src/HOL/Data_Structures/Braun_Tree.thy
author wenzelm
Tue, 02 Jul 2024 21:54:12 +0200
changeset 80478 902e6da44a68
parent 76987 4c275405faae
permissions -rw-r--r--
notable performance tuning for Library.separated_chunks variants; more direct NoSuchElementException;

(* Author: Tobias Nipkow *)

section \<open>Braun Trees\<close>

theory Braun_Tree
imports "HOL-Library.Tree_Real"
begin

text \<open>Braun Trees were studied by Braun and Rem~\<^cite>\<open>"BraunRem"\<close>
and later Hoogerwoord~\<^cite>\<open>"Hoogerwoord"\<close>.\<close>

fun braun :: "'a tree \<Rightarrow> bool" where
"braun Leaf = True" |
"braun (Node l x r) = ((size l = size r \<or> size l = size r + 1) \<and> braun l \<and> braun r)"

lemma braun_Node':
  "braun (Node l x r) = (size r \<le> size l \<and> size l \<le> size r + 1 \<and> braun l \<and> braun r)"
by auto

text \<open>The shape of a Braun-tree is uniquely determined by its size:\<close>

lemma braun_unique: "\<lbrakk> braun (t1::unit tree); braun t2; size t1 = size t2 \<rbrakk> \<Longrightarrow> t1 = t2"
proof (induction t1 arbitrary: t2)
  case Leaf thus ?case by simp
next
  case (Node l1 _ r1)
  from Node.prems(3) have "t2 \<noteq> Leaf" by auto
  then obtain l2 x2 r2 where [simp]: "t2 = Node l2 x2 r2" by (meson neq_Leaf_iff)
  with Node.prems have "size l1 = size l2 \<and> size r1 = size r2" by auto
  thus ?case using Node.prems(1,2) Node.IH by auto
qed

text \<open>Braun trees are almost complete:\<close>

lemma acomplete_if_braun: "braun t \<Longrightarrow> acomplete t"
proof(induction t)
  case Leaf show ?case by (simp add: acomplete_def)
next
  case (Node l x r) thus ?case using acomplete_Node_if_wbal2 by force
qed

subsection \<open>Numbering Nodes\<close>

text \<open>We show that a tree is a Braun tree iff a parity-based
numbering (\<open>braun_indices\<close>) of nodes yields an interval of numbers.\<close>

fun braun_indices :: "'a tree \<Rightarrow> nat set" where
"braun_indices Leaf = {}" |
"braun_indices (Node l _ r) = {1} \<union> (*) 2 ` braun_indices l \<union> Suc ` (*) 2 ` braun_indices r"

lemma braun_indices1: "0 \<notin> braun_indices t"
by (induction t) auto

lemma finite_braun_indices: "finite(braun_indices t)"
by (induction t) auto

text "One direction:"

lemma braun_indices_if_braun: "braun t \<Longrightarrow> braun_indices t = {1..size t}"
proof(induction t)
  case Leaf thus ?case by simp
next
  have *: "(*) 2 ` {a..b} \<union> Suc ` (*) 2 ` {a..b} = {2*a..2*b+1}" (is "?l = ?r") for a b
  proof
    show "?l \<subseteq> ?r" by auto
  next
    have "\<exists>x2\<in>{a..b}. x \<in> {Suc (2*x2), 2*x2}" if *: "x \<in> {2*a .. 2*b+1}" for x
    proof -
      have "x div 2 \<in> {a..b}" using * by auto
      moreover have "x \<in> {2 * (x div 2), Suc(2 * (x div 2))}" by auto
      ultimately show ?thesis by blast
    qed
    thus "?r \<subseteq> ?l" by fastforce
  qed
  case (Node l x r)
  hence "size l = size r \<or> size l = size r + 1" (is "?A \<or> ?B") by auto
  thus ?case
  proof
    assume ?A
    with Node show ?thesis by (auto simp: *)
  next
    assume ?B
    with Node show ?thesis by (auto simp: * atLeastAtMostSuc_conv)
  qed
qed

text "The other direction is more complicated. The following proof is due to Thomas Sewell."

lemma disj_evens_odds: "(*) 2 ` A \<inter> Suc ` (*) 2 ` B = {}"
using double_not_eq_Suc_double by auto

lemma card_braun_indices: "card (braun_indices t) = size t"
proof (induction t)
  case Leaf thus ?case by simp
next
  case Node
  thus ?case
    by(auto simp: UNION_singleton_eq_range finite_braun_indices card_Un_disjoint
                  card_insert_if disj_evens_odds card_image inj_on_def braun_indices1)
qed

lemma braun_indices_intvl_base_1:
  assumes bi: "braun_indices t = {m..n}"
  shows "{m..n} = {1..size t}"
proof (cases "t = Leaf")
  case True then show ?thesis using bi by simp
next
  case False
  note eqs = eqset_imp_iff[OF bi]
  from eqs[of 0] have 0: "0 < m"
    by (simp add: braun_indices1)
  from eqs[of 1] have 1: "m \<le> 1"
    by (cases t; simp add: False)
  from 0 1 have eq1: "m = 1" by simp
  from card_braun_indices[of t] show ?thesis
    by (simp add: bi eq1)
qed

lemma even_of_intvl_intvl:
  fixes S :: "nat set"
  assumes "S = {m..n} \<inter> {i. even i}"
  shows "\<exists>m' n'. S = (\<lambda>i. i * 2) ` {m'..n'}"
  apply (rule exI[where x="Suc m div 2"], rule exI[where x="n div 2"])
  apply (fastforce simp add: assms mult.commute)
  done

lemma odd_of_intvl_intvl:
  fixes S :: "nat set"
  assumes "S = {m..n} \<inter> {i. odd i}"
  shows "\<exists>m' n'. S = Suc ` (\<lambda>i. i * 2) ` {m'..n'}"
proof -
  have step1: "\<exists>m'. S = Suc ` ({m'..n - 1} \<inter> {i. even i})"
    apply (rule_tac x="if n = 0 then 1 else m - 1" in exI)
    apply (auto simp: assms image_def elim!: oddE)
    done
  thus ?thesis
    by (metis even_of_intvl_intvl)
qed

lemma image_int_eq_image:
  "(\<forall>i \<in> S. f i \<in> T) \<Longrightarrow> (f ` S) \<inter> T = f ` S"
  "(\<forall>i \<in> S. f i \<notin> T) \<Longrightarrow> (f ` S) \<inter> T = {}"
  by auto

lemma braun_indices1_le:
  "i \<in> braun_indices t \<Longrightarrow> Suc 0 \<le> i"
  using braun_indices1 not_less_eq_eq by blast

lemma braun_if_braun_indices: "braun_indices t = {1..size t} \<Longrightarrow> braun t"
proof(induction t)
case Leaf
  then show ?case by simp
next
  case (Node l x r)
  obtain t where t: "t = Node l x r" by simp
  from Node.prems have eq: "{2 .. size t} = (\<lambda>i. i * 2) ` braun_indices l \<union> Suc ` (\<lambda>i. i * 2) ` braun_indices r"
    (is "?R = ?S \<union> ?T")
    apply clarsimp
    apply (drule_tac f="\<lambda>S. S \<inter> {2..}" in arg_cong)
    apply (simp add: t mult.commute Int_Un_distrib2 image_int_eq_image braun_indices1_le)
    done
  then have ST: "?S = ?R \<inter> {i. even i}" "?T = ?R \<inter> {i. odd i}"
    by (simp_all add: Int_Un_distrib2 image_int_eq_image)
  from ST have l: "braun_indices l = {1 .. size l}"
    by (fastforce dest: braun_indices_intvl_base_1 dest!: even_of_intvl_intvl
                  simp: mult.commute inj_image_eq_iff[OF inj_onI])
  from ST have r: "braun_indices r = {1 .. size r}"
    by (fastforce dest: braun_indices_intvl_base_1 dest!: odd_of_intvl_intvl
                  simp: mult.commute inj_image_eq_iff[OF inj_onI])
  note STa = ST[THEN eqset_imp_iff, THEN iffD2]
  note STb = STa[of "size t"] STa[of "size t - 1"]
  then have sizes: "size l = size r \<or> size l = size r + 1"
    apply (clarsimp simp: t l r inj_image_mem_iff[OF inj_onI])
    apply (cases "even (size l)"; cases "even (size r)"; clarsimp elim!: oddE; fastforce)
    done
  from l r sizes show ?case
    by (clarsimp simp: Node.IH)
qed

lemma braun_iff_braun_indices: "braun t \<longleftrightarrow> braun_indices t = {1..size t}"
using braun_if_braun_indices braun_indices_if_braun by blast

(* An older less appealing proof:
lemma Suc0_notin_double: "Suc 0 \<notin> ( * ) 2 ` A"
by(auto)

lemma zero_in_double_iff: "(0::nat) \<in> ( * ) 2 ` A \<longleftrightarrow> 0 \<in> A"
by(auto)

lemma Suc_in_Suc_image_iff: "Suc n \<in> Suc ` A \<longleftrightarrow> n \<in> A"
by(auto)

lemmas nat_in_image = Suc0_notin_double zero_in_double_iff Suc_in_Suc_image_iff

lemma disj_union_eq_iff:
  "\<lbrakk> L1 \<inter> R2 = {}; L2 \<inter> R1 = {} \<rbrakk> \<Longrightarrow> L1 \<union> R1 = L2 \<union> R2 \<longleftrightarrow> L1 = L2 \<and> R1 = R2"
by blast

lemma inj_braun_indices: "braun_indices t1 = braun_indices t2 \<Longrightarrow> t1 = (t2::unit tree)"
proof(induction t1 arbitrary: t2)
  case Leaf thus ?case using braun_indices.elims by blast
next
  case (Node l1 x1 r1)
  have "t2 \<noteq> Leaf"
  proof
    assume "t2 = Leaf"
    with Node.prems show False by simp
  qed
  thus ?case using Node
    by (auto simp: neq_Leaf_iff insert_ident nat_in_image braun_indices1
                  disj_union_eq_iff disj_evens_odds inj_image_eq_iff inj_def)
qed

text \<open>How many even/odd natural numbers are there between m and n?\<close>

lemma card_Icc_even_nat:
  "card {i \<in> {m..n::nat}. even i} = (n+1-m + (m+1) mod 2) div 2" (is "?l m n = ?r m n")
proof(induction "n+1 - m" arbitrary: n m)
   case 0 thus ?case by simp
next
  case Suc
  have "m \<le> n" using Suc(2) by arith
  hence "{m..n} = insert m {m+1..n}" by auto
  hence "?l m n = card {i \<in> insert m {m+1..n}. even i}" by simp
  also have "\<dots> = ?r m n" (is "?l = ?r")
  proof (cases)
    assume "even m"
    hence "{i \<in> insert m {m+1..n}. even i} = insert m {i \<in> {m+1..n}. even i}" by auto
    hence "?l = card {i \<in> {m+1..n}. even i} + 1" by simp
    also have "\<dots> = (n-m + (m+2) mod 2) div 2 + 1" using Suc(1)[of n "m+1"] Suc(2) by simp
    also have "\<dots> = ?r" using \<open>even m\<close> \<open>m \<le> n\<close> by auto
    finally show ?thesis .
  next
    assume "odd m"
    hence "{i \<in> insert m {m+1..n}. even i} = {i \<in> {m+1..n}. even i}" by auto
    hence "?l = card ..." by simp
    also have "\<dots> = (n-m + (m+2) mod 2) div 2" using Suc(1)[of n "m+1"] Suc(2) by simp
    also have "\<dots> = ?r" using \<open>odd m\<close> \<open>m \<le> n\<close> even_iff_mod_2_eq_zero[of m] by simp
    finally show ?thesis .
  qed
  finally show ?case .
qed

lemma card_Icc_odd_nat: "card {i \<in> {m..n::nat}. odd i} = (n+1-m + m mod 2) div 2"
proof -
  let ?A = "{i \<in> {m..n}. odd i}"
  let ?B = "{i \<in> {m+1..n+1}. even i}"
  have "card ?A = card (Suc ` ?A)" by (simp add: card_image)
  also have "Suc ` ?A = ?B" using Suc_le_D by(force simp: image_iff)
  also have "card ?B = (n+1-m + (m) mod 2) div 2"
    using card_Icc_even_nat[of "m+1" "n+1"] by simp
  finally show ?thesis .
qed

lemma compact_Icc_even: assumes "A = {i \<in> {m..n}. even i}"
shows "A = (\<lambda>j. 2*(j-1) + m + m mod 2) ` {1..card A}" (is "_ = ?A")
proof
  let ?a = "(n+1-m + (m+1) mod 2) div 2"
  have "\<exists>j \<in> {1..?a}. i = 2*(j-1) + m + m mod 2" if *: "i \<in> {m..n}" "even i" for i
  proof -
    let ?j = "(i - (m + m mod 2)) div 2 + 1"
    have "?j \<in> {1..?a} \<and> i = 2*(?j-1) + m + m mod 2" using * by(auto simp: mod2_eq_if) presburger+
    thus ?thesis by blast
  qed
  thus "A \<subseteq> ?A" using assms
    by(auto simp: image_iff card_Icc_even_nat simp del: atLeastAtMost_iff)
next
  let ?a = "(n+1-m + (m+1) mod 2) div 2"
  have 1: "2 * (j - 1) + m + m mod 2 \<in> {m..n}" if *: "j \<in> {1..?a}" for j
    using * by(auto simp: mod2_eq_if)
  have 2: "even (2 * (j - 1) + m + m mod 2)" for j by presburger
  show "?A \<subseteq> A"
    apply(simp add: assms card_Icc_even_nat del: atLeastAtMost_iff One_nat_def)
    using 1 2 by blast
qed

lemma compact_Icc_odd:
  assumes "B = {i \<in> {m..n}. odd i}" shows "B = (\<lambda>i. 2*(i-1) + m + (m+1) mod 2) ` {1..card B}"
proof -
  define A :: " nat set" where "A = Suc ` B"
  have "A = {i \<in> {m+1..n+1}. even i}"
    using Suc_le_D by(force simp add: A_def assms image_iff)
  from compact_Icc_even[OF this]
  have "A = Suc ` (\<lambda>i. 2 * (i - 1) + m + (m + 1) mod 2) ` {1..card A}"
    by (simp add: image_comp o_def)
  hence B: "B = (\<lambda>i. 2 * (i - 1) + m + (m + 1) mod 2) ` {1..card A}"
    using A_def by (simp add: inj_image_eq_iff)
  have "card A = card B" by (metis A_def bij_betw_Suc bij_betw_same_card) 
  with B show ?thesis by simp
qed

lemma even_odd_decomp: assumes "\<forall>x \<in> A. even x" "\<forall>x \<in> B. odd x"  "A \<union> B = {m..n}"
shows "(let a = card A; b = card B in
   a + b = n+1-m \<and>
   A = (\<lambda>i. 2*(i-1) + m + m mod 2) ` {1..a} \<and>
   B = (\<lambda>i. 2*(i-1) + m + (m+1) mod 2) ` {1..b} \<and>
   (a = b \<or> a = b+1 \<and> even m \<or> a+1 = b \<and> odd m))"
proof -
  let ?a = "card A" let ?b = "card B"
  have "finite A \<and> finite B"
    by (metis \<open>A \<union> B = {m..n}\<close> finite_Un finite_atLeastAtMost)
  hence ab: "?a + ?b = Suc n - m"
    by (metis Int_emptyI assms card_Un_disjoint card_atLeastAtMost)
  have A: "A = {i \<in> {m..n}. even i}" using assms by auto
  hence A': "A = (\<lambda>i. 2*(i-1) + m + m mod 2) ` {1..?a}" by(rule compact_Icc_even)
  have B: "B = {i \<in> {m..n}. odd i}" using assms by auto
  hence B': "B = (\<lambda>i. 2*(i-1) + m + (m+1) mod 2) ` {1..?b}" by(rule compact_Icc_odd)
  have "?a = ?b \<or> ?a = ?b+1 \<and> even m \<or> ?a+1 = ?b \<and> odd m"
    apply(simp add: Let_def mod2_eq_if
      card_Icc_even_nat[of m n, simplified A[symmetric]]
      card_Icc_odd_nat[of m n, simplified B[symmetric]] split!: if_splits)
    by linarith
  with ab A' B' show ?thesis by simp
qed

lemma braun_if_braun_indices: "braun_indices t = {1..size t} \<Longrightarrow> braun t"
proof(induction t)
case Leaf
  then show ?case by simp
next
  case (Node t1 x2 t2)
  have 1: "i > 0 \<Longrightarrow> Suc(Suc(2 * (i - Suc 0))) = 2*i" for i::nat by(simp add: algebra_simps)
  have 2: "i > 0 \<Longrightarrow> 2 * (i - Suc 0) + 3 = 2*i + 1" for i::nat by(simp add: algebra_simps)
  have 3: "( * ) 2 ` braun_indices t1 \<union> Suc ` ( * ) 2 ` braun_indices t2 =
     {2..size t1 + size t2 + 1}" using Node.prems
    by (simp add: insert_ident Icc_eq_insert_lb_nat nat_in_image braun_indices1)
  thus ?case using Node.IH even_odd_decomp[OF _ _ 3]
    by(simp add: card_image inj_on_def card_braun_indices Let_def 1 2 inj_image_eq_iff image_comp
           cong: image_cong_simp)
qed
*)

end