(* Title: ZF/Induct/PropLog.thy
ID: $Id$
Author: Tobias Nipkow & Lawrence C Paulson
Copyright 1993 University of Cambridge
*)
header {* Meta-theory of propositional logic *}
theory PropLog = Main:
text {*
Datatype definition of propositional logic formulae and inductive
definition of the propositional tautologies.
Inductive definition of propositional logic. Soundness and
completeness w.r.t.\ truth-tables.
Prove: If @{text "H |= p"} then @{text "G |= p"} where @{text "G \<in>
Fin(H)"}
*}
subsection {* The datatype of propositions *}
consts
propn :: i
datatype propn =
Fls
| Var ("n \<in> nat") ("#_" [100] 100)
| Imp ("p \<in> propn", "q \<in> propn") (infixr "=>" 90)
subsection {* The proof system *}
consts thms :: "i => i"
syntax "_thms" :: "[i,i] => o" (infixl "|-" 50)
translations "H |- p" == "p \<in> thms(H)"
inductive
domains "thms(H)" \<subseteq> "propn"
intros
H: "[| p \<in> H; p \<in> propn |] ==> H |- p"
K: "[| p \<in> propn; q \<in> propn |] ==> H |- p=>q=>p"
S: "[| p \<in> propn; q \<in> propn; r \<in> propn |]
==> H |- (p=>q=>r) => (p=>q) => p=>r"
DN: "p \<in> propn ==> H |- ((p=>Fls) => Fls) => p"
MP: "[| H |- p=>q; H |- p; p \<in> propn; q \<in> propn |] ==> H |- q"
type_intros "propn.intros"
declare propn.intros [simp]
subsection {* The semantics *}
subsubsection {* Semantics of propositional logic. *}
consts
is_true_fun :: "[i,i] => i"
primrec
"is_true_fun(Fls, t) = 0"
"is_true_fun(Var(v), t) = (if v \<in> t then 1 else 0)"
"is_true_fun(p=>q, t) = (if is_true_fun(p,t) = 1 then is_true_fun(q,t) else 1)"
constdefs
is_true :: "[i,i] => o"
"is_true(p,t) == is_true_fun(p,t) = 1"
-- {* this definition is required since predicates can't be recursive *}
lemma is_true_Fls [simp]: "is_true(Fls,t) <-> False"
by (simp add: is_true_def)
lemma is_true_Var [simp]: "is_true(#v,t) <-> v \<in> t"
by (simp add: is_true_def)
lemma is_true_Imp [simp]: "is_true(p=>q,t) <-> (is_true(p,t)-->is_true(q,t))"
by (simp add: is_true_def)
subsubsection {* Logical consequence *}
text {*
For every valuation, if all elements of @{text H} are true then so
is @{text p}.
*}
constdefs
logcon :: "[i,i] => o" (infixl "|=" 50)
"H |= p == \<forall>t. (\<forall>q \<in> H. is_true(q,t)) --> is_true(p,t)"
text {*
A finite set of hypotheses from @{text t} and the @{text Var}s in
@{text p}.
*}
consts
hyps :: "[i,i] => i"
primrec
"hyps(Fls, t) = 0"
"hyps(Var(v), t) = (if v \<in> t then {#v} else {#v=>Fls})"
"hyps(p=>q, t) = hyps(p,t) \<union> hyps(q,t)"
subsection {* Proof theory of propositional logic *}
lemma thms_mono: "G \<subseteq> H ==> thms(G) \<subseteq> thms(H)"
apply (unfold thms.defs)
apply (rule lfp_mono)
apply (rule thms.bnd_mono)+
apply (assumption | rule univ_mono basic_monos)+
done
lemmas thms_in_pl = thms.dom_subset [THEN subsetD]
inductive_cases ImpE: "p=>q \<in> propn"
lemma thms_MP: "[| H |- p=>q; H |- p |] ==> H |- q"
-- {* Stronger Modus Ponens rule: no typechecking! *}
apply (rule thms.MP)
apply (erule asm_rl thms_in_pl thms_in_pl [THEN ImpE])+
done
lemma thms_I: "p \<in> propn ==> H |- p=>p"
-- {*Rule is called @{text I} for Identity Combinator, not for Introduction. *}
apply (rule thms.S [THEN thms_MP, THEN thms_MP])
apply (rule_tac [5] thms.K)
apply (rule_tac [4] thms.K)
apply simp_all
done
subsubsection {* Weakening, left and right *}
lemma weaken_left: "[| G \<subseteq> H; G|-p |] ==> H|-p"
-- {* Order of premises is convenient with @{text THEN} *}
by (erule thms_mono [THEN subsetD])
lemma weaken_left_cons: "H |- p ==> cons(a,H) |- p"
by (erule subset_consI [THEN weaken_left])
lemmas weaken_left_Un1 = Un_upper1 [THEN weaken_left]
lemmas weaken_left_Un2 = Un_upper2 [THEN weaken_left]
lemma weaken_right: "[| H |- q; p \<in> propn |] ==> H |- p=>q"
by (simp_all add: thms.K [THEN thms_MP] thms_in_pl)
subsubsection {* The deduction theorem *}
theorem deduction: "[| cons(p,H) |- q; p \<in> propn |] ==> H |- p=>q"
apply (erule thms.induct)
apply (blast intro: thms_I thms.H [THEN weaken_right])
apply (blast intro: thms.K [THEN weaken_right])
apply (blast intro: thms.S [THEN weaken_right])
apply (blast intro: thms.DN [THEN weaken_right])
apply (blast intro: thms.S [THEN thms_MP [THEN thms_MP]])
done
subsubsection {* The cut rule *}
lemma cut: "[| H|-p; cons(p,H) |- q |] ==> H |- q"
apply (rule deduction [THEN thms_MP])
apply (simp_all add: thms_in_pl)
done
lemma thms_FlsE: "[| H |- Fls; p \<in> propn |] ==> H |- p"
apply (rule thms.DN [THEN thms_MP])
apply (rule_tac [2] weaken_right)
apply (simp_all add: propn.intros)
done
lemma thms_notE: "[| H |- p=>Fls; H |- p; q \<in> propn |] ==> H |- q"
by (erule thms_MP [THEN thms_FlsE])
subsubsection {* Soundness of the rules wrt truth-table semantics *}
theorem soundness: "H |- p ==> H |= p"
apply (unfold logcon_def)
apply (erule thms.induct)
apply auto
done
subsection {* Completeness *}
subsubsection {* Towards the completeness proof *}
lemma Fls_Imp: "[| H |- p=>Fls; q \<in> propn |] ==> H |- p=>q"
apply (frule thms_in_pl)
apply (rule deduction)
apply (rule weaken_left_cons [THEN thms_notE])
apply (blast intro: thms.H elim: ImpE)+
done
lemma Imp_Fls: "[| H |- p; H |- q=>Fls |] ==> H |- (p=>q)=>Fls"
apply (frule thms_in_pl)
apply (frule thms_in_pl [of concl: "q=>Fls"])
apply (rule deduction)
apply (erule weaken_left_cons [THEN thms_MP])
apply (rule consI1 [THEN thms.H, THEN thms_MP])
apply (blast intro: weaken_left_cons elim: ImpE)+
done
lemma hyps_thms_if:
"p \<in> propn ==> hyps(p,t) |- (if is_true(p,t) then p else p=>Fls)"
-- {* Typical example of strengthening the induction statement. *}
apply simp
apply (induct_tac p)
apply (simp_all add: thms_I thms.H)
apply (safe elim!: Fls_Imp [THEN weaken_left_Un1] Fls_Imp [THEN weaken_left_Un2])
apply (blast intro: weaken_left_Un1 weaken_left_Un2 weaken_right Imp_Fls)+
done
lemma logcon_thms_p: "[| p \<in> propn; 0 |= p |] ==> hyps(p,t) |- p"
-- {* Key lemma for completeness; yields a set of assumptions satisfying @{text p} *}
apply (drule hyps_thms_if)
apply (simp add: logcon_def)
done
text {*
For proving certain theorems in our new propositional logic.
*}
lemmas propn_SIs = propn.intros deduction
and propn_Is = thms_in_pl thms.H thms.H [THEN thms_MP]
text {*
The excluded middle in the form of an elimination rule.
*}
lemma thms_excluded_middle:
"[| p \<in> propn; q \<in> propn |] ==> H |- (p=>q) => ((p=>Fls)=>q) => q"
apply (rule deduction [THEN deduction])
apply (rule thms.DN [THEN thms_MP])
apply (best intro!: propn_SIs intro: propn_Is)+
done
lemma thms_excluded_middle_rule:
"[| cons(p,H) |- q; cons(p=>Fls,H) |- q; p \<in> propn |] ==> H |- q"
-- {* Hard to prove directly because it requires cuts *}
apply (rule thms_excluded_middle [THEN thms_MP, THEN thms_MP])
apply (blast intro!: propn_SIs intro: propn_Is)+
done
subsubsection {* Completeness -- lemmas for reducing the set of assumptions *}
text {*
For the case @{prop "hyps(p,t)-cons(#v,Y) |- p"} we also have @{prop
"hyps(p,t)-{#v} \<subseteq> hyps(p, t-{v})"}.
*}
lemma hyps_Diff:
"p \<in> propn ==> hyps(p, t-{v}) \<subseteq> cons(#v=>Fls, hyps(p,t)-{#v})"
by (induct_tac p) auto
text {*
For the case @{prop "hyps(p,t)-cons(#v => Fls,Y) |- p"} we also have
@{prop "hyps(p,t)-{#v=>Fls} \<subseteq> hyps(p, cons(v,t))"}.
*}
lemma hyps_cons:
"p \<in> propn ==> hyps(p, cons(v,t)) \<subseteq> cons(#v, hyps(p,t)-{#v=>Fls})"
by (induct_tac p) auto
text {* Two lemmas for use with @{text weaken_left} *}
lemma cons_Diff_same: "B-C \<subseteq> cons(a, B-cons(a,C))"
by blast
lemma cons_Diff_subset2: "cons(a, B-{c}) - D \<subseteq> cons(a, B-cons(c,D))"
by blast
text {*
The set @{term "hyps(p,t)"} is finite, and elements have the form
@{term "#v"} or @{term "#v=>Fls"}; could probably prove the stronger
@{prop "hyps(p,t) \<in> Fin(hyps(p,0) \<union> hyps(p,nat))"}.
*}
lemma hyps_finite: "p \<in> propn ==> hyps(p,t) \<in> Fin(\<Union>v \<in> nat. {#v, #v=>Fls})"
by (induct_tac p) auto
lemmas Diff_weaken_left = Diff_mono [OF _ subset_refl, THEN weaken_left]
text {*
Induction on the finite set of assumptions @{term "hyps(p,t0)"}. We
may repeatedly subtract assumptions until none are left!
*}
lemma completeness_0_lemma [rule_format]:
"[| p \<in> propn; 0 |= p |] ==> \<forall>t. hyps(p,t) - hyps(p,t0) |- p"
apply (frule hyps_finite)
apply (erule Fin_induct)
apply (simp add: logcon_thms_p Diff_0)
txt {* inductive step *}
apply safe
txt {* Case @{prop "hyps(p,t)-cons(#v,Y) |- p"} *}
apply (rule thms_excluded_middle_rule)
apply (erule_tac [3] propn.intros)
apply (blast intro: cons_Diff_same [THEN weaken_left])
apply (blast intro: cons_Diff_subset2 [THEN weaken_left]
hyps_Diff [THEN Diff_weaken_left])
txt {* Case @{prop "hyps(p,t)-cons(#v => Fls,Y) |- p"} *}
apply (rule thms_excluded_middle_rule)
apply (erule_tac [3] propn.intros)
apply (blast intro: cons_Diff_subset2 [THEN weaken_left]
hyps_cons [THEN Diff_weaken_left])
apply (blast intro: cons_Diff_same [THEN weaken_left])
done
subsubsection {* Completeness theorem *}
lemma completeness_0: "[| p \<in> propn; 0 |= p |] ==> 0 |- p"
-- {* The base case for completeness *}
apply (rule Diff_cancel [THEN subst])
apply (blast intro: completeness_0_lemma)
done
lemma logcon_Imp: "[| cons(p,H) |= q |] ==> H |= p=>q"
-- {* A semantic analogue of the Deduction Theorem *}
by (simp add: logcon_def)
lemma completeness [rule_format]:
"H \<in> Fin(propn) ==> \<forall>p \<in> propn. H |= p --> H |- p"
apply (erule Fin_induct)
apply (safe intro!: completeness_0)
apply (rule weaken_left_cons [THEN thms_MP])
apply (blast intro!: logcon_Imp propn.intros)
apply (blast intro: propn_Is)
done
theorem thms_iff: "H \<in> Fin(propn) ==> H |- p <-> H |= p \<and> p \<in> propn"
by (blast intro: soundness completeness thms_in_pl)
end