(* Title: HOLCF/Map_Functions.thy
Author: Brian Huffman
*)
header {* Map functions for various types *}
theory Map_Functions
imports Deflation
begin
subsection {* Map operator for continuous function space *}
default_sort cpo
definition
cfun_map :: "('b \<rightarrow> 'a) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> ('a \<rightarrow> 'c) \<rightarrow> ('b \<rightarrow> 'd)"
where
"cfun_map = (\<Lambda> a b f x. b\<cdot>(f\<cdot>(a\<cdot>x)))"
lemma cfun_map_beta [simp]: "cfun_map\<cdot>a\<cdot>b\<cdot>f\<cdot>x = b\<cdot>(f\<cdot>(a\<cdot>x))"
unfolding cfun_map_def by simp
lemma cfun_map_ID: "cfun_map\<cdot>ID\<cdot>ID = ID"
unfolding cfun_eq_iff by simp
lemma cfun_map_map:
"cfun_map\<cdot>f1\<cdot>g1\<cdot>(cfun_map\<cdot>f2\<cdot>g2\<cdot>p) =
cfun_map\<cdot>(\<Lambda> x. f2\<cdot>(f1\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p"
by (rule cfun_eqI) simp
lemma ep_pair_cfun_map:
assumes "ep_pair e1 p1" and "ep_pair e2 p2"
shows "ep_pair (cfun_map\<cdot>p1\<cdot>e2) (cfun_map\<cdot>e1\<cdot>p2)"
proof
interpret e1p1: ep_pair e1 p1 by fact
interpret e2p2: ep_pair e2 p2 by fact
fix f show "cfun_map\<cdot>e1\<cdot>p2\<cdot>(cfun_map\<cdot>p1\<cdot>e2\<cdot>f) = f"
by (simp add: cfun_eq_iff)
fix g show "cfun_map\<cdot>p1\<cdot>e2\<cdot>(cfun_map\<cdot>e1\<cdot>p2\<cdot>g) \<sqsubseteq> g"
apply (rule cfun_belowI, simp)
apply (rule below_trans [OF e2p2.e_p_below])
apply (rule monofun_cfun_arg)
apply (rule e1p1.e_p_below)
done
qed
lemma deflation_cfun_map:
assumes "deflation d1" and "deflation d2"
shows "deflation (cfun_map\<cdot>d1\<cdot>d2)"
proof
interpret d1: deflation d1 by fact
interpret d2: deflation d2 by fact
fix f
show "cfun_map\<cdot>d1\<cdot>d2\<cdot>(cfun_map\<cdot>d1\<cdot>d2\<cdot>f) = cfun_map\<cdot>d1\<cdot>d2\<cdot>f"
by (simp add: cfun_eq_iff d1.idem d2.idem)
show "cfun_map\<cdot>d1\<cdot>d2\<cdot>f \<sqsubseteq> f"
apply (rule cfun_belowI, simp)
apply (rule below_trans [OF d2.below])
apply (rule monofun_cfun_arg)
apply (rule d1.below)
done
qed
lemma finite_range_cfun_map:
assumes a: "finite (range (\<lambda>x. a\<cdot>x))"
assumes b: "finite (range (\<lambda>y. b\<cdot>y))"
shows "finite (range (\<lambda>f. cfun_map\<cdot>a\<cdot>b\<cdot>f))" (is "finite (range ?h)")
proof (rule finite_imageD)
let ?f = "\<lambda>g. range (\<lambda>x. (a\<cdot>x, g\<cdot>x))"
show "finite (?f ` range ?h)"
proof (rule finite_subset)
let ?B = "Pow (range (\<lambda>x. a\<cdot>x) \<times> range (\<lambda>y. b\<cdot>y))"
show "?f ` range ?h \<subseteq> ?B"
by clarsimp
show "finite ?B"
by (simp add: a b)
qed
show "inj_on ?f (range ?h)"
proof (rule inj_onI, rule cfun_eqI, clarsimp)
fix x f g
assume "range (\<lambda>x. (a\<cdot>x, b\<cdot>(f\<cdot>(a\<cdot>x)))) = range (\<lambda>x. (a\<cdot>x, b\<cdot>(g\<cdot>(a\<cdot>x))))"
hence "range (\<lambda>x. (a\<cdot>x, b\<cdot>(f\<cdot>(a\<cdot>x)))) \<subseteq> range (\<lambda>x. (a\<cdot>x, b\<cdot>(g\<cdot>(a\<cdot>x))))"
by (rule equalityD1)
hence "(a\<cdot>x, b\<cdot>(f\<cdot>(a\<cdot>x))) \<in> range (\<lambda>x. (a\<cdot>x, b\<cdot>(g\<cdot>(a\<cdot>x))))"
by (simp add: subset_eq)
then obtain y where "(a\<cdot>x, b\<cdot>(f\<cdot>(a\<cdot>x))) = (a\<cdot>y, b\<cdot>(g\<cdot>(a\<cdot>y)))"
by (rule rangeE)
thus "b\<cdot>(f\<cdot>(a\<cdot>x)) = b\<cdot>(g\<cdot>(a\<cdot>x))"
by clarsimp
qed
qed
lemma finite_deflation_cfun_map:
assumes "finite_deflation d1" and "finite_deflation d2"
shows "finite_deflation (cfun_map\<cdot>d1\<cdot>d2)"
proof (rule finite_deflation_intro)
interpret d1: finite_deflation d1 by fact
interpret d2: finite_deflation d2 by fact
have "deflation d1" and "deflation d2" by fact+
thus "deflation (cfun_map\<cdot>d1\<cdot>d2)" by (rule deflation_cfun_map)
have "finite (range (\<lambda>f. cfun_map\<cdot>d1\<cdot>d2\<cdot>f))"
using d1.finite_range d2.finite_range
by (rule finite_range_cfun_map)
thus "finite {f. cfun_map\<cdot>d1\<cdot>d2\<cdot>f = f}"
by (rule finite_range_imp_finite_fixes)
qed
text {* Finite deflations are compact elements of the function space *}
lemma finite_deflation_imp_compact: "finite_deflation d \<Longrightarrow> compact d"
apply (frule finite_deflation_imp_deflation)
apply (subgoal_tac "compact (cfun_map\<cdot>d\<cdot>d\<cdot>d)")
apply (simp add: cfun_map_def deflation.idem eta_cfun)
apply (rule finite_deflation.compact)
apply (simp only: finite_deflation_cfun_map)
done
subsection {* Map operator for product type *}
definition
cprod_map :: "('a \<rightarrow> 'b) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> 'a \<times> 'c \<rightarrow> 'b \<times> 'd"
where
"cprod_map = (\<Lambda> f g p. (f\<cdot>(fst p), g\<cdot>(snd p)))"
lemma cprod_map_Pair [simp]: "cprod_map\<cdot>f\<cdot>g\<cdot>(x, y) = (f\<cdot>x, g\<cdot>y)"
unfolding cprod_map_def by simp
lemma cprod_map_ID: "cprod_map\<cdot>ID\<cdot>ID = ID"
unfolding cfun_eq_iff by auto
lemma cprod_map_map:
"cprod_map\<cdot>f1\<cdot>g1\<cdot>(cprod_map\<cdot>f2\<cdot>g2\<cdot>p) =
cprod_map\<cdot>(\<Lambda> x. f1\<cdot>(f2\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p"
by (induct p) simp
lemma ep_pair_cprod_map:
assumes "ep_pair e1 p1" and "ep_pair e2 p2"
shows "ep_pair (cprod_map\<cdot>e1\<cdot>e2) (cprod_map\<cdot>p1\<cdot>p2)"
proof
interpret e1p1: ep_pair e1 p1 by fact
interpret e2p2: ep_pair e2 p2 by fact
fix x show "cprod_map\<cdot>p1\<cdot>p2\<cdot>(cprod_map\<cdot>e1\<cdot>e2\<cdot>x) = x"
by (induct x) simp
fix y show "cprod_map\<cdot>e1\<cdot>e2\<cdot>(cprod_map\<cdot>p1\<cdot>p2\<cdot>y) \<sqsubseteq> y"
by (induct y) (simp add: e1p1.e_p_below e2p2.e_p_below)
qed
lemma deflation_cprod_map:
assumes "deflation d1" and "deflation d2"
shows "deflation (cprod_map\<cdot>d1\<cdot>d2)"
proof
interpret d1: deflation d1 by fact
interpret d2: deflation d2 by fact
fix x
show "cprod_map\<cdot>d1\<cdot>d2\<cdot>(cprod_map\<cdot>d1\<cdot>d2\<cdot>x) = cprod_map\<cdot>d1\<cdot>d2\<cdot>x"
by (induct x) (simp add: d1.idem d2.idem)
show "cprod_map\<cdot>d1\<cdot>d2\<cdot>x \<sqsubseteq> x"
by (induct x) (simp add: d1.below d2.below)
qed
lemma finite_deflation_cprod_map:
assumes "finite_deflation d1" and "finite_deflation d2"
shows "finite_deflation (cprod_map\<cdot>d1\<cdot>d2)"
proof (rule finite_deflation_intro)
interpret d1: finite_deflation d1 by fact
interpret d2: finite_deflation d2 by fact
have "deflation d1" and "deflation d2" by fact+
thus "deflation (cprod_map\<cdot>d1\<cdot>d2)" by (rule deflation_cprod_map)
have "{p. cprod_map\<cdot>d1\<cdot>d2\<cdot>p = p} \<subseteq> {x. d1\<cdot>x = x} \<times> {y. d2\<cdot>y = y}"
by clarsimp
thus "finite {p. cprod_map\<cdot>d1\<cdot>d2\<cdot>p = p}"
by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes)
qed
subsection {* Map function for lifted cpo *}
definition
u_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a u \<rightarrow> 'b u"
where
"u_map = (\<Lambda> f. fup\<cdot>(up oo f))"
lemma u_map_strict [simp]: "u_map\<cdot>f\<cdot>\<bottom> = \<bottom>"
unfolding u_map_def by simp
lemma u_map_up [simp]: "u_map\<cdot>f\<cdot>(up\<cdot>x) = up\<cdot>(f\<cdot>x)"
unfolding u_map_def by simp
lemma u_map_ID: "u_map\<cdot>ID = ID"
unfolding u_map_def by (simp add: cfun_eq_iff eta_cfun)
lemma u_map_map: "u_map\<cdot>f\<cdot>(u_map\<cdot>g\<cdot>p) = u_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>p"
by (induct p) simp_all
lemma ep_pair_u_map: "ep_pair e p \<Longrightarrow> ep_pair (u_map\<cdot>e) (u_map\<cdot>p)"
apply default
apply (case_tac x, simp, simp add: ep_pair.e_inverse)
apply (case_tac y, simp, simp add: ep_pair.e_p_below)
done
lemma deflation_u_map: "deflation d \<Longrightarrow> deflation (u_map\<cdot>d)"
apply default
apply (case_tac x, simp, simp add: deflation.idem)
apply (case_tac x, simp, simp add: deflation.below)
done
lemma finite_deflation_u_map:
assumes "finite_deflation d" shows "finite_deflation (u_map\<cdot>d)"
proof (rule finite_deflation_intro)
interpret d: finite_deflation d by fact
have "deflation d" by fact
thus "deflation (u_map\<cdot>d)" by (rule deflation_u_map)
have "{x. u_map\<cdot>d\<cdot>x = x} \<subseteq> insert \<bottom> ((\<lambda>x. up\<cdot>x) ` {x. d\<cdot>x = x})"
by (rule subsetI, case_tac x, simp_all)
thus "finite {x. u_map\<cdot>d\<cdot>x = x}"
by (rule finite_subset, simp add: d.finite_fixes)
qed
subsection {* Map function for strict products *}
default_sort pcpo
definition
sprod_map :: "('a \<rightarrow> 'b) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> 'a \<otimes> 'c \<rightarrow> 'b \<otimes> 'd"
where
"sprod_map = (\<Lambda> f g. ssplit\<cdot>(\<Lambda> x y. (:f\<cdot>x, g\<cdot>y:)))"
lemma sprod_map_strict [simp]: "sprod_map\<cdot>a\<cdot>b\<cdot>\<bottom> = \<bottom>"
unfolding sprod_map_def by simp
lemma sprod_map_spair [simp]:
"x \<noteq> \<bottom> \<Longrightarrow> y \<noteq> \<bottom> \<Longrightarrow> sprod_map\<cdot>f\<cdot>g\<cdot>(:x, y:) = (:f\<cdot>x, g\<cdot>y:)"
by (simp add: sprod_map_def)
lemma sprod_map_spair':
"f\<cdot>\<bottom> = \<bottom> \<Longrightarrow> g\<cdot>\<bottom> = \<bottom> \<Longrightarrow> sprod_map\<cdot>f\<cdot>g\<cdot>(:x, y:) = (:f\<cdot>x, g\<cdot>y:)"
by (cases "x = \<bottom> \<or> y = \<bottom>") auto
lemma sprod_map_ID: "sprod_map\<cdot>ID\<cdot>ID = ID"
unfolding sprod_map_def by (simp add: cfun_eq_iff eta_cfun)
lemma sprod_map_map:
"\<lbrakk>f1\<cdot>\<bottom> = \<bottom>; g1\<cdot>\<bottom> = \<bottom>\<rbrakk> \<Longrightarrow>
sprod_map\<cdot>f1\<cdot>g1\<cdot>(sprod_map\<cdot>f2\<cdot>g2\<cdot>p) =
sprod_map\<cdot>(\<Lambda> x. f1\<cdot>(f2\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p"
apply (induct p, simp)
apply (case_tac "f2\<cdot>x = \<bottom>", simp)
apply (case_tac "g2\<cdot>y = \<bottom>", simp)
apply simp
done
lemma ep_pair_sprod_map:
assumes "ep_pair e1 p1" and "ep_pair e2 p2"
shows "ep_pair (sprod_map\<cdot>e1\<cdot>e2) (sprod_map\<cdot>p1\<cdot>p2)"
proof
interpret e1p1: pcpo_ep_pair e1 p1 unfolding pcpo_ep_pair_def by fact
interpret e2p2: pcpo_ep_pair e2 p2 unfolding pcpo_ep_pair_def by fact
fix x show "sprod_map\<cdot>p1\<cdot>p2\<cdot>(sprod_map\<cdot>e1\<cdot>e2\<cdot>x) = x"
by (induct x) simp_all
fix y show "sprod_map\<cdot>e1\<cdot>e2\<cdot>(sprod_map\<cdot>p1\<cdot>p2\<cdot>y) \<sqsubseteq> y"
apply (induct y, simp)
apply (case_tac "p1\<cdot>x = \<bottom>", simp, case_tac "p2\<cdot>y = \<bottom>", simp)
apply (simp add: monofun_cfun e1p1.e_p_below e2p2.e_p_below)
done
qed
lemma deflation_sprod_map:
assumes "deflation d1" and "deflation d2"
shows "deflation (sprod_map\<cdot>d1\<cdot>d2)"
proof
interpret d1: deflation d1 by fact
interpret d2: deflation d2 by fact
fix x
show "sprod_map\<cdot>d1\<cdot>d2\<cdot>(sprod_map\<cdot>d1\<cdot>d2\<cdot>x) = sprod_map\<cdot>d1\<cdot>d2\<cdot>x"
apply (induct x, simp)
apply (case_tac "d1\<cdot>x = \<bottom>", simp, case_tac "d2\<cdot>y = \<bottom>", simp)
apply (simp add: d1.idem d2.idem)
done
show "sprod_map\<cdot>d1\<cdot>d2\<cdot>x \<sqsubseteq> x"
apply (induct x, simp)
apply (simp add: monofun_cfun d1.below d2.below)
done
qed
lemma finite_deflation_sprod_map:
assumes "finite_deflation d1" and "finite_deflation d2"
shows "finite_deflation (sprod_map\<cdot>d1\<cdot>d2)"
proof (rule finite_deflation_intro)
interpret d1: finite_deflation d1 by fact
interpret d2: finite_deflation d2 by fact
have "deflation d1" and "deflation d2" by fact+
thus "deflation (sprod_map\<cdot>d1\<cdot>d2)" by (rule deflation_sprod_map)
have "{x. sprod_map\<cdot>d1\<cdot>d2\<cdot>x = x} \<subseteq> insert \<bottom>
((\<lambda>(x, y). (:x, y:)) ` ({x. d1\<cdot>x = x} \<times> {y. d2\<cdot>y = y}))"
by (rule subsetI, case_tac x, auto simp add: spair_eq_iff)
thus "finite {x. sprod_map\<cdot>d1\<cdot>d2\<cdot>x = x}"
by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes)
qed
subsection {* Map function for strict sums *}
definition
ssum_map :: "('a \<rightarrow> 'b) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> 'a \<oplus> 'c \<rightarrow> 'b \<oplus> 'd"
where
"ssum_map = (\<Lambda> f g. sscase\<cdot>(sinl oo f)\<cdot>(sinr oo g))"
lemma ssum_map_strict [simp]: "ssum_map\<cdot>f\<cdot>g\<cdot>\<bottom> = \<bottom>"
unfolding ssum_map_def by simp
lemma ssum_map_sinl [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = sinl\<cdot>(f\<cdot>x)"
unfolding ssum_map_def by simp
lemma ssum_map_sinr [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>x) = sinr\<cdot>(g\<cdot>x)"
unfolding ssum_map_def by simp
lemma ssum_map_sinl': "f\<cdot>\<bottom> = \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = sinl\<cdot>(f\<cdot>x)"
by (cases "x = \<bottom>") simp_all
lemma ssum_map_sinr': "g\<cdot>\<bottom> = \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>x) = sinr\<cdot>(g\<cdot>x)"
by (cases "x = \<bottom>") simp_all
lemma ssum_map_ID: "ssum_map\<cdot>ID\<cdot>ID = ID"
unfolding ssum_map_def by (simp add: cfun_eq_iff eta_cfun)
lemma ssum_map_map:
"\<lbrakk>f1\<cdot>\<bottom> = \<bottom>; g1\<cdot>\<bottom> = \<bottom>\<rbrakk> \<Longrightarrow>
ssum_map\<cdot>f1\<cdot>g1\<cdot>(ssum_map\<cdot>f2\<cdot>g2\<cdot>p) =
ssum_map\<cdot>(\<Lambda> x. f1\<cdot>(f2\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p"
apply (induct p, simp)
apply (case_tac "f2\<cdot>x = \<bottom>", simp, simp)
apply (case_tac "g2\<cdot>y = \<bottom>", simp, simp)
done
lemma ep_pair_ssum_map:
assumes "ep_pair e1 p1" and "ep_pair e2 p2"
shows "ep_pair (ssum_map\<cdot>e1\<cdot>e2) (ssum_map\<cdot>p1\<cdot>p2)"
proof
interpret e1p1: pcpo_ep_pair e1 p1 unfolding pcpo_ep_pair_def by fact
interpret e2p2: pcpo_ep_pair e2 p2 unfolding pcpo_ep_pair_def by fact
fix x show "ssum_map\<cdot>p1\<cdot>p2\<cdot>(ssum_map\<cdot>e1\<cdot>e2\<cdot>x) = x"
by (induct x) simp_all
fix y show "ssum_map\<cdot>e1\<cdot>e2\<cdot>(ssum_map\<cdot>p1\<cdot>p2\<cdot>y) \<sqsubseteq> y"
apply (induct y, simp)
apply (case_tac "p1\<cdot>x = \<bottom>", simp, simp add: e1p1.e_p_below)
apply (case_tac "p2\<cdot>y = \<bottom>", simp, simp add: e2p2.e_p_below)
done
qed
lemma deflation_ssum_map:
assumes "deflation d1" and "deflation d2"
shows "deflation (ssum_map\<cdot>d1\<cdot>d2)"
proof
interpret d1: deflation d1 by fact
interpret d2: deflation d2 by fact
fix x
show "ssum_map\<cdot>d1\<cdot>d2\<cdot>(ssum_map\<cdot>d1\<cdot>d2\<cdot>x) = ssum_map\<cdot>d1\<cdot>d2\<cdot>x"
apply (induct x, simp)
apply (case_tac "d1\<cdot>x = \<bottom>", simp, simp add: d1.idem)
apply (case_tac "d2\<cdot>y = \<bottom>", simp, simp add: d2.idem)
done
show "ssum_map\<cdot>d1\<cdot>d2\<cdot>x \<sqsubseteq> x"
apply (induct x, simp)
apply (case_tac "d1\<cdot>x = \<bottom>", simp, simp add: d1.below)
apply (case_tac "d2\<cdot>y = \<bottom>", simp, simp add: d2.below)
done
qed
lemma finite_deflation_ssum_map:
assumes "finite_deflation d1" and "finite_deflation d2"
shows "finite_deflation (ssum_map\<cdot>d1\<cdot>d2)"
proof (rule finite_deflation_intro)
interpret d1: finite_deflation d1 by fact
interpret d2: finite_deflation d2 by fact
have "deflation d1" and "deflation d2" by fact+
thus "deflation (ssum_map\<cdot>d1\<cdot>d2)" by (rule deflation_ssum_map)
have "{x. ssum_map\<cdot>d1\<cdot>d2\<cdot>x = x} \<subseteq>
(\<lambda>x. sinl\<cdot>x) ` {x. d1\<cdot>x = x} \<union>
(\<lambda>x. sinr\<cdot>x) ` {x. d2\<cdot>x = x} \<union> {\<bottom>}"
by (rule subsetI, case_tac x, simp_all)
thus "finite {x. ssum_map\<cdot>d1\<cdot>d2\<cdot>x = x}"
by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes)
qed
end