(* Title: Pure/sign.ML
Author: Lawrence C Paulson and Markus Wenzel
Logical signature content: naming conventions, concrete syntax, type
signature, polymorphic constants.
*)
signature SIGN =
sig
val change_begin: theory -> theory
val change_end: theory -> theory
val change_end_local: Proof.context -> Proof.context
val change_check: theory -> theory
val syntax_of: theory -> Syntax.syntax
val tsig_of: theory -> Type.tsig
val classes_of: theory -> Sorts.algebra
val all_classes: theory -> class list
val super_classes: theory -> class -> class list
val minimize_sort: theory -> sort -> sort
val complete_sort: theory -> sort -> sort
val set_defsort: sort -> theory -> theory
val defaultS: theory -> sort
val subsort: theory -> sort * sort -> bool
val of_sort: theory -> typ * sort -> bool
val inter_sort: theory -> sort * sort -> sort
val witness_sorts: theory ->
(typ * sort) list -> sort Ord_List.T ->
(typ * sort) list * sort Ord_List.T
val logical_types: theory -> string list
val typ_instance: theory -> typ * typ -> bool
val typ_equiv: theory -> typ * typ -> bool
val typ_match: theory -> typ * typ -> Type.tyenv -> Type.tyenv
val typ_unify: theory -> typ * typ -> Type.tyenv * int -> Type.tyenv * int
val consts_of: theory -> Consts.T
val the_const_constraint: theory -> string -> typ
val const_type: theory -> string -> typ option
val the_const_type: theory -> string -> typ
val declared_tyname: theory -> string -> bool
val declared_const: theory -> string -> bool
val naming_of: theory -> Name_Space.naming
val map_naming: (Name_Space.naming -> Name_Space.naming) -> theory -> theory
val restore_naming: theory -> theory -> theory
val inherit_naming: theory -> Proof.context -> Context.generic
val full_name: theory -> binding -> string
val full_name_path: theory -> string -> binding -> string
val full_bname: theory -> bstring -> string
val full_bname_path: theory -> string -> bstring -> string
val full_name_pos: theory -> binding -> string * Position.T
val const_monomorphic: theory -> string -> bool
val const_typargs: theory -> string * typ -> typ list
val const_instance: theory -> string * typ list -> typ
val mk_const: theory -> string * typ list -> term
val class_space: theory -> Name_Space.T
val type_space: theory -> Name_Space.T
val const_space: theory -> Name_Space.T
val intern_class: theory -> xstring -> string
val intern_type: theory -> xstring -> string
val intern_const: theory -> xstring -> string
val type_alias: binding -> string -> theory -> theory
val const_alias: binding -> string -> theory -> theory
val arity_number: theory -> string -> int
val arity_sorts: theory -> string -> sort -> sort list
val certify_class: theory -> class -> class
val certify_sort: theory -> sort -> sort
val certify_typ: theory -> typ -> typ
val certify_typ_mode: Type.mode -> theory -> typ -> typ
val certify_flags: {prop: bool, normalize: bool} -> Context.generic -> Consts.T -> theory ->
term -> term * typ
val certify_term: theory -> term -> term * typ
val cert_term: theory -> term -> term
val cert_prop: theory -> term -> term
val no_frees: Proof.context -> term -> term
val no_vars: Proof.context -> term -> term
val add_type: Proof.context -> binding * int * mixfix -> theory -> theory
val add_types_global: (binding * int * mixfix) list -> theory -> theory
val add_nonterminals: Proof.context -> binding list -> theory -> theory
val add_nonterminals_global: binding list -> theory -> theory
val add_type_abbrev: Proof.context -> binding * string list * typ -> theory -> theory
val syntax: bool -> Syntax.mode -> (string * typ * mixfix) list -> theory -> theory
val syntax_cmd: bool -> Syntax.mode -> (string * string * mixfix) list -> theory -> theory
val type_notation: bool -> Syntax.mode -> (typ * mixfix) list -> theory -> theory
val notation: bool -> Syntax.mode -> (term * mixfix) list -> theory -> theory
val declare_const: Proof.context -> (binding * typ) * mixfix -> theory -> term * theory
val declare_const_global: (binding * typ) * mixfix -> theory -> term * theory
val add_consts: (binding * typ * mixfix) list -> theory -> theory
val add_consts_cmd: (binding * string * mixfix) list -> theory -> theory
val add_abbrev: string -> binding * term -> theory -> (term * term) * theory
val revert_abbrev: string -> string -> theory -> theory
val add_const_constraint: string * typ option -> theory -> theory
val primitive_class: binding * class list -> theory -> theory
val primitive_classrel: class * class -> theory -> theory
val primitive_arity: arity -> theory -> theory
val parse_ast_translation:
(string * (Proof.context -> Ast.ast list -> Ast.ast)) list -> theory -> theory
val parse_translation:
(string * (Proof.context -> term list -> term)) list -> theory -> theory
val print_translation:
(string * (Proof.context -> term list -> term)) list -> theory -> theory
val typed_print_translation:
(string * (Proof.context -> typ -> term list -> term)) list -> theory -> theory
val print_ast_translation:
(string * (Proof.context -> Ast.ast list -> Ast.ast)) list -> theory -> theory
val add_trrules: Ast.ast Syntax.trrule list -> theory -> theory
val del_trrules: Ast.ast Syntax.trrule list -> theory -> theory
val get_scope: theory -> Binding.scope option
val new_scope: theory -> Binding.scope * theory
val new_group: theory -> theory
val reset_group: theory -> theory
val add_path: string -> theory -> theory
val root_path: theory -> theory
val parent_path: theory -> theory
val mandatory_path: string -> theory -> theory
val qualified_path: bool -> binding -> theory -> theory
val local_path: theory -> theory
val init_naming: theory -> theory
val private_scope: Binding.scope -> theory -> theory
val private: Position.T -> theory -> theory
val qualified_scope: Binding.scope -> theory -> theory
val qualified: Position.T -> theory -> theory
val concealed: theory -> theory
val hide_class: bool -> string -> theory -> theory
val hide_type: bool -> string -> theory -> theory
val hide_const: bool -> string -> theory -> theory
end
structure Sign: SIGN =
struct
(** datatype sign **)
datatype sign = Sign of
{syn: Syntax.syntax, (*concrete syntax for terms, types, sorts*)
tsig: Type.tsig, (*order-sorted signature of types*)
consts: Consts.T}; (*polymorphic constants*)
fun rep_sign (Sign args) = args;
fun make_sign (syn, tsig, consts) = Sign {syn = syn, tsig = tsig, consts = consts};
structure Data = Theory_Data'
(
type T = sign;
val empty = make_sign (Syntax.empty_syntax, Type.empty_tsig, Consts.empty);
fun merge args =
let
val context0 = Context.Theory (#1 (hd args));
val syn' = Library.foldl1 Syntax.merge_syntax (map (#syn o rep_sign o #2) args);
val tsig' = Library.foldl1 (Type.merge_tsig context0) (map (#tsig o rep_sign o #2) args);
val consts' = Library.foldl1 Consts.merge (map (#consts o rep_sign o #2) args);
in make_sign (syn', tsig', consts') end;
);
val rep_sg = rep_sign o Data.get;
fun map_sign f = Data.map (fn Sign {syn, tsig, consts} => make_sign (f (syn, tsig, consts)));
fun map_syn f = map_sign (fn (syn, tsig, consts) => (f syn, tsig, consts));
fun map_tsig f = map_sign (fn (syn, tsig, consts) => (syn, f tsig, consts));
fun map_consts f = map_sign (fn (syn, tsig, consts) => (syn, tsig, f consts));
(* linear change discipline *)
fun change_base begin = map_sign (fn (syn, tsig, consts) =>
(syn, Type.change_base begin tsig, Consts.change_base begin consts));
val change_begin = change_base true;
val change_end = change_base false;
fun change_end_local ctxt =
Context.raw_transfer (change_end (Proof_Context.theory_of ctxt)) ctxt;
fun change_check thy =
if can change_end thy
then raise Fail "Unfinished linear change of theory content" else thy;
(* syntax *)
val syntax_of = #syn o rep_sg;
(* type signature *)
val tsig_of = #tsig o rep_sg;
val classes_of = #2 o #classes o Type.rep_tsig o tsig_of;
val all_classes = Sorts.all_classes o classes_of;
val super_classes = Sorts.super_classes o classes_of;
val minimize_sort = Sorts.minimize_sort o classes_of;
val complete_sort = Sorts.complete_sort o classes_of;
val set_defsort = map_tsig o Type.set_defsort;
val defaultS = Type.defaultS o tsig_of;
val subsort = Type.subsort o tsig_of;
val of_sort = Type.of_sort o tsig_of;
val inter_sort = Type.inter_sort o tsig_of;
val witness_sorts = Type.witness_sorts o tsig_of;
val logical_types = Type.logical_types o tsig_of;
val typ_instance = Type.typ_instance o tsig_of;
fun typ_equiv thy (T, U) = typ_instance thy (T, U) andalso typ_instance thy (U, T);
val typ_match = Type.typ_match o tsig_of;
val typ_unify = Type.unify o tsig_of;
(* polymorphic constants *)
val consts_of = #consts o rep_sg;
val the_const_constraint = Consts.the_constraint o consts_of;
val the_const_type = Consts.the_const_type o consts_of;
val const_type = try o the_const_type;
val const_monomorphic = Consts.is_monomorphic o consts_of;
val const_typargs = Consts.typargs o consts_of;
val const_instance = Consts.instance o consts_of;
fun mk_const thy (c, Ts) = Const (c, const_instance thy (c, Ts));
fun declared_tyname ctxt c = can (Type.the_decl (tsig_of ctxt)) (c, Position.none);
val declared_const = can o the_const_constraint;
(* naming *)
val naming_of = Name_Space.naming_of o Context.Theory;
val map_naming = Context.theory_map o Name_Space.map_naming;
val restore_naming = map_naming o K o naming_of;
fun inherit_naming thy = Name_Space.map_naming (K (naming_of thy)) o Context.Proof;
val full_name = Name_Space.full_name o naming_of;
fun full_name_path thy path = Name_Space.full_name (Name_Space.add_path path (naming_of thy));
fun full_bname thy = Name_Space.full_name (naming_of thy) o Binding.name;
fun full_bname_path thy path = full_name_path thy path o Binding.name;
fun full_name_pos thy b = (full_name thy b, Binding.default_pos_of b);
(** name spaces **)
val class_space = Type.class_space o tsig_of;
val type_space = Type.type_space o tsig_of;
val const_space = Consts.space_of o consts_of;
val intern_class = Name_Space.intern o class_space;
val intern_type = Name_Space.intern o type_space;
val intern_const = Name_Space.intern o const_space;
fun type_alias b c thy = map_tsig (Type.type_alias (naming_of thy) b c) thy;
fun const_alias b c thy = map_consts (Consts.alias (naming_of thy) b c) thy;
(** certify entities **) (*exception TYPE*)
(* certify wrt. type signature *)
val arity_number = Type.arity_number o tsig_of;
fun arity_sorts thy = Type.arity_sorts (Context.Theory thy) (tsig_of thy);
val certify_class = Type.cert_class o tsig_of;
val certify_sort = Type.cert_sort o tsig_of;
fun certify_typ_mode mode = Type.certify_typ mode o tsig_of;
val certify_typ = certify_typ_mode Type.mode_default;
(* certify term/prop *)
local
fun type_check context tm =
let
fun err_appl bs t T u U =
let
val xs = map Free bs; (*we do not rename here*)
val t' = subst_bounds (xs, t);
val u' = subst_bounds (xs, u);
val msg = Type.appl_error (Syntax.init_pretty context) t' T u' U;
in raise TYPE (msg, [T, U], [t', u']) end;
fun typ_of (_, Const (_, T)) = T
| typ_of (_, Free (_, T)) = T
| typ_of (_, Var (_, T)) = T
| typ_of (bs, Bound i) = snd (nth bs i handle General.Subscript =>
raise TYPE ("Loose bound variable: B." ^ string_of_int i, [], [Bound i]))
| typ_of (bs, Abs (x, T, body)) = T --> typ_of ((x, T) :: bs, body)
| typ_of (bs, t $ u) =
let val T = typ_of (bs, t) and U = typ_of (bs, u) in
(case T of
Type ("fun", [T1, T2]) =>
if T1 = U then T2 else err_appl bs t T u U
| _ => err_appl bs t T u U)
end;
in typ_of ([], tm) end;
fun err msg = raise TYPE (msg, [], []);
fun check_vars (t $ u) = (check_vars t; check_vars u)
| check_vars (Abs (_, _, t)) = check_vars t
| check_vars (Free (x, _)) =
if Long_Name.is_qualified x then err ("Malformed variable: " ^ quote x) else ()
| check_vars (Var (xi as (_, i), _)) =
if i < 0 then err ("Malformed variable: " ^ quote (Term.string_of_vname xi)) else ()
| check_vars _ = ();
in
fun certify_flags {prop, normalize} context consts thy tm =
let
val tsig = tsig_of thy;
fun check_term t =
let
val _ = check_vars t;
val t' = Type.certify_types Type.mode_default tsig t;
val T = type_check context t';
val t'' = Consts.certify {normalize = normalize} context tsig consts t';
in if prop andalso T <> propT then err "Term not of type prop" else (t'', T) end;
val (tm1, ty1) = check_term tm;
val tm' = Soft_Type_System.global_purge thy tm1;
val (tm2, ty2) = if tm1 = tm' then (tm1, ty1) else check_term tm';
in if tm = tm2 then (tm, ty2) else (tm2, ty2) end;
fun certify_term thy =
certify_flags {prop = false, normalize = true} (Context.Theory thy) (consts_of thy) thy;
fun cert_term_abbrev thy =
#1 o certify_flags {prop = false, normalize = false} (Context.Theory thy) (consts_of thy) thy;
val cert_term = #1 oo certify_term;
fun cert_prop thy =
#1 o certify_flags {prop = true, normalize = true} (Context.Theory thy) (consts_of thy) thy;
end;
(* specifications *)
fun no_variables kind add addT mk mkT ctxt tm =
(case (add tm [], addT tm []) of
([], []) => tm
| (frees, tfrees) => error (Pretty.string_of (Pretty.block
(Pretty.str ("Illegal " ^ kind ^ " variable(s) in term:") :: Pretty.brk 1 ::
Pretty.commas
(map (Syntax.pretty_term ctxt o mk) frees @ map (Syntax.pretty_typ ctxt o mkT) tfrees)))));
val no_frees = no_variables "free" Term.add_frees Term.add_tfrees Free TFree;
val no_vars = no_variables "schematic" Term.add_vars Term.add_tvars Var TVar;
(** signature extension functions **) (*exception ERROR/TYPE*)
(* add type constructors *)
fun add_type ctxt (b, n, mx) thy = thy |> map_sign (fn (syn, tsig, consts) =>
let
val type_syntax = (Lexicon.mark_type (full_name thy b), Mixfix.make_type n, mx);
val syn' = Syntax.update_type_gram true Syntax.mode_default [type_syntax] syn;
val tsig' = Type.add_type (inherit_naming thy ctxt) (b, n) tsig;
in (syn', tsig', consts) end);
fun add_types_global types thy =
fold (add_type (Syntax.init_pretty_global thy)) types thy;
(* add nonterminals *)
fun add_nonterminals ctxt ns thy = thy |> map_sign (fn (syn, tsig, consts) =>
(syn, fold (Type.add_nonterminal (inherit_naming thy ctxt)) ns tsig, consts));
fun add_nonterminals_global ns thy =
add_nonterminals (Syntax.init_pretty_global thy) ns thy;
(* add type abbreviations *)
fun add_type_abbrev ctxt abbr thy = thy |> map_sign (fn (syn, tsig, consts) =>
(syn, Type.add_abbrev (inherit_naming thy ctxt) abbr tsig, consts));
(* modify syntax *)
fun gen_syntax parse_typ add mode args thy =
let
val ctxt = Type.set_mode Type.mode_syntax (Proof_Context.init_global thy);
fun prep (c, T, mx) = (c, certify_typ_mode Type.mode_syntax thy (parse_typ ctxt T), mx)
handle ERROR msg => cat_error msg ("in syntax declaration " ^ quote c);
in thy |> map_syn (Syntax.update_const_gram add (logical_types thy) mode (map prep args)) end;
val syntax = gen_syntax (K I);
val syntax_cmd = gen_syntax Syntax.read_typ;
fun type_notation add mode args =
let
fun type_syntax (Type (c, args), mx) =
SOME (Lexicon.mark_type c, Mixfix.make_type (length args), mx)
| type_syntax _ = NONE;
in map_syn (Syntax.update_type_gram add mode (map_filter type_syntax args)) end;
fun notation add mode args thy =
let
fun const_syntax (Const (c, _), mx) =
(case try (Consts.type_scheme (consts_of thy)) c of
SOME T => SOME (Lexicon.mark_const c, T, mx)
| NONE => NONE)
| const_syntax _ = NONE;
in syntax add mode (map_filter const_syntax args) thy end;
(* add constants *)
local
fun gen_add_consts prep_typ ctxt raw_args thy =
let
val prepT = Type.no_tvars o Term.no_dummyT o certify_typ thy o prep_typ ctxt;
fun prep (b, raw_T, mx) =
let
val c = full_name thy b;
val T = (prepT raw_T handle TYPE (msg, _, _) => error msg) handle ERROR msg =>
cat_error msg ("in declaration of constant " ^ Binding.print b);
val T' = Logic.varifyT_global T;
in ((b, T'), (Lexicon.mark_const c, T', mx), Const (c, T)) end;
val args = map prep raw_args;
in
thy
|> map_consts (fold (Consts.declare (inherit_naming thy ctxt) o #1) args)
|> syntax true Syntax.mode_default (map #2 args)
|> pair (map #3 args)
end;
in
fun add_consts args thy =
#2 (gen_add_consts (K I) (Proof_Context.init_global thy) args thy);
fun add_consts_cmd args thy =
#2 (gen_add_consts Syntax.read_typ (Proof_Context.init_global thy) args thy);
fun declare_const ctxt ((b, T), mx) = yield_singleton (gen_add_consts (K I) ctxt) (b, T, mx);
fun declare_const_global arg thy = declare_const (Proof_Context.init_global thy) arg thy;
end;
(* abbreviations *)
fun add_abbrev mode (b, raw_t) thy = (* FIXME proper ctxt (?) *)
let
val ctxt = Syntax.init_pretty_global thy;
val prep_tm = no_frees ctxt o Term.no_dummy_patterns o cert_term_abbrev thy;
val t = (prep_tm raw_t handle TYPE (msg, _, _) => error msg | TERM (msg, _) => error msg)
handle ERROR msg => cat_error msg ("in constant abbreviation " ^ Binding.print b);
val (res, consts') = consts_of thy
|> Consts.abbreviate (inherit_naming thy ctxt) (tsig_of thy) mode (b, t);
in (res, thy |> map_consts (K consts')) end;
fun revert_abbrev mode c = map_consts (Consts.revert_abbrev mode c);
(* add constraints *)
fun add_const_constraint (c, opt_T) thy =
let
fun prepT raw_T =
let val T = Logic.varifyT_global (Type.no_tvars (Term.no_dummyT (certify_typ thy raw_T)))
in cert_term thy (Const (c, T)); T end
handle TYPE (msg, _, _) => error msg;
in thy |> map_consts (Consts.constrain (c, Option.map prepT opt_T)) end;
(* primitive classes and arities *)
fun primitive_class (bclass, classes) thy =
thy
|> map_sign (fn (syn, tsig, consts) =>
let val tsig' = Type.add_class (Context.Theory thy) (bclass, classes) tsig;
in (syn, tsig', consts) end)
|> add_consts [(Binding.map_name Logic.const_of_class bclass, Term.a_itselfT --> propT, NoSyn)];
fun primitive_classrel arg thy =
thy |> map_tsig (Type.add_classrel (Context.Theory thy) arg);
fun primitive_arity arg thy =
thy |> map_tsig (Type.add_arity (Context.Theory thy) arg);
(* add translation functions *)
local
fun mk trs = map Syntax_Ext.mk_trfun trs;
in
fun parse_ast_translation atrs = map_syn (Syntax.update_trfuns (mk atrs, [], [], []));
fun parse_translation trs = map_syn (Syntax.update_trfuns ([], mk trs, [], []));
fun print_translation tr's =
map_syn (Syntax.update_trfuns ([], [], mk (map (apsnd Syntax_Trans.non_typed_tr') tr's), []));
fun typed_print_translation tr's = map_syn (Syntax.update_trfuns ([], [], mk tr's, []));
fun print_ast_translation atr's = map_syn (Syntax.update_trfuns ([], [], [], mk atr's));
end;
(* translation rules *)
val add_trrules = map_syn o Syntax.update_trrules;
val del_trrules = map_syn o Syntax.remove_trrules;
(* naming *)
val get_scope = Name_Space.get_scope o naming_of;
fun new_scope thy =
let
val (scope, naming') = Name_Space.new_scope (naming_of thy);
val thy' = map_naming (K naming') thy;
in (scope, thy') end;
val new_group = map_naming Name_Space.new_group;
val reset_group = map_naming Name_Space.reset_group;
val add_path = map_naming o Name_Space.add_path;
val root_path = map_naming Name_Space.root_path;
val parent_path = map_naming Name_Space.parent_path;
val mandatory_path = map_naming o Name_Space.mandatory_path;
val qualified_path = map_naming oo Name_Space.qualified_path;
fun local_path thy = thy |> root_path |> add_path (Context.theory_base_name thy);
fun init_naming thy =
let
val theory_naming = Name_Space.global_naming
|> Name_Space.set_theory_long_name (Context.theory_long_name thy);
in map_naming (K theory_naming) thy end;
val private_scope = map_naming o Name_Space.private_scope;
val private = map_naming o Name_Space.private;
val qualified_scope = map_naming o Name_Space.qualified_scope;
val qualified = map_naming o Name_Space.qualified;
val concealed = map_naming Name_Space.concealed;
(* hide names *)
val hide_class = map_tsig oo Type.hide_class;
val hide_type = map_tsig oo Type.hide_type;
val hide_const = map_consts oo Consts.hide;
end;