(* Title: HOLCF/Lift.thy
Author: Olaf Mueller
*)
header {* Lifting types of class type to flat pcpo's *}
theory Lift
imports Discrete Up Countable
begin
defaultsort type
pcpodef 'a lift = "UNIV :: 'a discr u set"
by simp_all
instance lift :: (finite) finite_po
by (rule typedef_finite_po [OF type_definition_lift])
lemmas inst_lift_pcpo = Abs_lift_strict [symmetric]
definition
Def :: "'a \<Rightarrow> 'a lift" where
"Def x = Abs_lift (up\<cdot>(Discr x))"
subsection {* Lift as a datatype *}
lemma lift_induct: "\<lbrakk>P \<bottom>; \<And>x. P (Def x)\<rbrakk> \<Longrightarrow> P y"
apply (induct y)
apply (rule_tac p=y in upE)
apply (simp add: Abs_lift_strict)
apply (case_tac x)
apply (simp add: Def_def)
done
rep_datatype "\<bottom>\<Colon>'a lift" Def
by (erule lift_induct) (simp_all add: Def_def Abs_lift_inject lift_def inst_lift_pcpo)
lemmas lift_distinct1 = lift.distinct(1)
lemmas lift_distinct2 = lift.distinct(2)
lemmas Def_not_UU = lift.distinct(2)
lemmas Def_inject = lift.inject
text {* @{term UU} and @{term Def} *}
lemma Lift_exhaust: "x = \<bottom> \<or> (\<exists>y. x = Def y)"
by (induct x) simp_all
lemma Lift_cases: "\<lbrakk>x = \<bottom> \<Longrightarrow> P; \<exists>a. x = Def a \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (insert Lift_exhaust) blast
lemma not_Undef_is_Def: "(x \<noteq> \<bottom>) = (\<exists>y. x = Def y)"
by (cases x) simp_all
lemma lift_definedE: "\<lbrakk>x \<noteq> \<bottom>; \<And>a. x = Def a \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
by (cases x) simp_all
text {*
For @{term "x ~= UU"} in assumptions @{text defined} replaces @{text
x} by @{text "Def a"} in conclusion. *}
method_setup defined = {*
Scan.succeed (fn ctxt => SIMPLE_METHOD'
(etac @{thm lift_definedE} THEN' asm_simp_tac (simpset_of ctxt)))
*} ""
lemma DefE: "Def x = \<bottom> \<Longrightarrow> R"
by simp
lemma DefE2: "\<lbrakk>x = Def s; x = \<bottom>\<rbrakk> \<Longrightarrow> R"
by simp
lemma Def_below_Def: "Def x \<sqsubseteq> Def y \<longleftrightarrow> x = y"
by (simp add: below_lift_def Def_def Abs_lift_inverse lift_def)
lemma Def_below_iff [simp]: "Def x \<sqsubseteq> y \<longleftrightarrow> Def x = y"
by (induct y, simp, simp add: Def_below_Def)
subsection {* Lift is flat *}
instance lift :: (type) flat
proof
fix x y :: "'a lift"
assume "x \<sqsubseteq> y" thus "x = \<bottom> \<or> x = y"
by (induct x) auto
qed
text {*
\medskip Two specific lemmas for the combination of LCF and HOL
terms.
*}
lemma cont_Rep_CFun_app [simp]: "\<lbrakk>cont g; cont f\<rbrakk> \<Longrightarrow> cont(\<lambda>x. ((f x)\<cdot>(g x)) s)"
by (rule cont2cont_Rep_CFun [THEN cont2cont_fun])
lemma cont_Rep_CFun_app_app [simp]: "\<lbrakk>cont g; cont f\<rbrakk> \<Longrightarrow> cont(\<lambda>x. ((f x)\<cdot>(g x)) s t)"
by (rule cont_Rep_CFun_app [THEN cont2cont_fun])
subsection {* Further operations *}
definition
flift1 :: "('a \<Rightarrow> 'b::pcpo) \<Rightarrow> ('a lift \<rightarrow> 'b)" (binder "FLIFT " 10) where
"flift1 = (\<lambda>f. (\<Lambda> x. lift_case \<bottom> f x))"
definition
flift2 :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a lift \<rightarrow> 'b lift)" where
"flift2 f = (FLIFT x. Def (f x))"
subsection {* Continuity Proofs for flift1, flift2 *}
text {* Need the instance of @{text flat}. *}
lemma cont_lift_case1: "cont (\<lambda>f. lift_case a f x)"
apply (induct x)
apply simp
apply simp
apply (rule cont_id [THEN cont2cont_fun])
done
lemma cont_lift_case2: "cont (\<lambda>x. lift_case \<bottom> f x)"
apply (rule flatdom_strict2cont)
apply simp
done
lemma cont_flift1: "cont flift1"
unfolding flift1_def
apply (rule cont2cont_LAM)
apply (rule cont_lift_case2)
apply (rule cont_lift_case1)
done
lemma FLIFT_mono:
"(\<And>x. f x \<sqsubseteq> g x) \<Longrightarrow> (FLIFT x. f x) \<sqsubseteq> (FLIFT x. g x)"
apply (rule monofunE [where f=flift1])
apply (rule cont2mono [OF cont_flift1])
apply (simp add: below_fun_ext)
done
lemma cont2cont_flift1 [simp]:
"\<lbrakk>\<And>y. cont (\<lambda>x. f x y)\<rbrakk> \<Longrightarrow> cont (\<lambda>x. FLIFT y. f x y)"
apply (rule cont_flift1 [THEN cont2cont_app3])
apply simp
done
lemma cont2cont_lift_case [simp]:
"\<lbrakk>\<And>y. cont (\<lambda>x. f x y); cont g\<rbrakk> \<Longrightarrow> cont (\<lambda>x. lift_case UU (f x) (g x))"
apply (subgoal_tac "cont (\<lambda>x. (FLIFT y. f x y)\<cdot>(g x))")
apply (simp add: flift1_def cont_lift_case2)
apply simp
done
text {* rewrites for @{term flift1}, @{term flift2} *}
lemma flift1_Def [simp]: "flift1 f\<cdot>(Def x) = (f x)"
by (simp add: flift1_def cont_lift_case2)
lemma flift2_Def [simp]: "flift2 f\<cdot>(Def x) = Def (f x)"
by (simp add: flift2_def)
lemma flift1_strict [simp]: "flift1 f\<cdot>\<bottom> = \<bottom>"
by (simp add: flift1_def cont_lift_case2)
lemma flift2_strict [simp]: "flift2 f\<cdot>\<bottom> = \<bottom>"
by (simp add: flift2_def)
lemma flift2_defined [simp]: "x \<noteq> \<bottom> \<Longrightarrow> (flift2 f)\<cdot>x \<noteq> \<bottom>"
by (erule lift_definedE, simp)
lemma flift2_defined_iff [simp]: "(flift2 f\<cdot>x = \<bottom>) = (x = \<bottom>)"
by (cases x, simp_all)
text {*
\medskip Extension of @{text cont_tac} and installation of simplifier.
*}
lemmas cont_lemmas_ext =
cont2cont_flift1 cont2cont_lift_case cont2cont_lambda
cont_Rep_CFun_app cont_Rep_CFun_app_app cont_if
ML {*
local
val cont_lemmas2 = thms "cont_lemmas1" @ thms "cont_lemmas_ext";
val flift1_def = thm "flift1_def";
in
fun cont_tac i = resolve_tac cont_lemmas2 i;
fun cont_tacR i = REPEAT (cont_tac i);
fun cont_tacRs ss i =
simp_tac ss i THEN
REPEAT (cont_tac i)
end;
*}
subsection {* Lifted countable types are bifinite *}
instantiation lift :: (countable) bifinite
begin
definition
approx_lift_def:
"approx = (\<lambda>n. FLIFT x. if to_nat x < n then Def x else \<bottom>)"
instance proof
fix x :: "'a lift"
show "chain (approx :: nat \<Rightarrow> 'a lift \<rightarrow> 'a lift)"
unfolding approx_lift_def
by (rule chainI, simp add: FLIFT_mono)
next
fix x :: "'a lift"
show "(\<Squnion>i. approx i\<cdot>x) = x"
unfolding approx_lift_def
apply (cases x, simp)
apply (rule thelubI)
apply (rule is_lubI)
apply (rule ub_rangeI, simp)
apply (drule ub_rangeD)
apply (erule rev_below_trans)
apply simp
apply (rule lessI)
done
next
fix i :: nat and x :: "'a lift"
show "approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x"
unfolding approx_lift_def
by (cases x, simp, simp)
next
fix i :: nat
show "finite {x::'a lift. approx i\<cdot>x = x}"
proof (rule finite_subset)
let ?S = "insert (\<bottom>::'a lift) (Def ` to_nat -` {..<i})"
show "{x::'a lift. approx i\<cdot>x = x} \<subseteq> ?S"
unfolding approx_lift_def
by (rule subsetI, case_tac x, simp, simp split: split_if_asm)
show "finite ?S"
by (simp add: finite_vimageI)
qed
qed
end
end