Modified comment.
(* Title: HOL/Integ/Group.thy
ID: $Id$
Author: Tobias Nipkow
Copyright 1996 TU Muenchen
A little bit of group theory leading up to rings. Hence groups are additive.
*)
Group = Set +
(* 0 already used in Nat *)
axclass zero < term
consts zero :: "'a::zero"
(* additive semigroups *)
axclass add_semigroup < plus
plus_assoc "(x + y) + z = x + (y + z)"
(* additive monoids *)
axclass add_monoid < add_semigroup, zero
zeroL "zero + x = x"
zeroR "x + zero = x"
(* additive groups *)
axclass add_group < add_monoid, minus
left_inv "(zero-x)+x = zero"
minus_inv "x-y = x + (zero-y)"
(* additive abelian groups *)
axclass add_agroup < add_group
plus_commute "x + y = y + x"
end