section \<open>Operational Semantics\<close>
theory RG_Tran
imports RG_Com
begin
subsection \<open>Semantics of Component Programs\<close>
subsubsection \<open>Environment transitions\<close>
type_synonym 'a conf = "(('a com) option) \<times> 'a"
inductive_set
etran :: "('a conf \<times> 'a conf) set"
and etran' :: "'a conf \<Rightarrow> 'a conf \<Rightarrow> bool" ("_ -e\<rightarrow> _" [81,81] 80)
where
"P -e\<rightarrow> Q \<equiv> (P,Q) \<in> etran"
| Env: "(P, s) -e\<rightarrow> (P, t)"
lemma etranE: "c -e\<rightarrow> c' \<Longrightarrow> (\<And>P s t. c = (P, s) \<Longrightarrow> c' = (P, t) \<Longrightarrow> Q) \<Longrightarrow> Q"
by (induct c, induct c', erule etran.cases, blast)
subsubsection \<open>Component transitions\<close>
inductive_set
ctran :: "('a conf \<times> 'a conf) set"
and ctran' :: "'a conf \<Rightarrow> 'a conf \<Rightarrow> bool" ("_ -c\<rightarrow> _" [81,81] 80)
and ctrans :: "'a conf \<Rightarrow> 'a conf \<Rightarrow> bool" ("_ -c*\<rightarrow> _" [81,81] 80)
where
"P -c\<rightarrow> Q \<equiv> (P,Q) \<in> ctran"
| "P -c*\<rightarrow> Q \<equiv> (P,Q) \<in> ctran\<^sup>*"
| Basic: "(Some(Basic f), s) -c\<rightarrow> (None, f s)"
| Seq1: "(Some P0, s) -c\<rightarrow> (None, t) \<Longrightarrow> (Some(Seq P0 P1), s) -c\<rightarrow> (Some P1, t)"
| Seq2: "(Some P0, s) -c\<rightarrow> (Some P2, t) \<Longrightarrow> (Some(Seq P0 P1), s) -c\<rightarrow> (Some(Seq P2 P1), t)"
| CondT: "s\<in>b \<Longrightarrow> (Some(Cond b P1 P2), s) -c\<rightarrow> (Some P1, s)"
| CondF: "s\<notin>b \<Longrightarrow> (Some(Cond b P1 P2), s) -c\<rightarrow> (Some P2, s)"
| WhileF: "s\<notin>b \<Longrightarrow> (Some(While b P), s) -c\<rightarrow> (None, s)"
| WhileT: "s\<in>b \<Longrightarrow> (Some(While b P), s) -c\<rightarrow> (Some(Seq P (While b P)), s)"
| Await: "\<lbrakk>s\<in>b; (Some P, s) -c*\<rightarrow> (None, t)\<rbrakk> \<Longrightarrow> (Some(Await b P), s) -c\<rightarrow> (None, t)"
monos "rtrancl_mono"
subsection \<open>Semantics of Parallel Programs\<close>
type_synonym 'a par_conf = "('a par_com) \<times> 'a"
inductive_set
par_etran :: "('a par_conf \<times> 'a par_conf) set"
and par_etran' :: "['a par_conf,'a par_conf] \<Rightarrow> bool" ("_ -pe\<rightarrow> _" [81,81] 80)
where
"P -pe\<rightarrow> Q \<equiv> (P,Q) \<in> par_etran"
| ParEnv: "(Ps, s) -pe\<rightarrow> (Ps, t)"
inductive_set
par_ctran :: "('a par_conf \<times> 'a par_conf) set"
and par_ctran' :: "['a par_conf,'a par_conf] \<Rightarrow> bool" ("_ -pc\<rightarrow> _" [81,81] 80)
where
"P -pc\<rightarrow> Q \<equiv> (P,Q) \<in> par_ctran"
| ParComp: "\<lbrakk>i<length Ps; (Ps!i, s) -c\<rightarrow> (r, t)\<rbrakk> \<Longrightarrow> (Ps, s) -pc\<rightarrow> (Ps[i:=r], t)"
lemma par_ctranE: "c -pc\<rightarrow> c' \<Longrightarrow>
(\<And>i Ps s r t. c = (Ps, s) \<Longrightarrow> c' = (Ps[i := r], t) \<Longrightarrow> i < length Ps \<Longrightarrow>
(Ps ! i, s) -c\<rightarrow> (r, t) \<Longrightarrow> P) \<Longrightarrow> P"
by (induct c, induct c', erule par_ctran.cases, blast)
subsection \<open>Computations\<close>
subsubsection \<open>Sequential computations\<close>
type_synonym 'a confs = "'a conf list"
inductive_set cptn :: "'a confs set"
where
CptnOne: "[(P,s)] \<in> cptn"
| CptnEnv: "(P, t)#xs \<in> cptn \<Longrightarrow> (P,s)#(P,t)#xs \<in> cptn"
| CptnComp: "\<lbrakk>(P,s) -c\<rightarrow> (Q,t); (Q, t)#xs \<in> cptn \<rbrakk> \<Longrightarrow> (P,s)#(Q,t)#xs \<in> cptn"
definition cp :: "('a com) option \<Rightarrow> 'a \<Rightarrow> ('a confs) set" where
"cp P s \<equiv> {l. l!0=(P,s) \<and> l \<in> cptn}"
subsubsection \<open>Parallel computations\<close>
type_synonym 'a par_confs = "'a par_conf list"
inductive_set par_cptn :: "'a par_confs set"
where
ParCptnOne: "[(P,s)] \<in> par_cptn"
| ParCptnEnv: "(P,t)#xs \<in> par_cptn \<Longrightarrow> (P,s)#(P,t)#xs \<in> par_cptn"
| ParCptnComp: "\<lbrakk> (P,s) -pc\<rightarrow> (Q,t); (Q,t)#xs \<in> par_cptn \<rbrakk> \<Longrightarrow> (P,s)#(Q,t)#xs \<in> par_cptn"
definition par_cp :: "'a par_com \<Rightarrow> 'a \<Rightarrow> ('a par_confs) set" where
"par_cp P s \<equiv> {l. l!0=(P,s) \<and> l \<in> par_cptn}"
subsection\<open>Modular Definition of Computation\<close>
definition lift :: "'a com \<Rightarrow> 'a conf \<Rightarrow> 'a conf" where
"lift Q \<equiv> \<lambda>(P, s). (if P=None then (Some Q,s) else (Some(Seq (the P) Q), s))"
inductive_set cptn_mod :: "('a confs) set"
where
CptnModOne: "[(P, s)] \<in> cptn_mod"
| CptnModEnv: "(P, t)#xs \<in> cptn_mod \<Longrightarrow> (P, s)#(P, t)#xs \<in> cptn_mod"
| CptnModNone: "\<lbrakk>(Some P, s) -c\<rightarrow> (None, t); (None, t)#xs \<in> cptn_mod \<rbrakk> \<Longrightarrow> (Some P,s)#(None, t)#xs \<in>cptn_mod"
| CptnModCondT: "\<lbrakk>(Some P0, s)#ys \<in> cptn_mod; s \<in> b \<rbrakk> \<Longrightarrow> (Some(Cond b P0 P1), s)#(Some P0, s)#ys \<in> cptn_mod"
| CptnModCondF: "\<lbrakk>(Some P1, s)#ys \<in> cptn_mod; s \<notin> b \<rbrakk> \<Longrightarrow> (Some(Cond b P0 P1), s)#(Some P1, s)#ys \<in> cptn_mod"
| CptnModSeq1: "\<lbrakk>(Some P0, s)#xs \<in> cptn_mod; zs=map (lift P1) xs \<rbrakk>
\<Longrightarrow> (Some(Seq P0 P1), s)#zs \<in> cptn_mod"
| CptnModSeq2:
"\<lbrakk>(Some P0, s)#xs \<in> cptn_mod; fst(last ((Some P0, s)#xs)) = None;
(Some P1, snd(last ((Some P0, s)#xs)))#ys \<in> cptn_mod;
zs=(map (lift P1) xs)@ys \<rbrakk> \<Longrightarrow> (Some(Seq P0 P1), s)#zs \<in> cptn_mod"
| CptnModWhile1:
"\<lbrakk> (Some P, s)#xs \<in> cptn_mod; s \<in> b; zs=map (lift (While b P)) xs \<rbrakk>
\<Longrightarrow> (Some(While b P), s)#(Some(Seq P (While b P)), s)#zs \<in> cptn_mod"
| CptnModWhile2:
"\<lbrakk> (Some P, s)#xs \<in> cptn_mod; fst(last ((Some P, s)#xs))=None; s \<in> b;
zs=(map (lift (While b P)) xs)@ys;
(Some(While b P), snd(last ((Some P, s)#xs)))#ys \<in> cptn_mod\<rbrakk>
\<Longrightarrow> (Some(While b P), s)#(Some(Seq P (While b P)), s)#zs \<in> cptn_mod"
subsection \<open>Equivalence of Both Definitions.\<close>
lemma last_length: "((a#xs)!(length xs))=last (a#xs)"
by (induct xs) auto
lemma div_seq [rule_format]: "list \<in> cptn_mod \<Longrightarrow>
(\<forall>s P Q zs. list=(Some (Seq P Q), s)#zs \<longrightarrow>
(\<exists>xs. (Some P, s)#xs \<in> cptn_mod \<and> (zs=(map (lift Q) xs) \<or>
( fst(((Some P, s)#xs)!length xs)=None \<and>
(\<exists>ys. (Some Q, snd(((Some P, s)#xs)!length xs))#ys \<in> cptn_mod
\<and> zs=(map (lift (Q)) xs)@ys)))))"
apply(erule cptn_mod.induct)
apply simp_all
apply clarify
apply(force intro:CptnModOne)
apply clarify
apply(erule_tac x=Pa in allE)
apply(erule_tac x=Q in allE)
apply simp
apply clarify
apply(erule disjE)
apply(rule_tac x="(Some Pa,t)#xsa" in exI)
apply(rule conjI)
apply clarify
apply(erule CptnModEnv)
apply(rule disjI1)
apply(simp add:lift_def)
apply clarify
apply(rule_tac x="(Some Pa,t)#xsa" in exI)
apply(rule conjI)
apply(erule CptnModEnv)
apply(rule disjI2)
apply(rule conjI)
apply(case_tac xsa,simp,simp)
apply(rule_tac x="ys" in exI)
apply(rule conjI)
apply simp
apply(simp add:lift_def)
apply clarify
apply(erule ctran.cases,simp_all)
apply clarify
apply(rule_tac x="xs" in exI)
apply simp
apply clarify
apply(rule_tac x="xs" in exI)
apply(simp add: last_length)
done
lemma cptn_onlyif_cptn_mod_aux [rule_format]:
"\<forall>s Q t xs.((Some a, s), Q, t) \<in> ctran \<longrightarrow> (Q, t) # xs \<in> cptn_mod
\<longrightarrow> (Some a, s) # (Q, t) # xs \<in> cptn_mod"
apply(induct a)
apply simp_all
\<comment> \<open>basic\<close>
apply clarify
apply(erule ctran.cases,simp_all)
apply(rule CptnModNone,rule Basic,simp)
apply clarify
apply(erule ctran.cases,simp_all)
\<comment> \<open>Seq1\<close>
apply(rule_tac xs="[(None,ta)]" in CptnModSeq2)
apply(erule CptnModNone)
apply(rule CptnModOne)
apply simp
apply simp
apply(simp add:lift_def)
\<comment> \<open>Seq2\<close>
apply(erule_tac x=sa in allE)
apply(erule_tac x="Some P2" in allE)
apply(erule allE,erule impE, assumption)
apply(drule div_seq,simp)
apply clarify
apply(erule disjE)
apply clarify
apply(erule allE,erule impE, assumption)
apply(erule_tac CptnModSeq1)
apply(simp add:lift_def)
apply clarify
apply(erule allE,erule impE, assumption)
apply(erule_tac CptnModSeq2)
apply (simp add:last_length)
apply (simp add:last_length)
apply(simp add:lift_def)
\<comment> \<open>Cond\<close>
apply clarify
apply(erule ctran.cases,simp_all)
apply(force elim: CptnModCondT)
apply(force elim: CptnModCondF)
\<comment> \<open>While\<close>
apply clarify
apply(erule ctran.cases,simp_all)
apply(rule CptnModNone,erule WhileF,simp)
apply(drule div_seq,force)
apply clarify
apply (erule disjE)
apply(force elim:CptnModWhile1)
apply clarify
apply(force simp add:last_length elim:CptnModWhile2)
\<comment> \<open>await\<close>
apply clarify
apply(erule ctran.cases,simp_all)
apply(rule CptnModNone,erule Await,simp+)
done
lemma cptn_onlyif_cptn_mod [rule_format]: "c \<in> cptn \<Longrightarrow> c \<in> cptn_mod"
apply(erule cptn.induct)
apply(rule CptnModOne)
apply(erule CptnModEnv)
apply(case_tac P)
apply simp
apply(erule ctran.cases,simp_all)
apply(force elim:cptn_onlyif_cptn_mod_aux)
done
lemma lift_is_cptn: "c\<in>cptn \<Longrightarrow> map (lift P) c \<in> cptn"
apply(erule cptn.induct)
apply(force simp add:lift_def CptnOne)
apply(force intro:CptnEnv simp add:lift_def)
apply(force simp add:lift_def intro:CptnComp Seq2 Seq1 elim:ctran.cases)
done
lemma cptn_append_is_cptn [rule_format]:
"\<forall>b a. b#c1\<in>cptn \<longrightarrow> a#c2\<in>cptn \<longrightarrow> (b#c1)!length c1=a \<longrightarrow> b#c1@c2\<in>cptn"
apply(induct c1)
apply simp
apply clarify
apply(erule cptn.cases,simp_all)
apply(force intro:CptnEnv)
apply(force elim:CptnComp)
done
lemma last_lift: "\<lbrakk>xs\<noteq>[]; fst(xs!(length xs - (Suc 0)))=None\<rbrakk>
\<Longrightarrow> fst((map (lift P) xs)!(length (map (lift P) xs)- (Suc 0)))=(Some P)"
by (cases "(xs ! (length xs - (Suc 0)))") (simp add:lift_def)
lemma last_fst [rule_format]: "P((a#x)!length x) \<longrightarrow> \<not>P a \<longrightarrow> P (x!(length x - (Suc 0)))"
by (induct x) simp_all
lemma last_fst_esp:
"fst(((Some a,s)#xs)!(length xs))=None \<Longrightarrow> fst(xs!(length xs - (Suc 0)))=None"
apply(erule last_fst)
apply simp
done
lemma last_snd: "xs\<noteq>[] \<Longrightarrow>
snd(((map (lift P) xs))!(length (map (lift P) xs) - (Suc 0)))=snd(xs!(length xs - (Suc 0)))"
by (cases "(xs ! (length xs - (Suc 0)))") (simp_all add:lift_def)
lemma Cons_lift: "(Some (Seq P Q), s) # (map (lift Q) xs) = map (lift Q) ((Some P, s) # xs)"
by (simp add:lift_def)
lemma Cons_lift_append:
"(Some (Seq P Q), s) # (map (lift Q) xs) @ ys = map (lift Q) ((Some P, s) # xs)@ ys "
by (simp add:lift_def)
lemma lift_nth: "i<length xs \<Longrightarrow> map (lift Q) xs ! i = lift Q (xs! i)"
by (simp add:lift_def)
lemma snd_lift: "i< length xs \<Longrightarrow> snd(lift Q (xs ! i))= snd (xs ! i)"
by (cases "xs!i") (simp add:lift_def)
lemma cptn_if_cptn_mod: "c \<in> cptn_mod \<Longrightarrow> c \<in> cptn"
apply(erule cptn_mod.induct)
apply(rule CptnOne)
apply(erule CptnEnv)
apply(erule CptnComp,simp)
apply(rule CptnComp)
apply(erule CondT,simp)
apply(rule CptnComp)
apply(erule CondF,simp)
\<comment> \<open>Seq1\<close>
apply(erule cptn.cases,simp_all)
apply(rule CptnOne)
apply clarify
apply(drule_tac P=P1 in lift_is_cptn)
apply(simp add:lift_def)
apply(rule CptnEnv,simp)
apply clarify
apply(simp add:lift_def)
apply(rule conjI)
apply clarify
apply(rule CptnComp)
apply(rule Seq1,simp)
apply(drule_tac P=P1 in lift_is_cptn)
apply(simp add:lift_def)
apply clarify
apply(rule CptnComp)
apply(rule Seq2,simp)
apply(drule_tac P=P1 in lift_is_cptn)
apply(simp add:lift_def)
\<comment> \<open>Seq2\<close>
apply(rule cptn_append_is_cptn)
apply(drule_tac P=P1 in lift_is_cptn)
apply(simp add:lift_def)
apply simp
apply(simp split: if_split_asm)
apply(frule_tac P=P1 in last_lift)
apply(rule last_fst_esp)
apply (simp add:last_length)
apply(simp add:Cons_lift lift_def split_def last_conv_nth)
\<comment> \<open>While1\<close>
apply(rule CptnComp)
apply(rule WhileT,simp)
apply(drule_tac P="While b P" in lift_is_cptn)
apply(simp add:lift_def)
\<comment> \<open>While2\<close>
apply(rule CptnComp)
apply(rule WhileT,simp)
apply(rule cptn_append_is_cptn)
apply(drule_tac P="While b P" in lift_is_cptn)
apply(simp add:lift_def)
apply simp
apply(simp split: if_split_asm)
apply(frule_tac P="While b P" in last_lift)
apply(rule last_fst_esp,simp add:last_length)
apply(simp add:Cons_lift lift_def split_def last_conv_nth)
done
theorem cptn_iff_cptn_mod: "(c \<in> cptn) = (c \<in> cptn_mod)"
apply(rule iffI)
apply(erule cptn_onlyif_cptn_mod)
apply(erule cptn_if_cptn_mod)
done
section \<open>Validity of Correctness Formulas\<close>
subsection \<open>Validity for Component Programs.\<close>
type_synonym 'a rgformula =
"'a com \<times> 'a set \<times> ('a \<times> 'a) set \<times> ('a \<times> 'a) set \<times> 'a set"
definition assum :: "('a set \<times> ('a \<times> 'a) set) \<Rightarrow> ('a confs) set" where
"assum \<equiv> \<lambda>(pre, rely). {c. snd(c!0) \<in> pre \<and> (\<forall>i. Suc i<length c \<longrightarrow>
c!i -e\<rightarrow> c!(Suc i) \<longrightarrow> (snd(c!i), snd(c!Suc i)) \<in> rely)}"
definition comm :: "(('a \<times> 'a) set \<times> 'a set) \<Rightarrow> ('a confs) set" where
"comm \<equiv> \<lambda>(guar, post). {c. (\<forall>i. Suc i<length c \<longrightarrow>
c!i -c\<rightarrow> c!(Suc i) \<longrightarrow> (snd(c!i), snd(c!Suc i)) \<in> guar) \<and>
(fst (last c) = None \<longrightarrow> snd (last c) \<in> post)}"
definition com_validity :: "'a com \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set \<Rightarrow> bool"
("\<Turnstile> _ sat [_, _, _, _]" [60,0,0,0,0] 45) where
"\<Turnstile> P sat [pre, rely, guar, post] \<equiv>
\<forall>s. cp (Some P) s \<inter> assum(pre, rely) \<subseteq> comm(guar, post)"
subsection \<open>Validity for Parallel Programs.\<close>
definition All_None :: "(('a com) option) list \<Rightarrow> bool" where
"All_None xs \<equiv> \<forall>c\<in>set xs. c=None"
definition par_assum :: "('a set \<times> ('a \<times> 'a) set) \<Rightarrow> ('a par_confs) set" where
"par_assum \<equiv> \<lambda>(pre, rely). {c. snd(c!0) \<in> pre \<and> (\<forall>i. Suc i<length c \<longrightarrow>
c!i -pe\<rightarrow> c!Suc i \<longrightarrow> (snd(c!i), snd(c!Suc i)) \<in> rely)}"
definition par_comm :: "(('a \<times> 'a) set \<times> 'a set) \<Rightarrow> ('a par_confs) set" where
"par_comm \<equiv> \<lambda>(guar, post). {c. (\<forall>i. Suc i<length c \<longrightarrow>
c!i -pc\<rightarrow> c!Suc i \<longrightarrow> (snd(c!i), snd(c!Suc i)) \<in> guar) \<and>
(All_None (fst (last c)) \<longrightarrow> snd( last c) \<in> post)}"
definition par_com_validity :: "'a par_com \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set
\<Rightarrow> 'a set \<Rightarrow> bool" ("\<Turnstile> _ SAT [_, _, _, _]" [60,0,0,0,0] 45) where
"\<Turnstile> Ps SAT [pre, rely, guar, post] \<equiv>
\<forall>s. par_cp Ps s \<inter> par_assum(pre, rely) \<subseteq> par_comm(guar, post)"
subsection \<open>Compositionality of the Semantics\<close>
subsubsection \<open>Definition of the conjoin operator\<close>
definition same_length :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" where
"same_length c clist \<equiv> (\<forall>i<length clist. length(clist!i)=length c)"
definition same_state :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" where
"same_state c clist \<equiv> (\<forall>i <length clist. \<forall>j<length c. snd(c!j) = snd((clist!i)!j))"
definition same_program :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" where
"same_program c clist \<equiv> (\<forall>j<length c. fst(c!j) = map (\<lambda>x. fst(nth x j)) clist)"
definition compat_label :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" where
"compat_label c clist \<equiv> (\<forall>j. Suc j<length c \<longrightarrow>
(c!j -pc\<rightarrow> c!Suc j \<and> (\<exists>i<length clist. (clist!i)!j -c\<rightarrow> (clist!i)! Suc j \<and>
(\<forall>l<length clist. l\<noteq>i \<longrightarrow> (clist!l)!j -e\<rightarrow> (clist!l)! Suc j))) \<or>
(c!j -pe\<rightarrow> c!Suc j \<and> (\<forall>i<length clist. (clist!i)!j -e\<rightarrow> (clist!i)! Suc j)))"
definition conjoin :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" ("_ \<propto> _" [65,65] 64) where
"c \<propto> clist \<equiv> (same_length c clist) \<and> (same_state c clist) \<and> (same_program c clist) \<and> (compat_label c clist)"
subsubsection \<open>Some previous lemmas\<close>
lemma list_eq_if [rule_format]:
"\<forall>ys. xs=ys \<longrightarrow> (length xs = length ys) \<longrightarrow> (\<forall>i<length xs. xs!i=ys!i)"
by (induct xs) auto
lemma list_eq: "(length xs = length ys \<and> (\<forall>i<length xs. xs!i=ys!i)) = (xs=ys)"
apply(rule iffI)
apply clarify
apply(erule nth_equalityI)
apply simp+
done
lemma nth_tl: "\<lbrakk> ys!0=a; ys\<noteq>[] \<rbrakk> \<Longrightarrow> ys=(a#(tl ys))"
by (cases ys) simp_all
lemma nth_tl_if [rule_format]: "ys\<noteq>[] \<longrightarrow> ys!0=a \<longrightarrow> P ys \<longrightarrow> P (a#(tl ys))"
by (induct ys) simp_all
lemma nth_tl_onlyif [rule_format]: "ys\<noteq>[] \<longrightarrow> ys!0=a \<longrightarrow> P (a#(tl ys)) \<longrightarrow> P ys"
by (induct ys) simp_all
lemma seq_not_eq1: "Seq c1 c2\<noteq>c1"
by (induct c1) auto
lemma seq_not_eq2: "Seq c1 c2\<noteq>c2"
by (induct c2) auto
lemma if_not_eq1: "Cond b c1 c2 \<noteq>c1"
by (induct c1) auto
lemma if_not_eq2: "Cond b c1 c2\<noteq>c2"
by (induct c2) auto
lemmas seq_and_if_not_eq [simp] = seq_not_eq1 seq_not_eq2
seq_not_eq1 [THEN not_sym] seq_not_eq2 [THEN not_sym]
if_not_eq1 if_not_eq2 if_not_eq1 [THEN not_sym] if_not_eq2 [THEN not_sym]
lemma prog_not_eq_in_ctran_aux:
assumes c: "(P,s) -c\<rightarrow> (Q,t)"
shows "P\<noteq>Q" using c
by (induct x1 \<equiv> "(P,s)" x2 \<equiv> "(Q,t)" arbitrary: P s Q t) auto
lemma prog_not_eq_in_ctran [simp]: "\<not> (P,s) -c\<rightarrow> (P,t)"
apply clarify
apply(drule prog_not_eq_in_ctran_aux)
apply simp
done
lemma prog_not_eq_in_par_ctran_aux [rule_format]: "(P,s) -pc\<rightarrow> (Q,t) \<Longrightarrow> (P\<noteq>Q)"
apply(erule par_ctran.induct)
apply(drule prog_not_eq_in_ctran_aux)
apply clarify
apply(drule list_eq_if)
apply simp_all
apply force
done
lemma prog_not_eq_in_par_ctran [simp]: "\<not> (P,s) -pc\<rightarrow> (P,t)"
apply clarify
apply(drule prog_not_eq_in_par_ctran_aux)
apply simp
done
lemma tl_in_cptn: "\<lbrakk> a#xs \<in>cptn; xs\<noteq>[] \<rbrakk> \<Longrightarrow> xs\<in>cptn"
by (force elim: cptn.cases)
lemma tl_zero[rule_format]:
"P (ys!Suc j) \<longrightarrow> Suc j<length ys \<longrightarrow> ys\<noteq>[] \<longrightarrow> P (tl(ys)!j)"
by (induct ys) simp_all
subsection \<open>The Semantics is Compositional\<close>
lemma aux_if [rule_format]:
"\<forall>xs s clist. (length clist = length xs \<and> (\<forall>i<length xs. (xs!i,s)#clist!i \<in> cptn)
\<and> ((xs, s)#ys \<propto> map (\<lambda>i. (fst i,s)#snd i) (zip xs clist))
\<longrightarrow> (xs, s)#ys \<in> par_cptn)"
apply(induct ys)
apply(clarify)
apply(rule ParCptnOne)
apply(clarify)
apply(simp add:conjoin_def compat_label_def)
apply clarify
apply(erule_tac x="0" and P="\<lambda>j. H j \<longrightarrow> (P j \<or> Q j)" for H P Q in all_dupE, simp)
apply(erule disjE)
\<comment> \<open>first step is a Component step\<close>
apply clarify
apply simp
apply(subgoal_tac "a=(xs[i:=(fst(clist!i!0))])")
apply(subgoal_tac "b=snd(clist!i!0)",simp)
prefer 2
apply(simp add: same_state_def)
apply(erule_tac x=i in allE,erule impE,assumption,
erule_tac x=1 and P="\<lambda>j. (H j) \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE, simp)
prefer 2
apply(simp add:same_program_def)
apply(erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (fst (s j))=(t j)" for H s t in allE,simp)
apply(rule nth_equalityI,simp)
apply clarify
apply(case_tac "i=ia",simp,simp)
apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE)
apply(drule_tac t=i in not_sym,simp)
apply(erule etranE,simp)
apply(rule ParCptnComp)
apply(erule ParComp,simp)
\<comment> \<open>applying the induction hypothesis\<close>
apply(erule_tac x="xs[i := fst (clist ! i ! 0)]" in allE)
apply(erule_tac x="snd (clist ! i ! 0)" in allE)
apply(erule mp)
apply(rule_tac x="map tl clist" in exI,simp)
apply(rule conjI,clarify)
apply(case_tac "i=ia",simp)
apply(rule nth_tl_if)
apply(force simp add:same_length_def length_Suc_conv)
apply simp
apply(erule allE,erule impE,assumption,erule tl_in_cptn)
apply(force simp add:same_length_def length_Suc_conv)
apply(rule nth_tl_if)
apply(force simp add:same_length_def length_Suc_conv)
apply(simp add:same_state_def)
apply(erule_tac x=ia in allE, erule impE, assumption,
erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE)
apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE)
apply(drule_tac t=i in not_sym,simp)
apply(erule etranE,simp)
apply(erule allE,erule impE,assumption,erule tl_in_cptn)
apply(force simp add:same_length_def length_Suc_conv)
apply(simp add:same_length_def same_state_def)
apply(rule conjI)
apply clarify
apply(case_tac j,simp,simp)
apply(erule_tac x=ia in allE, erule impE, assumption,
erule_tac x="Suc(Suc nat)" and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp)
apply(force simp add:same_length_def length_Suc_conv)
apply(rule conjI)
apply(simp add:same_program_def)
apply clarify
apply(case_tac j,simp)
apply(rule nth_equalityI,simp)
apply clarify
apply(case_tac "i=ia",simp,simp)
apply(erule_tac x="Suc(Suc nat)" and P="\<lambda>j. H j \<longrightarrow> (fst (s j))=(t j)" for H s t in allE,simp)
apply(rule nth_equalityI,simp,simp)
apply(force simp add:length_Suc_conv)
apply(rule allI,rule impI)
apply(erule_tac x="Suc j" and P="\<lambda>j. H j \<longrightarrow> (I j \<or> J j)" for H I J in allE,simp)
apply(erule disjE)
apply clarify
apply(rule_tac x=ia in exI,simp)
apply(case_tac "i=ia",simp)
apply(rule conjI)
apply(force simp add: length_Suc_conv)
apply clarify
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE,erule impE,assumption)
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE,erule impE,assumption)
apply simp
apply(case_tac j,simp)
apply(rule tl_zero)
apply(erule_tac x=l in allE, erule impE, assumption,
erule_tac x=1 and P="\<lambda>j. (H j) \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp)
apply(force elim:etranE intro:Env)
apply force
apply force
apply simp
apply(rule tl_zero)
apply(erule tl_zero)
apply force
apply force
apply force
apply force
apply(rule conjI,simp)
apply(rule nth_tl_if)
apply force
apply(erule_tac x=ia in allE, erule impE, assumption,
erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE)
apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE)
apply(drule_tac t=i in not_sym,simp)
apply(erule etranE,simp)
apply(erule tl_zero)
apply force
apply force
apply clarify
apply(case_tac "i=l",simp)
apply(rule nth_tl_if)
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply simp
apply(erule_tac P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE,erule impE,assumption,erule impE,assumption)
apply(erule tl_zero,force)
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply(rule nth_tl_if)
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply(erule_tac x=l in allE, erule impE, assumption,
erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE)
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE,erule impE, assumption,simp)
apply(erule etranE,simp)
apply(rule tl_zero)
apply force
apply force
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply(rule disjI2)
apply(case_tac j,simp)
apply clarify
apply(rule tl_zero)
apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> I j\<in>etran" for H I in allE,erule impE, assumption)
apply(case_tac "i=ia",simp,simp)
apply(erule_tac x=ia in allE, erule impE, assumption,
erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE)
apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE,erule impE, assumption,simp)
apply(force elim:etranE intro:Env)
apply force
apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply simp
apply clarify
apply(rule tl_zero)
apply(rule tl_zero,force)
apply force
apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply force
apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
\<comment> \<open>first step is an environmental step\<close>
apply clarify
apply(erule par_etran.cases)
apply simp
apply(rule ParCptnEnv)
apply(erule_tac x="Ps" in allE)
apply(erule_tac x="t" in allE)
apply(erule mp)
apply(rule_tac x="map tl clist" in exI,simp)
apply(rule conjI)
apply clarify
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> I j \<in> cptn" for H I in allE,simp)
apply(erule cptn.cases)
apply(simp add:same_length_def)
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply(simp add:same_state_def)
apply(erule_tac x=i in allE, erule impE, assumption,
erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp)
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> J j \<in>etran" for H J in allE,simp)
apply(erule etranE,simp)
apply(simp add:same_state_def same_length_def)
apply(rule conjI,clarify)
apply(case_tac j,simp,simp)
apply(erule_tac x=i in allE, erule impE, assumption,
erule_tac x="Suc(Suc nat)" and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp)
apply(rule tl_zero)
apply(simp)
apply force
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply(rule conjI)
apply(simp add:same_program_def)
apply clarify
apply(case_tac j,simp)
apply(rule nth_equalityI,simp)
apply clarify
apply simp
apply(erule_tac x="Suc(Suc nat)" and P="\<lambda>j. H j \<longrightarrow> (fst (s j))=(t j)" for H s t in allE,simp)
apply(rule nth_equalityI,simp,simp)
apply(force simp add:length_Suc_conv)
apply(rule allI,rule impI)
apply(erule_tac x="Suc j" and P="\<lambda>j. H j \<longrightarrow> (I j \<or> J j)" for H I J in allE,simp)
apply(erule disjE)
apply clarify
apply(rule_tac x=i in exI,simp)
apply(rule conjI)
apply(erule_tac x=i and P="\<lambda>i. H i \<longrightarrow> J i \<in>etran" for H J in allE, erule impE, assumption)
apply(erule etranE,simp)
apply(erule_tac x=i in allE, erule impE, assumption,
erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp)
apply(rule nth_tl_if)
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply simp
apply(erule tl_zero,force)
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply clarify
apply(erule_tac x=l and P="\<lambda>i. H i \<longrightarrow> J i \<in>etran" for H J in allE, erule impE, assumption)
apply(erule etranE,simp)
apply(erule_tac x=l in allE, erule impE, assumption,
erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp)
apply(rule nth_tl_if)
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply simp
apply(rule tl_zero,force)
apply force
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply(rule disjI2)
apply simp
apply clarify
apply(case_tac j,simp)
apply(rule tl_zero)
apply(erule_tac x=i and P="\<lambda>i. H i \<longrightarrow> J i \<in>etran" for H J in allE, erule impE, assumption)
apply(erule_tac x=i and P="\<lambda>i. H i \<longrightarrow> J i \<in>etran" for H J in allE, erule impE, assumption)
apply(force elim:etranE intro:Env)
apply force
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply simp
apply(rule tl_zero)
apply(rule tl_zero,force)
apply force
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply force
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
done
lemma aux_onlyif [rule_format]: "\<forall>xs s. (xs, s)#ys \<in> par_cptn \<longrightarrow>
(\<exists>clist. (length clist = length xs) \<and>
(xs, s)#ys \<propto> map (\<lambda>i. (fst i,s)#(snd i)) (zip xs clist) \<and>
(\<forall>i<length xs. (xs!i,s)#(clist!i) \<in> cptn))"
apply(induct ys)
apply(clarify)
apply(rule_tac x="map (\<lambda>i. []) [0..<length xs]" in exI)
apply(simp add: conjoin_def same_length_def same_state_def same_program_def compat_label_def)
apply(rule conjI)
apply(rule nth_equalityI,simp,simp)
apply(force intro: cptn.intros)
apply(clarify)
apply(erule par_cptn.cases,simp)
apply simp
apply(erule_tac x="xs" in allE)
apply(erule_tac x="t" in allE,simp)
apply clarify
apply(rule_tac x="(map (\<lambda>j. (P!j, t)#(clist!j)) [0..<length P])" in exI,simp)
apply(rule conjI)
prefer 2
apply clarify
apply(rule CptnEnv,simp)
apply(simp add:conjoin_def same_length_def same_state_def)
apply (rule conjI)
apply clarify
apply(case_tac j,simp,simp)
apply(rule conjI)
apply(simp add:same_program_def)
apply clarify
apply(case_tac j,simp)
apply(rule nth_equalityI,simp,simp)
apply simp
apply(rule nth_equalityI,simp,simp)
apply(simp add:compat_label_def)
apply clarify
apply(case_tac j,simp)
apply(simp add:ParEnv)
apply clarify
apply(simp add:Env)
apply simp
apply(erule_tac x=nat in allE,erule impE, assumption)
apply(erule disjE,simp)
apply clarify
apply(rule_tac x=i in exI,simp)
apply force
apply(erule par_ctran.cases,simp)
apply(erule_tac x="Ps[i:=r]" in allE)
apply(erule_tac x="ta" in allE,simp)
apply clarify
apply(rule_tac x="(map (\<lambda>j. (Ps!j, ta)#(clist!j)) [0..<length Ps]) [i:=((r, ta)#(clist!i))]" in exI,simp)
apply(rule conjI)
prefer 2
apply clarify
apply(case_tac "i=ia",simp)
apply(erule CptnComp)
apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> (I j \<in> cptn)" for H I in allE,simp)
apply simp
apply(erule_tac x=ia in allE)
apply(rule CptnEnv,simp)
apply(simp add:conjoin_def)
apply (rule conjI)
apply(simp add:same_length_def)
apply clarify
apply(case_tac "i=ia",simp,simp)
apply(rule conjI)
apply(simp add:same_state_def)
apply clarify
apply(case_tac j, simp, simp (no_asm_simp))
apply(case_tac "i=ia",simp,simp)
apply(rule conjI)
apply(simp add:same_program_def)
apply clarify
apply(case_tac j,simp)
apply(rule nth_equalityI,simp,simp)
apply simp
apply(rule nth_equalityI,simp,simp)
apply(erule_tac x=nat and P="\<lambda>j. H j \<longrightarrow> (fst (a j))=((b j))" for H a b in allE)
apply(case_tac nat)
apply clarify
apply(case_tac "i=ia",simp,simp)
apply clarify
apply(case_tac "i=ia",simp,simp)
apply(simp add:compat_label_def)
apply clarify
apply(case_tac j)
apply(rule conjI,simp)
apply(erule ParComp,assumption)
apply clarify
apply(rule_tac x=i in exI,simp)
apply clarify
apply(rule Env)
apply simp
apply(erule_tac x=nat and P="\<lambda>j. H j \<longrightarrow> (P j \<or> Q j)" for H P Q in allE,simp)
apply(erule disjE)
apply clarify
apply(rule_tac x=ia in exI,simp)
apply(rule conjI)
apply(case_tac "i=ia",simp,simp)
apply clarify
apply(case_tac "i=l",simp)
apply(case_tac "l=ia",simp,simp)
apply(erule_tac x=l in allE,erule impE,assumption,erule impE, assumption,simp)
apply simp
apply(erule_tac x=l in allE,erule impE,assumption,erule impE, assumption,simp)
apply clarify
apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> (P j)\<in>etran" for H P in allE, erule impE, assumption)
apply(case_tac "i=ia",simp,simp)
done
lemma one_iff_aux: "xs\<noteq>[] \<Longrightarrow> (\<forall>ys. ((xs, s)#ys \<in> par_cptn) =
(\<exists>clist. length clist= length xs \<and>
((xs, s)#ys \<propto> map (\<lambda>i. (fst i,s)#(snd i)) (zip xs clist)) \<and>
(\<forall>i<length xs. (xs!i,s)#(clist!i) \<in> cptn))) =
(par_cp (xs) s = {c. \<exists>clist. (length clist)=(length xs) \<and>
(\<forall>i<length clist. (clist!i) \<in> cp(xs!i) s) \<and> c \<propto> clist})"
apply (rule iffI)
apply(rule subset_antisym)
apply(rule subsetI)
apply(clarify)
apply(simp add:par_cp_def cp_def)
apply(case_tac x)
apply(force elim:par_cptn.cases)
apply simp
apply(rename_tac a list)
apply(erule_tac x="list" in allE)
apply clarify
apply simp
apply(rule_tac x="map (\<lambda>i. (fst i, s) # snd i) (zip xs clist)" in exI,simp)
apply(rule subsetI)
apply(clarify)
apply(case_tac x)
apply(erule_tac x=0 in allE)
apply(simp add:cp_def conjoin_def same_length_def same_program_def same_state_def compat_label_def)
apply clarify
apply(erule cptn.cases,force,force,force)
apply(simp add:par_cp_def conjoin_def same_length_def same_program_def same_state_def compat_label_def)
apply clarify
apply(erule_tac x=0 and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in all_dupE)
apply(subgoal_tac "a = xs")
apply(subgoal_tac "b = s",simp)
prefer 3
apply(erule_tac x=0 and P="\<lambda>j. H j \<longrightarrow> (fst (s j))=((t j))" for H s t in allE)
apply (simp add:cp_def)
apply(rule nth_equalityI,simp,simp)
prefer 2
apply(erule_tac x=0 in allE)
apply (simp add:cp_def)
apply(erule_tac x=0 and P="\<lambda>j. H j \<longrightarrow> (\<forall>i. T i \<longrightarrow> (snd (d j i))=(snd (e j i)))" for H T d e in allE,simp)
apply(erule_tac x=0 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp)
apply(erule_tac x=list in allE)
apply(rule_tac x="map tl clist" in exI,simp)
apply(rule conjI)
apply clarify
apply(case_tac j,simp)
apply(erule_tac x=i in allE, erule impE, assumption,
erule_tac x="0" and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp)
apply(erule_tac x=i in allE, erule impE, assumption,
erule_tac x="Suc nat" and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE)
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE)
apply(case_tac "clist!i",simp,simp)
apply(rule conjI)
apply clarify
apply(rule nth_equalityI,simp,simp)
apply(case_tac j)
apply clarify
apply(erule_tac x=i in allE)
apply(simp add:cp_def)
apply clarify
apply simp
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE)
apply(case_tac "clist!i",simp,simp)
apply(thin_tac "H = (\<exists>i. J i)" for H J)
apply(rule conjI)
apply clarify
apply(erule_tac x=j in allE,erule impE, assumption,erule disjE)
apply clarify
apply(rule_tac x=i in exI,simp)
apply(case_tac j,simp)
apply(rule conjI)
apply(erule_tac x=i in allE)
apply(simp add:cp_def)
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE)
apply(case_tac "clist!i",simp,simp)
apply clarify
apply(erule_tac x=l in allE)
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE)
apply clarify
apply(simp add:cp_def)
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE)
apply(case_tac "clist!l",simp,simp)
apply simp
apply(rule conjI)
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE)
apply(case_tac "clist!i",simp,simp)
apply clarify
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE)
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE)
apply(case_tac "clist!l",simp,simp)
apply clarify
apply(erule_tac x=i in allE)
apply(simp add:cp_def)
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE)
apply(case_tac "clist!i",simp)
apply(rule nth_tl_if,simp,simp)
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (P j)\<in>etran" for H P in allE, erule impE, assumption,simp)
apply(simp add:cp_def)
apply clarify
apply(rule nth_tl_if)
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE)
apply(case_tac "clist!i",simp,simp)
apply force
apply force
apply clarify
apply(rule iffI)
apply(simp add:par_cp_def)
apply(erule_tac c="(xs, s) # ys" in equalityCE)
apply simp
apply clarify
apply(rule_tac x="map tl clist" in exI)
apply simp
apply (rule conjI)
apply(simp add:conjoin_def cp_def)
apply(rule conjI)
apply clarify
apply(unfold same_length_def)
apply clarify
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,simp)
apply(rule conjI)
apply(simp add:same_state_def)
apply clarify
apply(erule_tac x=i in allE, erule impE, assumption,
erule_tac x=j and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE)
apply(case_tac j,simp)
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE)
apply(case_tac "clist!i",simp,simp)
apply(rule conjI)
apply(simp add:same_program_def)
apply clarify
apply(rule nth_equalityI,simp,simp)
apply(case_tac j,simp)
apply clarify
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE)
apply(case_tac "clist!i",simp,simp)
apply clarify
apply(simp add:compat_label_def)
apply(rule allI,rule impI)
apply(erule_tac x=j in allE,erule impE, assumption)
apply(erule disjE)
apply clarify
apply(rule_tac x=i in exI,simp)
apply(rule conjI)
apply(erule_tac x=i in allE)
apply(case_tac j,simp)
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE)
apply(case_tac "clist!i",simp,simp)
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE)
apply(case_tac "clist!i",simp,simp)
apply clarify
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE)
apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE)
apply(case_tac "clist!l",simp,simp)
apply(erule_tac x=l in allE,simp)
apply(rule disjI2)
apply clarify
apply(rule tl_zero)
apply(case_tac j,simp,simp)
apply(rule tl_zero,force)
apply force
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply force
apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force)
apply clarify
apply(erule_tac x=i in allE)
apply(simp add:cp_def)
apply(rule nth_tl_if)
apply(simp add:conjoin_def)
apply clarify
apply(simp add:same_length_def)
apply(erule_tac x=i in allE,simp)
apply simp
apply simp
apply simp
apply clarify
apply(erule_tac c="(xs, s) # ys" in equalityCE)
apply(simp add:par_cp_def)
apply simp
apply(erule_tac x="map (\<lambda>i. (fst i, s) # snd i) (zip xs clist)" in allE)
apply simp
apply clarify
apply(simp add:cp_def)
done
theorem one: "xs\<noteq>[] \<Longrightarrow>
par_cp xs s = {c. \<exists>clist. (length clist)=(length xs) \<and>
(\<forall>i<length clist. (clist!i) \<in> cp(xs!i) s) \<and> c \<propto> clist}"
apply(frule one_iff_aux)
apply(drule sym)
apply(erule iffD2)
apply clarify
apply(rule iffI)
apply(erule aux_onlyif)
apply clarify
apply(force intro:aux_if)
done
end