src/HOL/TPTP/CASC/SysDesc_Isabelle.html
author blanchet
Mon, 13 Jul 2015 16:54:27 +0200
changeset 60716 8e82a83757df
parent 52098 6c38df1d294a
child 60717 9a14d574ea65
permissions -rw-r--r--
imported patch up_casc

<HR><!------------------------------------------------------------------------>
<H2>Isabelle/HOL 2015</H2>
Jasmin C. Blanchette<sup>1</sup>, Lawrence C. Paulson<sup>2</sup>,
Tobias Nipkow<sup>1</sup>, Makarius Wenzel<sup>3</sup> <BR>
<sup>1</sup>Technische Universit&auml;t M&uuml;nchen, Germany <BR>
<sup>2</sup>University of Cambridge, United Kingdom <BR>
<sup>3</sup>Universit&eacute; Paris Sud, France <BR>

<H3>Architecture</H3>

Isabelle/HOL 2015 [<A HREF="#References">NPW13</A>] is the higher-order 
logic incarnation of the generic proof assistant 
<A HREF="http://www.cl.cam.ac.uk/research/hvg/Isabelle/">Isabelle2015</A>.
Isabelle/HOL provides several automatic proof tactics, notably an equational
reasoner [<A HREF="#References">Nip89</A>], a classical reasoner [<A
HREF="#References">Pau94</A>], and a tableau prover [<A
HREF="#References">Pau99</A>]. It also integrates external first- and
higher-order provers via its subsystem Sledgehammer [<A
HREF="#References">PB10</A>, <A HREF="#References">BBP11</A>].

<P>
Isabelle includes a parser for the TPTP syntaxes CNF, FOF, TFF0, and THF0, due
to Nik Sultana. It also includes TPTP versions of its popular tools, invokable
on the command line as <tt>isabelle tptp_<em>tool</em> <em>max_secs</em>
<em>file.p</em></tt>. For example:

<blockquote><pre>
isabelle tptp_isabelle_hot 100 SEU/SEU824^3.p
</pre></blockquote>

<P>
Two versions of Isabelle participate this year. The <em>demo</em> (or HOT) version
includes its competitors LEO-II [<A HREF="#References">BPTF08</A>] and Satallax
[<A HREF="#References">Bro12</A>] as Sledgehammer backends, whereas the
<em>competition</em> version leaves them out.

<H3>Strategies</H3>

The <em>Isabelle</em> tactic submitted to the competition simply tries the
following tactics sequentially:

<DL>
<DT> <tt>sledgehammer</tt>
<DD> Invokes the following sequence of provers as oracles via Sledgehammer:
	<UL>
	<LI> <tt>satallax</tt>&mdash;Satallax 2.4 [<A HREF="#References">Bro12</A>] (<em>demo only</em>);
	<LI> <tt>leo2</tt>&mdash;LEO-II 1.3.2 [<A HREF="#References">BPTF08</A>] (<em>demo only</em>);
	<LI> <tt>spass</tt>&mdash;SPASS 3.8ds [<A HREF="#References">BPWW12</A>];
	<LI> <tt>vampire</tt>&mdash;Vampire 1.8 (revision 1435) [<A HREF="#References">RV02</A>];
	<LI> <tt>e</tt>&mdash;E 1.4 [<A HREF="#References">Sch04</A>];
	<LI> <tt>z3_tptp</tt>&mdash;Z3 3.2 with TPTP syntax [<A HREF="#References">dMB08</A>].
	</UL>
<DT> <tt>nitpick</tt>
<DD> For problems involving only the type <tt>$o</tt> of Booleans, checks
	 whether a finite model exists using Nitpick [<A HREF="#References">BN10</A>].
<DT> <tt>simp</tt>
<DD> Performs equational reasoning using rewrite rules [<A HREF="#References">Nip89</A>].
<DT> <tt>blast</tt>
<DD> Searches for a proof using a fast untyped tableau prover and then
     attempts to reconstruct the proof using Isabelle tactics
     [<A HREF="#References">Pau99</A>].
<DT> <tt>auto+spass</tt>
<DD> Combines simplification and classical reasoning
	 [<A HREF="#References">Pau94</A>] under one roof; then invoke Sledgehammer
     with SPASS on any subgoals that emerge.
<DT> <tt>z3</tt>
<DD> Invokes the SMT solver Z3 3.2 [<A HREF="#References">dMB08</A>].
<DT> <tt>cvc3</tt>
<DD> Invokes the SMT solver CVC3 2.2 [<A HREF="#References">BT07</A>].
<DT> <tt>fast</tt>
<DD> Searches for a proof using sequent-style reasoning, performing a
     depth-first search [<A HREF="#References">Pau94</A>]. Unlike
     <tt>blast</tt>, it construct proofs directly in Isabelle. That makes it
     slower but enables it to work in the presence of the more unusual features
     of HOL, such as type classes and function unknowns.
<DT> <tt>best</tt>
<DD> Similar to <tt>fast</tt>, except that it performs a best-first search.
<DT> <tt>force</tt>
<DD> Similar to <tt>auto</tt>, but more exhaustive.
<DT> <tt>meson</tt>
<DD> Implements Loveland's MESON procedure [<A HREF="#References">Lov78</A>].
Constructs proofs directly in Isabelle.
<DT> <tt>fastforce</tt>
<DD> Combines <tt>fast</tt> and <tt>force</tt>.
</DL>

<H3>Implementation</H3>

Isabelle is a generic theorem prover written in Standard ML. Its meta-logic,
Isabelle/Pure, provides an intuitionistic fragment of higher-order logic. The
HOL object logic extends pure with a more elaborate version of higher-order
logic, complete with the familiar connectives and quantifiers. Other object
logics are available, notably FOL (first-order logic) and ZF
(Zermelo&ndash;Fraenkel set theory).
<P>
The implementation of Isabelle relies on a small LCF-style kernel, meaning that
inferences are implemented as operations on an abstract <tt>theorem</tt>
datatype. Assuming the kernel is correct, all values of type <tt>theorem</tt>
are correct by construction.
<P>
Most of the code for Isabelle was written by the Isabelle teams at the
University of Cambridge and the Technische Universit&auml;t M&uuml;nchen.
Isabelle/HOL is available for all major platforms under a BSD-style license
from
<PRE>
    <A HREF="http:////www.cl.cam.ac.uk/research/hvg/Isabelle/">http://www.cl.cam.ac.uk/research/hvg/Isabelle</A></PRE>

<H3>Expected Competition Performance</H3>

<P>
Thanks to the addition of CVC4 and a new version of Vampire,
Isabelle might have become now strong enough to take on Satallax
and its various declensions. But we expect Isabelle to end in
second or third place, to be honest.

<H3>References</H3>
<DL>

<DT> BBP11
<DD> Blanchette J. C., B&ouml;hme S., Paulson L. C. (2011),
     <STRONG>Extending Sledgehammer with SMT Solvers</STRONG>,
     CADE-23, LNAI 6803, pp. 116&ndash;130, Springer.
<DT> BN10
<DD> Blanchette J. C., Nipkow T. (2010),
     <STRONG>Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder</STRONG>,
     ITP 2010, <EM>LNCS</EM> 6172, pp. 131&ndash;146, Springer.
<DT> BPTF08
<DD> Benzm&uuml;ller C., Paulson L. C., Theiss F., Fietzke A. (2008),
  	 <STRONG>LEO-II&mdash;A Cooperative Automatic Theorem Prover for Higher-Order Logic</STRONG>,
  	 IJCAR 2008, <EM>LNAI</EM> 5195, pp. 162&ndash;170, Springer.
<DT> BPWW12
<DD> Blanchette J. C., Popescu A., Wand D., Weidenbach C. (2012),
	 <STRONG>More SPASS with Isabelle</STRONG>,
	 ITP 2012, Springer.
<DT> Bro12
<DD> Brown C. (2012),
	 <STRONG>Satallax: An Automated Higher-Order Prover (System Description)</STRONG>,
	 IJCAR 2012, Springer.
<DT> BT07
<DD> Barrett C., Tinelli C. (2007),
	 <STRONG>CVC3 (System Description)</STRONG>,
  	 CAV 2007, <EM>LNCS</EM> 4590, pp. 298&ndash;302, Springer.
<DT> dMB08
<DD> de Moura L. M., Bj&oslash;rner N. (2008),
     <STRONG>Z3: An Efficient SMT Solver</STRONG>,
	 TACAS 2008, <EM>LNCS</EM> 4963, pp. 337&ndash;340, Springer.
<DT> Lov78
<DD> Loveland D. W. (1978),
     <STRONG>Automated Theorem Proving: A Logical Basis</STRONG>,
     North-Holland Publishing Co.
<DT> Nip89
<DD> Nipkow T. (1989),
     <STRONG>Equational Reasoning in Isabelle</STRONG>,
     <EM>Sci. Comput. Program.</EM> 12(2),
     pp. 123&ndash;149,
     Elsevier.
<DT> NPW13
<DD> Nipkow T., Paulson L. C., Wenzel M. (2013),
     <STRONG>Isabelle/HOL: A Proof Assistant for Higher-Order Logic</STRONG>,
     <A HREF="http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/tutorial.pdf">http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/tutorial.pdf</a>.
<DT> Pau94
<DD> Paulson L. C. (1994),
     <STRONG>Isabelle: A Generic Theorem Prover</STRONG>,
     <EM>LNCS</EM> 828,
     Springer.
<DT> Pau99
<DD> Paulson L. C. (1999),
     <STRONG>A Generic Tableau Prover and Its Integration with Isabelle</STRONG>,
     <EM>J. Univ. Comp. Sci.</EM> 5,
     pp. 73&ndash;87.
<DT> PB10
<DD> Paulson L. C., Blanchette J. C. (2010),
     <STRONG>Three Years of Experience with Sledgehammer, a Practical Link between Automatic and Interactive Theorem Provers</STRONG>,
     IWIL-2010.
<DT> RV02
<DD> Riazanov A., Voronkov A. (2002),
  	 <STRONG>The Design and Implementation of Vampire</STRONG>,
  	 <EM>AI Comm.</EM> 15(2-3), 91&ndash;110.
<DT> Sch04
<DD> Schulz S. (2004),
  	 <STRONG>System Description: E 0.81</STRONG>,
  	 IJCAR 2004, <EM>LNAI</EM> 3097, pp. 223&ndash;228, Springer.
</DL>
<P>

<HR><!------------------------------------------------------------------------>