"for proving theorems of the form X \<notin> synth (analz (knows Spy evs)) --> P"
(*>*)
section{* Event Traces \label{sec:events} *}
text {*
The system's behaviour is formalized as a set of traces of
\emph{events}. The most important event, @{text "Says A B X"}, expresses
$A\to B : X$, which is the attempt by~$A$ to send~$B$ the message~$X$.
A trace is simply a list, constructed in reverse
using~@{text "#"}. Other event types include reception of messages (when
we want to make it explicit) and an agent's storing a fact.
Sometimes the protocol requires an agent to generate a new nonce. The
probability that a 20-byte random number has appeared before is effectively
zero. To formalize this important property, the set @{term "used evs"}
denotes the set of all items mentioned in the trace~@{text evs}.
The function @{text used} has a straightforward
recursive definition. Here is the case for @{text Says} event:
@{thm [display,indent=5] used_Says [no_vars]}
The function @{text knows} formalizes an agent's knowledge. Mostly we only
care about the spy's knowledge, and @{term "knows Spy evs"} is the set of items
available to the spy in the trace~@{text evs}. Already in the empty trace,
the spy starts with some secrets at his disposal, such as the private keys
of compromised users. After each @{text Says} event, the spy learns the
message that was sent:
@{thm [display,indent=5] knows_Spy_Says [no_vars]}
Combinations of functions express other important
sets of messages derived from~@{text evs}:
\begin{itemize}
\item @{term "analz (knows Spy evs)"} is everything that the spy could
learn by decryption
\item @{term "synth (analz (knows Spy evs))"} is everything that the spy
could generate
\end{itemize}
*}
(*<*)
end
(*>*)