theory Class3
imports Class2
begin
text \<open>3rd Main Lemma\<close>
lemma Cut_a_redu_elim:
assumes a: "Cut <a>.M (x).N \<longrightarrow>\<^sub>a R"
shows "(\<exists>M'. R = Cut <a>.M' (x).N \<and> M \<longrightarrow>\<^sub>a M') \<or>
(\<exists>N'. R = Cut <a>.M (x).N' \<and> N \<longrightarrow>\<^sub>a N') \<or>
(Cut <a>.M (x).N \<longrightarrow>\<^sub>c R) \<or>
(Cut <a>.M (x).N \<longrightarrow>\<^sub>l R)"
using a
apply(erule_tac a_redu.cases)
apply(simp_all)
apply(simp_all add: trm.inject)
apply(rule disjI1)
apply(auto simp add: alpha)[1]
apply(rule_tac x="[(a,aa)]\<bullet>M'" in exI)
apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
apply(rule_tac x="[(a,aa)]\<bullet>M'" in exI)
apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
apply(rule disjI2)
apply(rule disjI1)
apply(auto simp add: alpha)[1]
apply(rule_tac x="[(x,xa)]\<bullet>N'" in exI)
apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
apply(rule_tac x="[(x,xa)]\<bullet>N'" in exI)
apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
done
lemma Cut_c_redu_elim:
assumes a: "Cut <a>.M (x).N \<longrightarrow>\<^sub>c R"
shows "(R = M{a:=(x).N} \<and> \<not>fic M a) \<or>
(R = N{x:=<a>.M} \<and> \<not>fin N x)"
using a
apply(erule_tac c_redu.cases)
apply(simp_all)
apply(simp_all add: trm.inject)
apply(rule disjI1)
apply(auto simp add: alpha)[1]
apply(simp add: subst_rename fresh_atm)
apply(simp add: subst_rename fresh_atm)
apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
apply(perm_simp)
apply(simp add: subst_rename fresh_atm fresh_prod)
apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
apply(perm_simp)
apply(rule disjI2)
apply(auto simp add: alpha)[1]
apply(simp add: subst_rename fresh_atm)
apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
apply(perm_simp)
apply(simp add: subst_rename fresh_atm fresh_prod)
apply(simp add: subst_rename fresh_atm fresh_prod)
apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
apply(perm_simp)
done
lemma not_fic_crename_aux:
assumes a: "fic M c" "c\<sharp>(a,b)"
shows "fic (M[a\<turnstile>c>b]) c"
using a
apply(nominal_induct M avoiding: c a b rule: trm.strong_induct)
apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh)
done
lemma not_fic_crename:
assumes a: "\<not>(fic (M[a\<turnstile>c>b]) c)" "c\<sharp>(a,b)"
shows "\<not>(fic M c)"
using a
apply(auto dest: not_fic_crename_aux)
done
lemma not_fin_crename_aux:
assumes a: "fin M y"
shows "fin (M[a\<turnstile>c>b]) y"
using a
apply(nominal_induct M avoiding: a b rule: trm.strong_induct)
apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh)
done
lemma not_fin_crename:
assumes a: "\<not>(fin (M[a\<turnstile>c>b]) y)"
shows "\<not>(fin M y)"
using a
apply(auto dest: not_fin_crename_aux)
done
lemma crename_fresh_interesting1:
fixes c::"coname"
assumes a: "c\<sharp>(M[a\<turnstile>c>b])" "c\<sharp>(a,b)"
shows "c\<sharp>M"
using a
apply(nominal_induct M avoiding: c a b rule: trm.strong_induct)
apply(auto split: if_splits simp add: abs_fresh)
done
lemma crename_fresh_interesting2:
fixes x::"name"
assumes a: "x\<sharp>(M[a\<turnstile>c>b])"
shows "x\<sharp>M"
using a
apply(nominal_induct M avoiding: x a b rule: trm.strong_induct)
apply(auto split: if_splits simp add: abs_fresh abs_supp fin_supp fresh_atm)
done
lemma fic_crename:
assumes a: "fic (M[a\<turnstile>c>b]) c" "c\<sharp>(a,b)"
shows "fic M c"
using a
apply(nominal_induct M avoiding: c a b rule: trm.strong_induct)
apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
split: if_splits)
apply(auto dest: crename_fresh_interesting1 simp add: fresh_prod fresh_atm)
done
lemma fin_crename:
assumes a: "fin (M[a\<turnstile>c>b]) x"
shows "fin M x"
using a
apply(nominal_induct M avoiding: x a b rule: trm.strong_induct)
apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
split: if_splits)
apply(auto dest: crename_fresh_interesting2 simp add: fresh_prod fresh_atm)
done
lemma crename_Cut:
assumes a: "R[a\<turnstile>c>b] = Cut <c>.M (x).N" "c\<sharp>(a,b,N,R)" "x\<sharp>(M,R)"
shows "\<exists>M' N'. R = Cut <c>.M' (x).N' \<and> M'[a\<turnstile>c>b] = M \<and> N'[a\<turnstile>c>b] = N \<and> c\<sharp>N' \<and> x\<sharp>M'"
using a
apply(nominal_induct R avoiding: a b c x M N rule: trm.strong_induct)
apply(auto split: if_splits)
apply(simp add: trm.inject)
apply(auto simp add: alpha)
apply(rule_tac x="[(name,x)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(auto simp add: fresh_atm)[1]
apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name,x)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(auto simp add: fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_NotR:
assumes a: "R[a\<turnstile>c>b] = NotR (x).N c" "x\<sharp>R" "c\<sharp>(a,b)"
shows "\<exists>N'. (R = NotR (x).N' c) \<and> N'[a\<turnstile>c>b] = N"
using a
apply(nominal_induct R avoiding: a b c x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_NotR':
assumes a: "R[a\<turnstile>c>b] = NotR (x).N c" "x\<sharp>R" "c\<sharp>a"
shows "(\<exists>N'. (R = NotR (x).N' c) \<and> N'[a\<turnstile>c>b] = N) \<or> (\<exists>N'. (R = NotR (x).N' a) \<and> b=c \<and> N'[a\<turnstile>c>b] = N)"
using a
apply(nominal_induct R avoiding: a b c x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_NotR_aux:
assumes a: "R[a\<turnstile>c>b] = NotR (x).N c"
shows "(a=c \<and> a=b) \<or> (a\<noteq>c)"
using a
apply(nominal_induct R avoiding: a b c x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma crename_NotL:
assumes a: "R[a\<turnstile>c>b] = NotL <c>.N y" "c\<sharp>(R,a,b)"
shows "\<exists>N'. (R = NotL <c>.N' y) \<and> N'[a\<turnstile>c>b] = N"
using a
apply(nominal_induct R avoiding: a b c y N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_AndL1:
assumes a: "R[a\<turnstile>c>b] = AndL1 (x).N y" "x\<sharp>R"
shows "\<exists>N'. (R = AndL1 (x).N' y) \<and> N'[a\<turnstile>c>b] = N"
using a
apply(nominal_induct R avoiding: a b x y N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name1,x)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_AndL2:
assumes a: "R[a\<turnstile>c>b] = AndL2 (x).N y" "x\<sharp>R"
shows "\<exists>N'. (R = AndL2 (x).N' y) \<and> N'[a\<turnstile>c>b] = N"
using a
apply(nominal_induct R avoiding: a b x y N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name1,x)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_AndR_aux:
assumes a: "R[a\<turnstile>c>b] = AndR <c>.M <d>.N e"
shows "(a=e \<and> a=b) \<or> (a\<noteq>e)"
using a
apply(nominal_induct R avoiding: a b c d e M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma crename_AndR:
assumes a: "R[a\<turnstile>c>b] = AndR <c>.M <d>.N e" "c\<sharp>(a,b,d,e,N,R)" "d\<sharp>(a,b,c,e,M,R)" "e\<sharp>(a,b)"
shows "\<exists>M' N'. R = AndR <c>.M' <d>.N' e \<and> M'[a\<turnstile>c>b] = M \<and> N'[a\<turnstile>c>b] = N \<and> c\<sharp>N' \<and> d\<sharp>M'"
using a
apply(nominal_induct R avoiding: a b c d e M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha)
apply(simp add: fresh_atm fresh_prod)
apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[a\<turnstile>c>b]" in sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_AndR':
assumes a: "R[a\<turnstile>c>b] = AndR <c>.M <d>.N e" "c\<sharp>(a,b,d,e,N,R)" "d\<sharp>(a,b,c,e,M,R)" "e\<sharp>a"
shows "(\<exists>M' N'. R = AndR <c>.M' <d>.N' e \<and> M'[a\<turnstile>c>b] = M \<and> N'[a\<turnstile>c>b] = N \<and> c\<sharp>N' \<and> d\<sharp>M') \<or>
(\<exists>M' N'. R = AndR <c>.M' <d>.N' a \<and> b=e \<and> M'[a\<turnstile>c>b] = M \<and> N'[a\<turnstile>c>b] = N \<and> c\<sharp>N' \<and> d\<sharp>M')"
using a
apply(nominal_induct R avoiding: a b c d e M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha)[1]
apply(auto split: if_splits simp add: trm.inject alpha)[1]
apply(auto split: if_splits simp add: trm.inject alpha)[1]
apply(auto split: if_splits simp add: trm.inject alpha)[1]
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm trm.inject alpha)[1]
apply(case_tac "coname3=a")
apply(simp)
apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm trm.inject alpha split: if_splits)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[a\<turnstile>c>e]" in sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(simp)
apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm trm.inject alpha split: if_splits)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[a\<turnstile>c>b]" in sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma crename_OrR1_aux:
assumes a: "R[a\<turnstile>c>b] = OrR1 <c>.M e"
shows "(a=e \<and> a=b) \<or> (a\<noteq>e)"
using a
apply(nominal_induct R avoiding: a b c e M rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma crename_OrR1:
assumes a: "R[a\<turnstile>c>b] = OrR1 <c>.N d" "c\<sharp>(R,a,b)" "d\<sharp>(a,b)"
shows "\<exists>N'. (R = OrR1 <c>.N' d) \<and> N'[a\<turnstile>c>b] = N"
using a
apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_OrR1':
assumes a: "R[a\<turnstile>c>b] = OrR1 <c>.N d" "c\<sharp>(R,a,b)" "d\<sharp>a"
shows "(\<exists>N'. (R = OrR1 <c>.N' d) \<and> N'[a\<turnstile>c>b] = N) \<or>
(\<exists>N'. (R = OrR1 <c>.N' a) \<and> b=d \<and> N'[a\<turnstile>c>b] = N)"
using a
apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_OrR2_aux:
assumes a: "R[a\<turnstile>c>b] = OrR2 <c>.M e"
shows "(a=e \<and> a=b) \<or> (a\<noteq>e)"
using a
apply(nominal_induct R avoiding: a b c e M rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma crename_OrR2:
assumes a: "R[a\<turnstile>c>b] = OrR2 <c>.N d" "c\<sharp>(R,a,b)" "d\<sharp>(a,b)"
shows "\<exists>N'. (R = OrR2 <c>.N' d) \<and> N'[a\<turnstile>c>b] = N"
using a
apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_OrR2':
assumes a: "R[a\<turnstile>c>b] = OrR2 <c>.N d" "c\<sharp>(R,a,b)" "d\<sharp>a"
shows "(\<exists>N'. (R = OrR2 <c>.N' d) \<and> N'[a\<turnstile>c>b] = N) \<or>
(\<exists>N'. (R = OrR2 <c>.N' a) \<and> b=d \<and> N'[a\<turnstile>c>b] = N)"
using a
apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_OrL:
assumes a: "R[a\<turnstile>c>b] = OrL (x).M (y).N z" "x\<sharp>(y,z,N,R)" "y\<sharp>(x,z,M,R)"
shows "\<exists>M' N'. R = OrL (x).M' (y).N' z \<and> M'[a\<turnstile>c>b] = M \<and> N'[a\<turnstile>c>b] = N \<and> x\<sharp>N' \<and> y\<sharp>M'"
using a
apply(nominal_induct R avoiding: a b x y z M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha)
apply(rule_tac x="[(name2,y)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(name1,x)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(name1,x)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(name2,y)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[a\<turnstile>c>b]" in sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_ImpL:
assumes a: "R[a\<turnstile>c>b] = ImpL <c>.M (y).N z" "c\<sharp>(a,b,N,R)" "y\<sharp>(z,M,R)"
shows "\<exists>M' N'. R = ImpL <c>.M' (y).N' z \<and> M'[a\<turnstile>c>b] = M \<and> N'[a\<turnstile>c>b] = N \<and> c\<sharp>N' \<and> y\<sharp>M'"
using a
apply(nominal_induct R avoiding: a b c y z M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha)
apply(rule_tac x="[(name1,y)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(name1,y)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[a\<turnstile>c>b]" in sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_ImpR_aux:
assumes a: "R[a\<turnstile>c>b] = ImpR (x).<c>.M e"
shows "(a=e \<and> a=b) \<or> (a\<noteq>e)"
using a
apply(nominal_induct R avoiding: x a b c e M rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma crename_ImpR:
assumes a: "R[a\<turnstile>c>b] = ImpR (x).<c>.N d" "c\<sharp>(R,a,b)" "d\<sharp>(a,b)" "x\<sharp>R"
shows "\<exists>N'. (R = ImpR (x).<c>.N' d) \<and> N'[a\<turnstile>c>b] = N"
using a
apply(nominal_induct R avoiding: a b x c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_perm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name,x)]\<bullet>[(coname1, c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_supp fin_supp abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_ImpR':
assumes a: "R[a\<turnstile>c>b] = ImpR (x).<c>.N d" "c\<sharp>(R,a,b)" "x\<sharp>R" "d\<sharp>a"
shows "(\<exists>N'. (R = ImpR (x).<c>.N' d) \<and> N'[a\<turnstile>c>b] = N) \<or>
(\<exists>N'. (R = ImpR (x).<c>.N' a) \<and> b=d \<and> N'[a\<turnstile>c>b] = N)"
using a
apply(nominal_induct R avoiding: x a b c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject abs_perm calc_atm)
apply(rule_tac x="[(name,x)]\<bullet>[(coname1,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod abs_supp fin_supp)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(name,x)]\<bullet>[(coname1,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod abs_supp fin_supp)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_ax2:
assumes a: "N[a\<turnstile>c>b] = Ax x c"
shows "\<exists>d. N = Ax x d"
using a
apply(nominal_induct N avoiding: a b rule: trm.strong_induct)
apply(auto split: if_splits)
apply(simp add: trm.inject)
done
lemma crename_interesting1:
assumes a: "distinct [a,b,c]"
shows "M[a\<turnstile>c>c][c\<turnstile>c>b] = M[c\<turnstile>c>b][a\<turnstile>c>b]"
using a
apply(nominal_induct M avoiding: a c b rule: trm.strong_induct)
apply(auto simp add: rename_fresh simp add: trm.inject alpha)
apply(blast)
apply(rotate_tac 12)
apply(drule_tac x="a" in meta_spec)
apply(rotate_tac 15)
apply(drule_tac x="c" in meta_spec)
apply(rotate_tac 15)
apply(drule_tac x="b" in meta_spec)
apply(blast)
apply(blast)
apply(blast)
done
lemma crename_interesting2:
assumes a: "a\<noteq>c" "a\<noteq>d" "a\<noteq>b" "c\<noteq>d" "b\<noteq>c"
shows "M[a\<turnstile>c>b][c\<turnstile>c>d] = M[c\<turnstile>c>d][a\<turnstile>c>b]"
using a
apply(nominal_induct M avoiding: a c b d rule: trm.strong_induct)
apply(auto simp add: rename_fresh simp add: trm.inject alpha)
done
lemma crename_interesting3:
shows "M[a\<turnstile>c>c][x\<turnstile>n>y] = M[x\<turnstile>n>y][a\<turnstile>c>c]"
apply(nominal_induct M avoiding: a c x y rule: trm.strong_induct)
apply(auto simp add: rename_fresh simp add: trm.inject alpha)
done
lemma crename_credu:
assumes a: "(M[a\<turnstile>c>b]) \<longrightarrow>\<^sub>c M'"
shows "\<exists>M0. M0[a\<turnstile>c>b]=M' \<and> M \<longrightarrow>\<^sub>c M0"
using a
apply(nominal_induct M\<equiv>"M[a\<turnstile>c>b]" M' avoiding: M a b rule: c_redu.strong_induct)
apply(drule sym)
apply(drule crename_Cut)
apply(simp)
apply(simp)
apply(auto)
apply(rule_tac x="M'{a:=(x).N'}" in exI)
apply(rule conjI)
apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
apply(rule c_redu.intros)
apply(auto dest: not_fic_crename)[1]
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(drule sym)
apply(drule crename_Cut)
apply(simp)
apply(simp)
apply(auto)
apply(rule_tac x="N'{x:=<a>.M'}" in exI)
apply(rule conjI)
apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
apply(rule c_redu.intros)
apply(auto dest: not_fin_crename)[1]
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
done
lemma crename_lredu:
assumes a: "(M[a\<turnstile>c>b]) \<longrightarrow>\<^sub>l M'"
shows "\<exists>M0. M0[a\<turnstile>c>b]=M' \<and> M \<longrightarrow>\<^sub>l M0"
using a
apply(nominal_induct M\<equiv>"M[a\<turnstile>c>b]" M' avoiding: M a b rule: l_redu.strong_induct)
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(case_tac "aa=ba")
apply(simp add: crename_id)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(assumption)
apply(frule crename_ax2)
apply(auto)[1]
apply(case_tac "d=aa")
apply(simp add: trm.inject)
apply(rule_tac x="M'[a\<turnstile>c>aa]" in exI)
apply(rule conjI)
apply(rule crename_interesting1)
apply(simp)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(auto dest: fic_crename simp add: fresh_prod fresh_atm)[1]
apply(simp add: trm.inject)
apply(rule_tac x="M'[a\<turnstile>c>b]" in exI)
apply(rule conjI)
apply(rule crename_interesting2)
apply(simp)
apply(simp)
apply(simp)
apply(simp)
apply(simp)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(auto dest: fic_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(case_tac "aa=b")
apply(simp add: crename_id)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(assumption)
apply(frule crename_ax2)
apply(auto)[1]
apply(case_tac "d=aa")
apply(simp add: trm.inject)
apply(simp add: trm.inject)
apply(rule_tac x="N'[x\<turnstile>n>y]" in exI)
apply(rule conjI)
apply(rule sym)
apply(rule crename_interesting3)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
(* LNot *)
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_NotR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_NotL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <b>.N'b (x).N'a" in exI)
apply(simp add: fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
(* LAnd1 *)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule crename_AndR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_AndL1)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a1>.M'a (x).N'a" in exI)
apply(simp add: fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
(* LAnd2 *)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule crename_AndR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_AndL2)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a2>.N'b (x).N'a" in exI)
apply(simp add: fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
(* LOr1 *)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule crename_OrL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_OrR1)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(auto)
apply(rule_tac x="Cut <a>.N' (x1).M'a" in exI)
apply(rule conjI)
apply(simp add: abs_fresh fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
(* LOr2 *)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule crename_OrL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_OrR2)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(auto)
apply(rule_tac x="Cut <a>.N' (x2).N'a" in exI)
apply(rule conjI)
apply(simp add: abs_fresh fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
(* ImpL *)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm abs_supp fin_supp)
apply(auto)[1]
apply(drule crename_ImpL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_ImpR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a>.(Cut <c>.M'a (x).N') (y).N'a" in exI)
apply(rule conjI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh abs_supp fin_supp fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
done
lemma crename_aredu:
assumes a: "(M[a\<turnstile>c>b]) \<longrightarrow>\<^sub>a M'" "a\<noteq>b"
shows "\<exists>M0. M0[a\<turnstile>c>b]=M' \<and> M \<longrightarrow>\<^sub>a M0"
using a
apply(nominal_induct "M[a\<turnstile>c>b]" M' avoiding: M a b rule: a_redu.strong_induct)
apply(drule crename_lredu)
apply(blast)
apply(drule crename_credu)
apply(blast)
(* Cut *)
apply(drule sym)
apply(drule crename_Cut)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="Cut <a>.M0 (x).N'" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(rule conjI)
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule crename_fresh_interesting2)
apply(simp add: fresh_a_redu)
apply(simp)
apply(auto)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="Cut <a>.M' (x).M0" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(rule conjI)
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(drule crename_fresh_interesting1)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_a_redu)
apply(simp)
apply(simp)
apply(auto)[1]
(* NotL *)
apply(drule sym)
apply(drule crename_NotL)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="NotL <a>.M0 x" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
(* NotR *)
apply(drule sym)
apply(frule crename_NotR_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule crename_NotR')
apply(simp)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="NotR (x).M0 a" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(auto)[1]
apply(rule_tac x="NotR (x).M0 aa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
(* AndR *)
apply(drule sym)
apply(frule crename_AndR_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule crename_AndR')
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="ba" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndR <a>.M0 <b>.N' c" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="c" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndR <a>.M0 <b>.N' aa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule sym)
apply(frule crename_AndR_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule crename_AndR')
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="ba" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndR <a>.M' <b>.M0 c" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="c" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndR <a>.M' <b>.M0 aa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
(* AndL1 *)
apply(drule sym)
apply(drule crename_AndL1)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndL1 (x).M0 y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
(* AndL2 *)
apply(drule sym)
apply(drule crename_AndL2)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndL2 (x).M0 y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
(* OrL *)
apply(drule sym)
apply(drule crename_OrL)
apply(simp)
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrL (x).M0 (y).N' z" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
apply(drule sym)
apply(drule crename_OrL)
apply(simp)
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrL (x).M' (y).M0 z" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
apply(simp)
(* OrR1 *)
apply(drule sym)
apply(frule crename_OrR1_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule crename_OrR1')
apply(simp)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="ba" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrR1 <a>.M0 b" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrR1 <a>.M0 aa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
(* OrR2 *)
apply(drule sym)
apply(frule crename_OrR2_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule crename_OrR2')
apply(simp)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="ba" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrR2 <a>.M0 b" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrR2 <a>.M0 aa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
(* ImpL *)
apply(drule sym)
apply(drule crename_ImpL)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpL <a>.M0 (x).N' y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule sym)
apply(drule crename_ImpL)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpL <a>.M' (x).M0 y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
(* ImpR *)
apply(drule sym)
apply(frule crename_ImpR_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule crename_ImpR')
apply(simp)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="ba" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpR (x).<a>.M0 b" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpR (x).<a>.M0 aa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
done
lemma SNa_preserved_renaming1:
assumes a: "SNa M"
shows "SNa (M[a\<turnstile>c>b])"
using a
apply(induct rule: SNa_induct)
apply(case_tac "a=b")
apply(simp add: crename_id)
apply(rule SNaI)
apply(drule crename_aredu)
apply(blast)+
done
lemma nrename_interesting1:
assumes a: "distinct [x,y,z]"
shows "M[x\<turnstile>n>z][z\<turnstile>n>y] = M[z\<turnstile>n>y][x\<turnstile>n>y]"
using a
apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
apply(auto simp add: rename_fresh simp add: trm.inject alpha)
apply(blast)
apply(blast)
apply(rotate_tac 12)
apply(drule_tac x="x" in meta_spec)
apply(rotate_tac 15)
apply(drule_tac x="y" in meta_spec)
apply(rotate_tac 15)
apply(drule_tac x="z" in meta_spec)
apply(blast)
apply(rotate_tac 11)
apply(drule_tac x="x" in meta_spec)
apply(rotate_tac 14)
apply(drule_tac x="y" in meta_spec)
apply(rotate_tac 14)
apply(drule_tac x="z" in meta_spec)
apply(blast)
done
lemma nrename_interesting2:
assumes a: "x\<noteq>z" "x\<noteq>u" "x\<noteq>y" "z\<noteq>u" "y\<noteq>z"
shows "M[x\<turnstile>n>y][z\<turnstile>n>u] = M[z\<turnstile>n>u][x\<turnstile>n>y]"
using a
apply(nominal_induct M avoiding: x y z u rule: trm.strong_induct)
apply(auto simp add: rename_fresh simp add: trm.inject alpha)
done
lemma not_fic_nrename_aux:
assumes a: "fic M c"
shows "fic (M[x\<turnstile>n>y]) c"
using a
apply(nominal_induct M avoiding: c x y rule: trm.strong_induct)
apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh)
done
lemma not_fic_nrename:
assumes a: "\<not>(fic (M[x\<turnstile>n>y]) c)"
shows "\<not>(fic M c)"
using a
apply(auto dest: not_fic_nrename_aux)
done
lemma fin_nrename:
assumes a: "fin M z" "z\<sharp>(x,y)"
shows "fin (M[x\<turnstile>n>y]) z"
using a
apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
split: if_splits)
done
lemma nrename_fresh_interesting1:
fixes z::"name"
assumes a: "z\<sharp>(M[x\<turnstile>n>y])" "z\<sharp>(x,y)"
shows "z\<sharp>M"
using a
apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
apply(auto split: if_splits simp add: abs_fresh abs_supp fin_supp)
done
lemma nrename_fresh_interesting2:
fixes c::"coname"
assumes a: "c\<sharp>(M[x\<turnstile>n>y])"
shows "c\<sharp>M"
using a
apply(nominal_induct M avoiding: x y c rule: trm.strong_induct)
apply(auto split: if_splits simp add: abs_fresh abs_supp fin_supp fresh_atm)
done
lemma fin_nrename2:
assumes a: "fin (M[x\<turnstile>n>y]) z" "z\<sharp>(x,y)"
shows "fin M z"
using a
apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
split: if_splits)
apply(auto dest: nrename_fresh_interesting1 simp add: fresh_atm fresh_prod)
done
lemma nrename_Cut:
assumes a: "R[x\<turnstile>n>y] = Cut <c>.M (z).N" "c\<sharp>(N,R)" "z\<sharp>(x,y,M,R)"
shows "\<exists>M' N'. R = Cut <c>.M' (z).N' \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N \<and> c\<sharp>N' \<and> z\<sharp>M'"
using a
apply(nominal_induct R avoiding: c y x z M N rule: trm.strong_induct)
apply(auto split: if_splits)
apply(simp add: trm.inject)
apply(auto simp add: alpha fresh_atm)
apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name,z)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule conjI)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(auto simp add: fresh_atm)[1]
apply(drule sym)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_NotR:
assumes a: "R[x\<turnstile>n>y] = NotR (z).N c" "z\<sharp>(R,x,y)"
shows "\<exists>N'. (R = NotR (z).N' c) \<and> N'[x\<turnstile>n>y] = N"
using a
apply(nominal_induct R avoiding: x y c z N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name,z)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_NotL:
assumes a: "R[x\<turnstile>n>y] = NotL <c>.N z" "c\<sharp>R" "z\<sharp>(x,y)"
shows "\<exists>N'. (R = NotL <c>.N' z) \<and> N'[x\<turnstile>n>y] = N"
using a
apply(nominal_induct R avoiding: x y c z N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_NotL':
assumes a: "R[x\<turnstile>n>y] = NotL <c>.N u" "c\<sharp>R" "x\<noteq>y"
shows "(\<exists>N'. (R = NotL <c>.N' u) \<and> N'[x\<turnstile>n>y] = N) \<or> (\<exists>N'. (R = NotL <c>.N' x) \<and> y=u \<and> N'[x\<turnstile>n>y] = N)"
using a
apply(nominal_induct R avoiding: y u c x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
apply(rule_tac x="[(coname,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(coname,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_NotL_aux:
assumes a: "R[x\<turnstile>n>y] = NotL <c>.N u"
shows "(x=u \<and> x=y) \<or> (x\<noteq>u)"
using a
apply(nominal_induct R avoiding: y u c x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma nrename_AndL1:
assumes a: "R[x\<turnstile>n>y] = AndL1 (z).N u" "z\<sharp>(R,x,y)" "u\<sharp>(x,y)"
shows "\<exists>N'. (R = AndL1 (z).N' u) \<and> N'[x\<turnstile>n>y] = N"
using a
apply(nominal_induct R avoiding: z u x y N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name1,z)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_AndL1':
assumes a: "R[x\<turnstile>n>y] = AndL1 (v).N u" "v\<sharp>(R,u,x,y)" "x\<noteq>y"
shows "(\<exists>N'. (R = AndL1 (v).N' u) \<and> N'[x\<turnstile>n>y] = N) \<or> (\<exists>N'. (R = AndL1 (v).N' x) \<and> y=u \<and> N'[x\<turnstile>n>y] = N)"
using a
apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
apply(rule_tac x="[(name1,v)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(name1,v)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_AndL1_aux:
assumes a: "R[x\<turnstile>n>y] = AndL1 (v).N u"
shows "(x=u \<and> x=y) \<or> (x\<noteq>u)"
using a
apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma nrename_AndL2:
assumes a: "R[x\<turnstile>n>y] = AndL2 (z).N u" "z\<sharp>(R,x,y)" "u\<sharp>(x,y)"
shows "\<exists>N'. (R = AndL2 (z).N' u) \<and> N'[x\<turnstile>n>y] = N"
using a
apply(nominal_induct R avoiding: z u x y N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name1,z)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_AndL2':
assumes a: "R[x\<turnstile>n>y] = AndL2 (v).N u" "v\<sharp>(R,u,x,y)" "x\<noteq>y"
shows "(\<exists>N'. (R = AndL2 (v).N' u) \<and> N'[x\<turnstile>n>y] = N) \<or> (\<exists>N'. (R = AndL2 (v).N' x) \<and> y=u \<and> N'[x\<turnstile>n>y] = N)"
using a
apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
apply(rule_tac x="[(name1,v)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(name1,v)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_AndL2_aux:
assumes a: "R[x\<turnstile>n>y] = AndL2 (v).N u"
shows "(x=u \<and> x=y) \<or> (x\<noteq>u)"
using a
apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma nrename_AndR:
assumes a: "R[x\<turnstile>n>y] = AndR <c>.M <d>.N e" "c\<sharp>(d,e,N,R)" "d\<sharp>(c,e,M,R)"
shows "\<exists>M' N'. R = AndR <c>.M' <d>.N' e \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N \<and> c\<sharp>N' \<and> d\<sharp>M'"
using a
apply(nominal_induct R avoiding: x y c d e M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha)
apply(simp add: fresh_atm fresh_prod)
apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[x\<turnstile>n>y]" in sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_OrR1:
assumes a: "R[x\<turnstile>n>y] = OrR1 <c>.N d" "c\<sharp>(R,d)"
shows "\<exists>N'. (R = OrR1 <c>.N' d) \<and> N'[x\<turnstile>n>y] = N"
using a
apply(nominal_induct R avoiding: x y c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_OrR2:
assumes a: "R[x\<turnstile>n>y] = OrR2 <c>.N d" "c\<sharp>(R,d)"
shows "\<exists>N'. (R = OrR2 <c>.N' d) \<and> N'[x\<turnstile>n>y] = N"
using a
apply(nominal_induct R avoiding: x y c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_OrL:
assumes a: "R[u\<turnstile>n>v] = OrL (x).M (y).N z" "x\<sharp>(y,z,u,v,N,R)" "y\<sharp>(x,z,u,v,M,R)" "z\<sharp>(u,v)"
shows "\<exists>M' N'. R = OrL (x).M' (y).N' z \<and> M'[u\<turnstile>n>v] = M \<and> N'[u\<turnstile>n>v] = N \<and> x\<sharp>N' \<and> y\<sharp>M'"
using a
apply(nominal_induct R avoiding: u v x y z M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha fresh_prod fresh_atm)
apply(rule_tac x="[(name1,x)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(name2,y)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[u\<turnstile>n>v]" in sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_OrL':
assumes a: "R[x\<turnstile>n>y] = OrL (v).M (w).N u" "v\<sharp>(R,N,u,x,y)" "w\<sharp>(R,M,u,x,y)" "x\<noteq>y"
shows "(\<exists>M' N'. (R = OrL (v).M' (w).N' u) \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N) \<or>
(\<exists>M' N'. (R = OrL (v).M' (w).N' x) \<and> y=u \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N)"
using a
apply(nominal_induct R avoiding: y x u v w M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
apply(rule_tac x="[(name1,v)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name2,w)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule conjI)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[x\<turnstile>n>u]" in sym)
apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(name1,v)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name2,w)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule conjI)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[x\<turnstile>n>y]" in sym)
apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_OrL_aux:
assumes a: "R[x\<turnstile>n>y] = OrL (v).M (w).N u"
shows "(x=u \<and> x=y) \<or> (x\<noteq>u)"
using a
apply(nominal_induct R avoiding: y x w u v M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma nrename_ImpL:
assumes a: "R[x\<turnstile>n>y] = ImpL <c>.M (u).N z" "c\<sharp>(N,R)" "u\<sharp>(y,x,z,M,R)" "z\<sharp>(x,y)"
shows "\<exists>M' N'. R = ImpL <c>.M' (u).N' z \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N \<and> c\<sharp>N' \<and> u\<sharp>M'"
using a
apply(nominal_induct R avoiding: u x c y z M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha fresh_prod fresh_atm)
apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(name1,u)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[x\<turnstile>n>y]" in sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm fresh_prod fresh_atm)
done
lemma nrename_ImpL':
assumes a: "R[x\<turnstile>n>y] = ImpL <c>.M (w).N u" "c\<sharp>(R,N)" "w\<sharp>(R,M,u,x,y)" "x\<noteq>y"
shows "(\<exists>M' N'. (R = ImpL <c>.M' (w).N' u) \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N) \<or>
(\<exists>M' N'. (R = ImpL <c>.M' (w).N' x) \<and> y=u \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N)"
using a
apply(nominal_induct R avoiding: y x u c w M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name1,w)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule conjI)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[x\<turnstile>n>u]" in sym)
apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name1,w)]\<bullet>trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule conjI)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[x\<turnstile>n>y]" in sym)
apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_ImpL_aux:
assumes a: "R[x\<turnstile>n>y] = ImpL <c>.M (w).N u"
shows "(x=u \<and> x=y) \<or> (x\<noteq>u)"
using a
apply(nominal_induct R avoiding: y x w u c M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma nrename_ImpR:
assumes a: "R[u\<turnstile>n>v] = ImpR (x).<c>.N d" "c\<sharp>(R,d)" "x\<sharp>(R,u,v)"
shows "\<exists>N'. (R = ImpR (x).<c>.N' d) \<and> N'[u\<turnstile>n>v] = N"
using a
apply(nominal_induct R avoiding: u v x c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_perm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name,x)]\<bullet>[(coname1, c)]\<bullet>trm" in exI)
apply(perm_simp)
apply(simp add: abs_supp fin_supp abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_credu:
assumes a: "(M[x\<turnstile>n>y]) \<longrightarrow>\<^sub>c M'"
shows "\<exists>M0. M0[x\<turnstile>n>y]=M' \<and> M \<longrightarrow>\<^sub>c M0"
using a
apply(nominal_induct M\<equiv>"M[x\<turnstile>n>y]" M' avoiding: M x y rule: c_redu.strong_induct)
apply(drule sym)
apply(drule nrename_Cut)
apply(simp)
apply(simp)
apply(auto)
apply(rule_tac x="M'{a:=(x).N'}" in exI)
apply(rule conjI)
apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
apply(rule c_redu.intros)
apply(auto dest: not_fic_nrename)[1]
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(drule sym)
apply(drule nrename_Cut)
apply(simp)
apply(simp)
apply(auto)
apply(rule_tac x="N'{x:=<a>.M'}" in exI)
apply(rule conjI)
apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
apply(rule c_redu.intros)
apply(auto)
apply(drule_tac x="xa" and y="y" in fin_nrename)
apply(auto simp add: fresh_prod abs_fresh)
done
lemma nrename_ax2:
assumes a: "N[x\<turnstile>n>y] = Ax z c"
shows "\<exists>z. N = Ax z c"
using a
apply(nominal_induct N avoiding: x y rule: trm.strong_induct)
apply(auto split: if_splits)
apply(simp add: trm.inject)
done
lemma fic_nrename:
assumes a: "fic (M[x\<turnstile>n>y]) c"
shows "fic M c"
using a
apply(nominal_induct M avoiding: c x y rule: trm.strong_induct)
apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
split: if_splits)
apply(auto dest: nrename_fresh_interesting2 simp add: fresh_prod fresh_atm)
done
lemma nrename_lredu:
assumes a: "(M[x\<turnstile>n>y]) \<longrightarrow>\<^sub>l M'"
shows "\<exists>M0. M0[x\<turnstile>n>y]=M' \<and> M \<longrightarrow>\<^sub>l M0"
using a
apply(nominal_induct M\<equiv>"M[x\<turnstile>n>y]" M' avoiding: M x y rule: l_redu.strong_induct)
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(case_tac "xa=y")
apply(simp add: nrename_id)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(assumption)
apply(frule nrename_ax2)
apply(auto)[1]
apply(case_tac "z=xa")
apply(simp add: trm.inject)
apply(simp)
apply(rule_tac x="M'[a\<turnstile>c>b]" in exI)
apply(rule conjI)
apply(rule crename_interesting3)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(auto dest: fic_nrename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(case_tac "xa=ya")
apply(simp add: nrename_id)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(assumption)
apply(frule nrename_ax2)
apply(auto)[1]
apply(case_tac "z=xa")
apply(simp add: trm.inject)
apply(rule_tac x="N'[x\<turnstile>n>xa]" in exI)
apply(rule conjI)
apply(rule nrename_interesting1)
apply(auto)[1]
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(auto dest: fin_nrename2 simp add: fresh_prod fresh_atm)[1]
apply(simp add: trm.inject)
apply(rule_tac x="N'[x\<turnstile>n>y]" in exI)
apply(rule conjI)
apply(rule nrename_interesting2)
apply(simp_all)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(auto dest: fin_nrename2 simp add: fresh_prod fresh_atm)[1]
(* LNot *)
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_NotR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_NotL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <b>.N'b (x).N'a" in exI)
apply(simp add: fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_prod fresh_atm intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting2)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
(* LAnd1 *)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule nrename_AndR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_AndL1)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a1>.M'a (x).N'b" in exI)
apply(simp add: fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
(* LAnd2 *)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule nrename_AndR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_AndL2)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a2>.N'a (x).N'b" in exI)
apply(simp add: fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
(* LOr1 *)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule nrename_OrL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_OrR1)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a>.N' (x1).M'a" in exI)
apply(rule conjI)
apply(simp add: abs_fresh fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
(* LOr2 *)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule nrename_OrL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_OrR2)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a>.N' (x2).N'a" in exI)
apply(rule conjI)
apply(simp add: abs_fresh fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
(* ImpL *)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm abs_supp fin_supp)
apply(auto)[1]
apply(drule nrename_ImpL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_ImpR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a>.(Cut <c>.M'a (x).N') (y).N'a" in exI)
apply(rule conjI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
done
lemma nrename_aredu:
assumes a: "(M[x\<turnstile>n>y]) \<longrightarrow>\<^sub>a M'" "x\<noteq>y"
shows "\<exists>M0. M0[x\<turnstile>n>y]=M' \<and> M \<longrightarrow>\<^sub>a M0"
using a
apply(nominal_induct "M[x\<turnstile>n>y]" M' avoiding: M x y rule: a_redu.strong_induct)
apply(drule nrename_lredu)
apply(blast)
apply(drule nrename_credu)
apply(blast)
(* Cut *)
apply(drule sym)
apply(drule nrename_Cut)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="Cut <a>.M0 (x).N'" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(rule conjI)
apply(rule trans)
apply(rule nrename.simps)
apply(drule nrename_fresh_interesting2)
apply(simp add: fresh_a_redu)
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule nrename_fresh_interesting1)
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_a_redu)
apply(simp)
apply(auto)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="Cut <a>.M' (x).M0" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(rule conjI)
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: fresh_a_redu)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(simp)
apply(auto)[1]
(* NotL *)
apply(drule sym)
apply(frule nrename_NotL_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_NotL')
apply(simp)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="NotL <a>.M0 x" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(auto)[1]
apply(rule_tac x="NotL <a>.M0 xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
(* NotR *)
apply(drule sym)
apply(drule nrename_NotR)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="NotR (x).M0 a" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
(* AndR *)
apply(drule sym)
apply(drule nrename_AndR)
apply(simp)
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndR <a>.M0 <b>.N' c" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
apply(drule sym)
apply(drule nrename_AndR)
apply(simp)
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndR <a>.M' <b>.M0 c" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
apply(simp)
(* AndL1 *)
apply(drule sym)
apply(frule nrename_AndL1_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_AndL1')
apply(simp)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="ya" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndL1 (x).M0 y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndL1 (x).M0 xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
(* AndL2 *)
apply(drule sym)
apply(frule nrename_AndL2_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_AndL2')
apply(simp)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="ya" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndL2 (x).M0 y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndL2 (x).M0 xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
(* OrL *)
apply(drule sym)
apply(frule nrename_OrL_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_OrL')
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="ya" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrL (x).M0 (y).N' z" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="z" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrL (x).M0 (y).N' xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule sym)
apply(frule nrename_OrL_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_OrL')
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="ya" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrL (x).M' (y).M0 z" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="z" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrL (x).M' (y).M0 xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
(* OrR1 *)
apply(drule sym)
apply(drule nrename_OrR1)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrR1 <a>.M0 b" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
(* OrR2 *)
apply(drule sym)
apply(drule nrename_OrR2)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrR2 <a>.M0 b" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
(* ImpL *)
apply(drule sym)
apply(frule nrename_ImpL_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_ImpL')
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="ya" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpL <a>.M0 (x).N' y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpL <a>.M0 (x).N' xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule sym)
apply(frule nrename_ImpL_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_ImpL')
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="ya" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpL <a>.M' (x).M0 y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpL <a>.M' (x).M0 xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
(* ImpR *)
apply(drule sym)
apply(drule nrename_ImpR)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpR (x).<a>.M0 b" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
done
lemma SNa_preserved_renaming2:
assumes a: "SNa N"
shows "SNa (N[x\<turnstile>n>y])"
using a
apply(induct rule: SNa_induct)
apply(case_tac "x=y")
apply(simp add: nrename_id)
apply(rule SNaI)
apply(drule nrename_aredu)
apply(blast)+
done
text \<open>helper-stuff to set up the induction\<close>
abbreviation
SNa_set :: "trm set"
where
"SNa_set \<equiv> {M. SNa M}"
abbreviation
A_Redu_set :: "(trm\<times>trm) set"
where
"A_Redu_set \<equiv> {(N,M)| M N. M \<longrightarrow>\<^sub>a N}"
lemma SNa_elim:
assumes a: "SNa M"
shows "(\<forall>M. (\<forall>N. M \<longrightarrow>\<^sub>a N \<longrightarrow> P N)\<longrightarrow> P M) \<longrightarrow> P M"
using a
by (induct rule: SNa.induct) (blast)
lemma wf_SNa_restricted:
shows "wf (A_Redu_set \<inter> (UNIV \<times> SNa_set))"
apply(unfold wf_def)
apply(intro strip)
apply(case_tac "SNa x")
apply(simp (no_asm_use))
apply(drule_tac P="P" in SNa_elim)
apply(erule mp)
apply(blast)
(* other case *)
apply(drule_tac x="x" in spec)
apply(erule mp)
apply(fast)
done
definition SNa_Redu :: "(trm \<times> trm) set" where
"SNa_Redu \<equiv> A_Redu_set \<inter> (UNIV \<times> SNa_set)"
lemma wf_SNa_Redu:
shows "wf SNa_Redu"
apply(unfold SNa_Redu_def)
apply(rule wf_SNa_restricted)
done
lemma wf_measure_triple:
shows "wf ((measure size) <*lex*> SNa_Redu <*lex*> SNa_Redu)"
by (auto intro: wf_SNa_Redu)
lemma my_wf_induct_triple:
assumes a: " wf(r1 <*lex*> r2 <*lex*> r3)"
and b: "\<And>x. \<lbrakk>\<And>y. ((fst y,fst (snd y),snd (snd y)),(fst x,fst (snd x), snd (snd x)))
\<in> (r1 <*lex*> r2 <*lex*> r3) \<longrightarrow> P y\<rbrakk> \<Longrightarrow> P x"
shows "P x"
using a
apply(induct x rule: wf_induct_rule)
apply(rule b)
apply(simp)
done
lemma my_wf_induct_triple':
assumes a: " wf(r1 <*lex*> r2 <*lex*> r3)"
and b: "\<And>x1 x2 x3. \<lbrakk>\<And>y1 y2 y3. ((y1,y2,y3),(x1,x2,x3)) \<in> (r1 <*lex*> r2 <*lex*> r3) \<longrightarrow> P (y1,y2,y3)\<rbrakk>
\<Longrightarrow> P (x1,x2,x3)"
shows "P (x1,x2,x3)"
apply(rule_tac my_wf_induct_triple[OF a])
apply(case_tac x rule: prod.exhaust)
apply(simp)
apply(rename_tac p a b)
apply(case_tac b)
apply(simp)
apply(rule b)
apply(blast)
done
lemma my_wf_induct_triple'':
assumes a: " wf(r1 <*lex*> r2 <*lex*> r3)"
and b: "\<And>x1 x2 x3. \<lbrakk>\<And>y1 y2 y3. ((y1,y2,y3),(x1,x2,x3)) \<in> (r1 <*lex*> r2 <*lex*> r3) \<longrightarrow> P y1 y2 y3\<rbrakk>
\<Longrightarrow> P x1 x2 x3"
shows "P x1 x2 x3"
apply(rule_tac my_wf_induct_triple'[where P="\<lambda>(x1,x2,x3). P x1 x2 x3", simplified])
apply(rule a)
apply(rule b)
apply(auto)
done
lemma excluded_m:
assumes a: "<a>:M \<in> (\<parallel><B>\<parallel>)" "(x):N \<in> (\<parallel>(B)\<parallel>)"
shows "(<a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>) \<or> (x):N \<in> BINDINGn B (\<parallel><B>\<parallel>))
\<or>\<not>(<a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>) \<or> (x):N \<in> BINDINGn B (\<parallel><B>\<parallel>))"
by (blast)
lemma tricky_subst:
assumes a1: "b\<sharp>(c,N)"
and a2: "z\<sharp>(x,P)"
and a3: "M\<noteq>Ax z b"
shows "(Cut <c>.N (z).M){b:=(x).P} = Cut <c>.N (z).(M{b:=(x).P})"
using a1 a2 a3
apply -
apply(generate_fresh "coname")
apply(subgoal_tac "Cut <c>.N (z).M = Cut <ca>.([(ca,c)]\<bullet>N) (z).M")
apply(simp)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh)
apply(simp)
apply(subgoal_tac "b\<sharp>([(ca,c)]\<bullet>N)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(simp add: trm.inject)
apply(rule sym)
apply(simp add: alpha fresh_prod fresh_atm)
done
text \<open>3rd lemma\<close>
lemma CUT_SNa_aux:
assumes a1: "<a>:M \<in> (\<parallel><B>\<parallel>)"
and a2: "SNa M"
and a3: "(x):N \<in> (\<parallel>(B)\<parallel>)"
and a4: "SNa N"
shows "SNa (Cut <a>.M (x).N)"
using a1 a2 a3 a4
apply(induct B M N arbitrary: a x rule: my_wf_induct_triple''[OF wf_measure_triple])
apply(rule SNaI)
apply(drule Cut_a_redu_elim)
apply(erule disjE)
(* left-inner reduction *)
apply(erule exE)
apply(erule conjE)+
apply(simp)
apply(drule_tac x="x1" in meta_spec)
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="x3" in meta_spec)
apply(drule conjunct2)
apply(drule mp)
apply(rule conjI)
apply(simp)
apply(rule disjI1)
apply(simp add: SNa_Redu_def)
apply(drule_tac x="a" in spec)
apply(drule mp)
apply(simp add: CANDs_preserved_single)
apply(drule mp)
apply(simp add: a_preserves_SNa)
apply(drule_tac x="x" in spec)
apply(simp)
apply(erule disjE)
(* right-inner reduction *)
apply(erule exE)
apply(erule conjE)+
apply(simp)
apply(drule_tac x="x1" in meta_spec)
apply(drule_tac x="x2" in meta_spec)
apply(drule_tac x="N'" in meta_spec)
apply(drule conjunct2)
apply(drule mp)
apply(rule conjI)
apply(simp)
apply(rule disjI2)
apply(simp add: SNa_Redu_def)
apply(drule_tac x="a" in spec)
apply(drule mp)
apply(simp add: CANDs_preserved_single)
apply(drule mp)
apply(assumption)
apply(drule_tac x="x" in spec)
apply(drule mp)
apply(simp add: CANDs_preserved_single)
apply(drule mp)
apply(simp add: a_preserves_SNa)
apply(assumption)
apply(erule disjE)
(******** c-reduction *********)
apply(drule Cut_c_redu_elim)
(* c-left reduction*)
apply(erule disjE)
apply(erule conjE)
apply(frule_tac B="x1" in fic_CANDS)
apply(simp)
apply(erule disjE)
(* in AXIOMSc *)
apply(simp add: AXIOMSc_def)
apply(erule exE)+
apply(simp add: ctrm.inject)
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(rule impI)
apply(simp)
apply(subgoal_tac "fic (Ax y b) b")(*A*)
apply(simp)
(*A*)
apply(auto)[1]
apply(simp)
apply(rule impI)
apply(simp)
apply(subgoal_tac "fic (Ax ([(a,aa)]\<bullet>y) a) a")(*B*)
apply(simp)
(*B*)
apply(auto)[1]
(* in BINDINGc *)
apply(simp)
apply(drule BINDINGc_elim)
apply(simp)
(* c-right reduction*)
apply(erule conjE)
apply(frule_tac B="x1" in fin_CANDS)
apply(simp)
apply(erule disjE)
(* in AXIOMSc *)
apply(simp add: AXIOMSn_def)
apply(erule exE)+
apply(simp add: ntrm.inject)
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(rule impI)
apply(simp)
apply(subgoal_tac "fin (Ax xa b) xa")(*A*)
apply(simp)
(*A*)
apply(auto)[1]
apply(simp)
apply(rule impI)
apply(simp)
apply(subgoal_tac "fin (Ax x ([(x,xa)]\<bullet>b)) x")(*B*)
apply(simp)
(*B*)
apply(auto)[1]
(* in BINDINGc *)
apply(simp)
apply(drule BINDINGn_elim)
apply(simp)
(*********** l-reductions ************)
apply(drule Cut_l_redu_elim)
apply(erule disjE)
(* ax1 *)
apply(erule exE)
apply(simp)
apply(simp add: SNa_preserved_renaming1)
apply(erule disjE)
(* ax2 *)
apply(erule exE)
apply(simp add: SNa_preserved_renaming2)
apply(erule disjE)
(* LNot *)
apply(erule exE)+
apply(auto)[1]
apply(frule_tac excluded_m)
apply(assumption)
apply(erule disjE)
(* one of them in BINDING *)
apply(erule disjE)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGc_elim)
apply(drule_tac x="x" in spec)
apply(drule_tac x="NotL <b>.N' x" in spec)
apply(simp)
apply(simp add: better_NotR_substc)
apply(generate_fresh "coname")
apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.NotR (y).M'a a' (x).NotL <b>.N' x)
= Cut <c>.NotR (y).M'a c (x).NotL <b>.N' x")
apply(simp)
apply(subgoal_tac "Cut <c>.NotR (y).M'a c (x).NotL <b>.N' x \<longrightarrow>\<^sub>a Cut <b>.N' (y).M'a")
apply(simp only: a_preserves_SNa)
apply(rule al_redu)
apply(rule better_LNot_intro)
apply(simp)
apply(simp)
apply(fresh_fun_simp (no_asm))
apply(simp)
(* other case of in BINDING *)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGn_elim)
apply(drule_tac x="a" in spec)
apply(drule_tac x="NotR (y).M'a a" in spec)
apply(simp)
apply(simp add: better_NotL_substn)
apply(generate_fresh "name")
apply(subgoal_tac "fresh_fun (\<lambda>x'. Cut <a>.NotR (y).M'a a (x').NotL <b>.N' x')
= Cut <a>.NotR (y).M'a a (c).NotL <b>.N' c")
apply(simp)
apply(subgoal_tac "Cut <a>.NotR (y).M'a a (c).NotL <b>.N' c \<longrightarrow>\<^sub>a Cut <b>.N' (y).M'a")
apply(simp only: a_preserves_SNa)
apply(rule al_redu)
apply(rule better_LNot_intro)
apply(simp)
apply(simp)
apply(fresh_fun_simp (no_asm))
apply(simp)
(* none of them in BINDING *)
apply(simp)
apply(erule conjE)
apply(frule CAND_NotR_elim)
apply(assumption)
apply(erule exE)
apply(frule CAND_NotL_elim)
apply(assumption)
apply(erule exE)
apply(simp only: ty.inject)
apply(drule_tac x="B'" in meta_spec)
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="M'a" in meta_spec)
apply(erule conjE)+
apply(drule mp)
apply(simp)
apply(drule_tac x="b" in spec)
apply(rotate_tac 13)
apply(drule mp)
apply(assumption)
apply(rotate_tac 13)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(drule_tac x="y" in spec)
apply(rotate_tac 13)
apply(drule mp)
apply(assumption)
apply(rotate_tac 13)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
(* LAnd1 case *)
apply(erule disjE)
apply(erule exE)+
apply(auto)[1]
apply(frule_tac excluded_m)
apply(assumption)
apply(erule disjE)
(* one of them in BINDING *)
apply(erule disjE)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGc_elim)
apply(drule_tac x="x" in spec)
apply(drule_tac x="AndL1 (y).N' x" in spec)
apply(simp)
apply(simp add: better_AndR_substc)
apply(generate_fresh "coname")
apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.AndR <b>.M1 <c>.M2 a' (x).AndL1 (y).N' x)
= Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL1 (y).N' x")
apply(simp)
apply(subgoal_tac "Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL1 (y).N' x \<longrightarrow>\<^sub>a Cut <b>.M1 (y).N'")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LAnd1_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp)
apply(fresh_fun_simp (no_asm))
apply(simp)
(* other case of in BINDING *)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGn_elim)
apply(drule_tac x="a" in spec)
apply(drule_tac x="AndR <b>.M1 <c>.M2 a" in spec)
apply(simp)
apply(simp add: better_AndL1_substn)
apply(generate_fresh "name")
apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.AndR <b>.M1 <c>.M2 a (z').AndL1 (y).N' z')
= Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL1 (y).N' ca")
apply(simp)
apply(subgoal_tac "Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL1 (y).N' ca \<longrightarrow>\<^sub>a Cut <b>.M1 (y).N'")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LAnd1_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(fresh_fun_simp (no_asm))
apply(simp)
(* none of them in BINDING *)
apply(simp)
apply(erule conjE)
apply(frule CAND_AndR_elim)
apply(assumption)
apply(erule exE)
apply(frule CAND_AndL1_elim)
apply(assumption)
apply(erule exE)+
apply(simp only: ty.inject)
apply(drule_tac x="B1" in meta_spec)
apply(drule_tac x="M1" in meta_spec)
apply(drule_tac x="N'" in meta_spec)
apply(erule conjE)+
apply(drule mp)
apply(simp)
apply(drule_tac x="b" in spec)
apply(rotate_tac 14)
apply(drule mp)
apply(assumption)
apply(rotate_tac 14)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(drule_tac x="y" in spec)
apply(rotate_tac 15)
apply(drule mp)
apply(assumption)
apply(rotate_tac 15)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
(* LAnd2 case *)
apply(erule disjE)
apply(erule exE)+
apply(auto)[1]
apply(frule_tac excluded_m)
apply(assumption)
apply(erule disjE)
(* one of them in BINDING *)
apply(erule disjE)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGc_elim)
apply(drule_tac x="x" in spec)
apply(drule_tac x="AndL2 (y).N' x" in spec)
apply(simp)
apply(simp add: better_AndR_substc)
apply(generate_fresh "coname")
apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.AndR <b>.M1 <c>.M2 a' (x).AndL2 (y).N' x)
= Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL2 (y).N' x")
apply(simp)
apply(subgoal_tac "Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL2 (y).N' x \<longrightarrow>\<^sub>a Cut <c>.M2 (y).N'")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LAnd2_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp)
apply(fresh_fun_simp (no_asm))
apply(simp)
(* other case of in BINDING *)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGn_elim)
apply(drule_tac x="a" in spec)
apply(drule_tac x="AndR <b>.M1 <c>.M2 a" in spec)
apply(simp)
apply(simp add: better_AndL2_substn)
apply(generate_fresh "name")
apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.AndR <b>.M1 <c>.M2 a (z').AndL2 (y).N' z')
= Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL2 (y).N' ca")
apply(simp)
apply(subgoal_tac "Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL2 (y).N' ca \<longrightarrow>\<^sub>a Cut <c>.M2 (y).N'")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LAnd2_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(fresh_fun_simp (no_asm))
apply(simp)
(* none of them in BINDING *)
apply(simp)
apply(erule conjE)
apply(frule CAND_AndR_elim)
apply(assumption)
apply(erule exE)
apply(frule CAND_AndL2_elim)
apply(assumption)
apply(erule exE)+
apply(simp only: ty.inject)
apply(drule_tac x="B2" in meta_spec)
apply(drule_tac x="M2" in meta_spec)
apply(drule_tac x="N'" in meta_spec)
apply(erule conjE)+
apply(drule mp)
apply(simp)
apply(drule_tac x="c" in spec)
apply(rotate_tac 14)
apply(drule mp)
apply(assumption)
apply(rotate_tac 14)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(drule_tac x="y" in spec)
apply(rotate_tac 15)
apply(drule mp)
apply(assumption)
apply(rotate_tac 15)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
(* LOr1 case *)
apply(erule disjE)
apply(erule exE)+
apply(auto)[1]
apply(frule_tac excluded_m)
apply(assumption)
apply(erule disjE)
(* one of them in BINDING *)
apply(erule disjE)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGc_elim)
apply(drule_tac x="x" in spec)
apply(drule_tac x="OrL (z).M1 (y).M2 x" in spec)
apply(simp)
apply(simp add: better_OrR1_substc)
apply(generate_fresh "coname")
apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.OrR1 <b>.N' a' (x).OrL (z).M1 (y).M2 x)
= Cut <c>.OrR1 <b>.N' c (x).OrL (z).M1 (y).M2 x")
apply(simp)
apply(subgoal_tac "Cut <c>.OrR1 <b>.N' c (x).OrL (z).M1 (y).M2 x \<longrightarrow>\<^sub>a Cut <b>.N' (z).M1")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LOr1_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh)
apply(fresh_fun_simp (no_asm))
apply(simp)
(* other case of in BINDING *)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGn_elim)
apply(drule_tac x="a" in spec)
apply(drule_tac x="OrR1 <b>.N' a" in spec)
apply(simp)
apply(simp add: better_OrL_substn)
apply(generate_fresh "name")
apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.OrR1 <b>.N' a (z').OrL (z).M1 (y).M2 z')
= Cut <a>.OrR1 <b>.N' a (c).OrL (z).M1 (y).M2 c")
apply(simp)
apply(subgoal_tac "Cut <a>.OrR1 <b>.N' a (c).OrL (z).M1 (y).M2 c \<longrightarrow>\<^sub>a Cut <b>.N' (z).M1")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LOr1_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(fresh_fun_simp (no_asm))
apply(simp)
(* none of them in BINDING *)
apply(simp)
apply(erule conjE)
apply(frule CAND_OrR1_elim)
apply(assumption)
apply(erule exE)+
apply(frule CAND_OrL_elim)
apply(assumption)
apply(erule exE)+
apply(simp only: ty.inject)
apply(drule_tac x="B1" in meta_spec)
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="M1" in meta_spec)
apply(erule conjE)+
apply(drule mp)
apply(simp)
apply(drule_tac x="b" in spec)
apply(rotate_tac 15)
apply(drule mp)
apply(assumption)
apply(rotate_tac 15)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(drule_tac x="z" in spec)
apply(rotate_tac 15)
apply(drule mp)
apply(assumption)
apply(rotate_tac 15)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
(* LOr2 case *)
apply(erule disjE)
apply(erule exE)+
apply(auto)[1]
apply(frule_tac excluded_m)
apply(assumption)
apply(erule disjE)
(* one of them in BINDING *)
apply(erule disjE)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGc_elim)
apply(drule_tac x="x" in spec)
apply(drule_tac x="OrL (z).M1 (y).M2 x" in spec)
apply(simp)
apply(simp add: better_OrR2_substc)
apply(generate_fresh "coname")
apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.OrR2 <b>.N' a' (x).OrL (z).M1 (y).M2 x)
= Cut <c>.OrR2 <b>.N' c (x).OrL (z).M1 (y).M2 x")
apply(simp)
apply(subgoal_tac "Cut <c>.OrR2 <b>.N' c (x).OrL (z).M1 (y).M2 x \<longrightarrow>\<^sub>a Cut <b>.N' (y).M2")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LOr2_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh)
apply(fresh_fun_simp (no_asm))
apply(simp)
(* other case of in BINDING *)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGn_elim)
apply(drule_tac x="a" in spec)
apply(drule_tac x="OrR2 <b>.N' a" in spec)
apply(simp)
apply(simp add: better_OrL_substn)
apply(generate_fresh "name")
apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.OrR2 <b>.N' a (z').OrL (z).M1 (y).M2 z')
= Cut <a>.OrR2 <b>.N' a (c).OrL (z).M1 (y).M2 c")
apply(simp)
apply(subgoal_tac "Cut <a>.OrR2 <b>.N' a (c).OrL (z).M1 (y).M2 c \<longrightarrow>\<^sub>a Cut <b>.N' (y).M2")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LOr2_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(fresh_fun_simp (no_asm))
apply(simp)
(* none of them in BINDING *)
apply(simp)
apply(erule conjE)
apply(frule CAND_OrR2_elim)
apply(assumption)
apply(erule exE)+
apply(frule CAND_OrL_elim)
apply(assumption)
apply(erule exE)+
apply(simp only: ty.inject)
apply(drule_tac x="B2" in meta_spec)
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="M2" in meta_spec)
apply(erule conjE)+
apply(drule mp)
apply(simp)
apply(drule_tac x="b" in spec)
apply(rotate_tac 15)
apply(drule mp)
apply(assumption)
apply(rotate_tac 15)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(drule_tac x="y" in spec)
apply(rotate_tac 15)
apply(drule mp)
apply(assumption)
apply(rotate_tac 15)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
(* LImp case *)
apply(erule exE)+
apply(auto)[1]
apply(frule_tac excluded_m)
apply(assumption)
apply(erule disjE)
(* one of them in BINDING *)
apply(erule disjE)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGc_elim)
apply(drule_tac x="x" in spec)
apply(drule_tac x="ImpL <c>.N1 (y).N2 x" in spec)
apply(simp)
apply(simp add: better_ImpR_substc)
apply(generate_fresh "coname")
apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.ImpR (z).<b>.M'a a' (x).ImpL <c>.N1 (y).N2 x)
= Cut <ca>.ImpR (z).<b>.M'a ca (x).ImpL <c>.N1 (y).N2 x")
apply(simp)
apply(subgoal_tac "Cut <ca>.ImpR (z).<b>.M'a ca (x).ImpL <c>.N1 (y).N2 x \<longrightarrow>\<^sub>a
Cut <b>.Cut <c>.N1 (z).M'a (y).N2")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LImp_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh)
apply(simp)
apply(fresh_fun_simp (no_asm))
apply(simp)
(* other case of in BINDING *)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGn_elim)
apply(drule_tac x="a" in spec)
apply(drule_tac x="ImpR (z).<b>.M'a a" in spec)
apply(simp)
apply(simp add: better_ImpL_substn)
apply(generate_fresh "name")
apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.ImpR (z).<b>.M'a a (z').ImpL <c>.N1 (y).N2 z')
= Cut <a>.ImpR (z).<b>.M'a a (ca).ImpL <c>.N1 (y).N2 ca")
apply(simp)
apply(subgoal_tac "Cut <a>.ImpR (z).<b>.M'a a (ca).ImpL <c>.N1 (y).N2 ca \<longrightarrow>\<^sub>a
Cut <b>.Cut <c>.N1 (z).M'a (y).N2")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LImp_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp)
apply(fresh_fun_simp (no_asm))
apply(simp add: abs_fresh abs_supp fin_supp)
apply(simp add: abs_fresh abs_supp fin_supp)
apply(simp)
(* none of them in BINDING *)
apply(erule conjE)
apply(frule CAND_ImpL_elim)
apply(assumption)
apply(erule exE)+
apply(frule CAND_ImpR_elim) (* check here *)
apply(assumption)
apply(erule exE)+
apply(erule conjE)+
apply(simp only: ty.inject)
apply(erule conjE)+
apply(case_tac "M'a=Ax z b")
(* case Ma = Ax z b *)
apply(rule_tac t="Cut <b>.(Cut <c>.N1 (z).M'a) (y).N2" and s="Cut <b>.(M'a{z:=<c>.N1}) (y).N2" in subst)
apply(simp)
apply(drule_tac x="c" in spec)
apply(drule_tac x="N1" in spec)
apply(drule mp)
apply(simp)
apply(drule_tac x="B2" in meta_spec)
apply(drule_tac x="M'a{z:=<c>.N1}" in meta_spec)
apply(drule_tac x="N2" in meta_spec)
apply(drule conjunct1)
apply(drule mp)
apply(simp)
apply(rotate_tac 17)
apply(drule_tac x="b" in spec)
apply(drule mp)
apply(assumption)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(rotate_tac 17)
apply(drule_tac x="y" in spec)
apply(drule mp)
apply(assumption)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
(* case Ma \<noteq> Ax z b *)
apply(subgoal_tac "<b>:Cut <c>.N1 (z).M'a \<in> \<parallel><B2>\<parallel>") (* lemma *)
apply(frule_tac meta_spec)
apply(drule_tac x="B2" in meta_spec)
apply(drule_tac x="Cut <c>.N1 (z).M'a" in meta_spec)
apply(drule_tac x="N2" in meta_spec)
apply(erule conjE)+
apply(drule mp)
apply(simp)
apply(rotate_tac 20)
apply(drule_tac x="b" in spec)
apply(rotate_tac 20)
apply(drule mp)
apply(assumption)
apply(rotate_tac 20)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(rotate_tac 20)
apply(drule_tac x="y" in spec)
apply(rotate_tac 20)
apply(drule mp)
apply(assumption)
apply(rotate_tac 20)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
(* lemma *)
apply(subgoal_tac "<b>:Cut <c>.N1 (z).M'a \<in> BINDINGc B2 (\<parallel>(B2)\<parallel>)") (* second lemma *)
apply(simp add: BINDING_implies_CAND)
(* second lemma *)
apply(simp (no_asm) add: BINDINGc_def)
apply(rule exI)+
apply(rule conjI)
apply(rule refl)
apply(rule allI)+
apply(rule impI)
apply(generate_fresh "name")
apply(rule_tac t="Cut <c>.N1 (z).M'a" and s="Cut <c>.N1 (ca).([(ca,z)]\<bullet>M'a)" in subst)
apply(simp add: trm.inject alpha fresh_prod fresh_atm)
apply(rule_tac t="(Cut <c>.N1 (ca).([(ca,z)]\<bullet>M'a)){b:=(xa).P}"
and s="Cut <c>.N1 (ca).(([(ca,z)]\<bullet>M'a){b:=(xa).P})" in subst)
apply(rule sym)
apply(rule tricky_subst)
apply(simp)
apply(simp)
apply(clarify)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm)
apply(drule_tac x="B1" in meta_spec)
apply(drule_tac x="N1" in meta_spec)
apply(drule_tac x="([(ca,z)]\<bullet>M'a){b:=(xa).P}" in meta_spec)
apply(drule conjunct1)
apply(drule mp)
apply(simp)
apply(rotate_tac 19)
apply(drule_tac x="c" in spec)
apply(drule mp)
apply(assumption)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(rotate_tac 19)
apply(drule_tac x="ca" in spec)
apply(subgoal_tac "(ca):([(ca,z)]\<bullet>M'a){b:=(xa).P} \<in> \<parallel>(B1)\<parallel>")(*A*)
apply(drule mp)
apply(assumption)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
(*A*)
apply(drule_tac x="[(ca,z)]\<bullet>xa" in spec)
apply(drule_tac x="[(ca,z)]\<bullet>P" in spec)
apply(rotate_tac 19)
apply(simp add: fresh_prod fresh_left)
apply(drule mp)
apply(rule conjI)
apply(auto simp add: calc_atm)[1]
apply(rule conjI)
apply(auto simp add: calc_atm)[1]
apply(drule_tac pi="[(ca,z)]" and x="(xa):P" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name)
apply(drule_tac pi="[(ca,z)]" and X="\<parallel>(B1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name csubst_eqvt)
apply(perm_simp)
done
(* parallel substitution *)
lemma CUT_SNa:
assumes a1: "<a>:M \<in> (\<parallel><B>\<parallel>)"
and a2: "(x):N \<in> (\<parallel>(B)\<parallel>)"
shows "SNa (Cut <a>.M (x).N)"
using a1 a2
apply -
apply(rule CUT_SNa_aux[OF a1])
apply(simp_all add: CANDs_imply_SNa)
done
fun
findn :: "(name\<times>coname\<times>trm) list\<Rightarrow>name\<Rightarrow>(coname\<times>trm) option"
where
"findn [] x = None"
| "findn ((y,c,P)#\<theta>_n) x = (if y=x then Some (c,P) else findn \<theta>_n x)"
lemma findn_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1\<bullet>findn \<theta>_n x) = findn (pi1\<bullet>\<theta>_n) (pi1\<bullet>x)"
and "(pi2\<bullet>findn \<theta>_n x) = findn (pi2\<bullet>\<theta>_n) (pi2\<bullet>x)"
apply(induct \<theta>_n)
apply(auto simp add: perm_bij)
done
lemma findn_fresh:
assumes a: "x\<sharp>\<theta>_n"
shows "findn \<theta>_n x = None"
using a
apply(induct \<theta>_n)
apply(auto simp add: fresh_list_cons fresh_atm fresh_prod)
done
fun
findc :: "(coname\<times>name\<times>trm) list\<Rightarrow>coname\<Rightarrow>(name\<times>trm) option"
where
"findc [] x = None"
| "findc ((c,y,P)#\<theta>_c) a = (if a=c then Some (y,P) else findc \<theta>_c a)"
lemma findc_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1\<bullet>findc \<theta>_c a) = findc (pi1\<bullet>\<theta>_c) (pi1\<bullet>a)"
and "(pi2\<bullet>findc \<theta>_c a) = findc (pi2\<bullet>\<theta>_c) (pi2\<bullet>a)"
apply(induct \<theta>_c)
apply(auto simp add: perm_bij)
done
lemma findc_fresh:
assumes a: "a\<sharp>\<theta>_c"
shows "findc \<theta>_c a = None"
using a
apply(induct \<theta>_c)
apply(auto simp add: fresh_list_cons fresh_atm fresh_prod)
done
abbreviation
nmaps :: "(name\<times>coname\<times>trm) list \<Rightarrow> name \<Rightarrow> (coname\<times>trm) option \<Rightarrow> bool" ("_ nmaps _ to _" [55,55,55] 55)
where
"\<theta>_n nmaps x to P \<equiv> (findn \<theta>_n x) = P"
abbreviation
cmaps :: "(coname\<times>name\<times>trm) list \<Rightarrow> coname \<Rightarrow> (name\<times>trm) option \<Rightarrow> bool" ("_ cmaps _ to _" [55,55,55] 55)
where
"\<theta>_c cmaps a to P \<equiv> (findc \<theta>_c a) = P"
lemma nmaps_fresh:
shows "\<theta>_n nmaps x to Some (c,P) \<Longrightarrow> a\<sharp>\<theta>_n \<Longrightarrow> a\<sharp>(c,P)"
apply(induct \<theta>_n)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
apply(case_tac "aa=x")
apply(auto)
apply(case_tac "aa=x")
apply(auto)
done
lemma cmaps_fresh:
shows "\<theta>_c cmaps a to Some (y,P) \<Longrightarrow> x\<sharp>\<theta>_c \<Longrightarrow> x\<sharp>(y,P)"
apply(induct \<theta>_c)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
apply(case_tac "a=aa")
apply(auto)
apply(case_tac "a=aa")
apply(auto)
done
lemma nmaps_false:
shows "\<theta>_n nmaps x to Some (c,P) \<Longrightarrow> x\<sharp>\<theta>_n \<Longrightarrow> False"
apply(induct \<theta>_n)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
lemma cmaps_false:
shows "\<theta>_c cmaps c to Some (x,P) \<Longrightarrow> c\<sharp>\<theta>_c \<Longrightarrow> False"
apply(induct \<theta>_c)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
fun
lookupa :: "name\<Rightarrow>coname\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>trm"
where
"lookupa x a [] = Ax x a"
| "lookupa x a ((c,y,P)#\<theta>_c) = (if a=c then Cut <a>.Ax x a (y).P else lookupa x a \<theta>_c)"
lemma lookupa_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1\<bullet>(lookupa x a \<theta>_c)) = lookupa (pi1\<bullet>x) (pi1\<bullet>a) (pi1\<bullet>\<theta>_c)"
and "(pi2\<bullet>(lookupa x a \<theta>_c)) = lookupa (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_c)"
apply -
apply(induct \<theta>_c)
apply(auto simp add: eqvts)
apply(induct \<theta>_c)
apply(auto simp add: eqvts)
done
lemma lookupa_fire:
assumes a: "\<theta>_c cmaps a to Some (y,P)"
shows "(lookupa x a \<theta>_c) = Cut <a>.Ax x a (y).P"
using a
apply(induct \<theta>_c arbitrary: x a y P)
apply(auto)
done
fun
lookupb :: "name\<Rightarrow>coname\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>coname\<Rightarrow>trm\<Rightarrow>trm"
where
"lookupb x a [] c P = Cut <c>.P (x).Ax x a"
| "lookupb x a ((d,y,N)#\<theta>_c) c P = (if a=d then Cut <c>.P (y).N else lookupb x a \<theta>_c c P)"
lemma lookupb_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1\<bullet>(lookupb x a \<theta>_c c P)) = lookupb (pi1\<bullet>x) (pi1\<bullet>a) (pi1\<bullet>\<theta>_c) (pi1\<bullet>c) (pi1\<bullet>P)"
and "(pi2\<bullet>(lookupb x a \<theta>_c c P)) = lookupb (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_c) (pi2\<bullet>c) (pi2\<bullet>P)"
apply -
apply(induct \<theta>_c)
apply(auto simp add: eqvts)
apply(induct \<theta>_c)
apply(auto simp add: eqvts)
done
fun
lookup :: "name\<Rightarrow>coname\<Rightarrow>(name\<times>coname\<times>trm) list\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>trm"
where
"lookup x a [] \<theta>_c = lookupa x a \<theta>_c"
| "lookup x a ((y,c,P)#\<theta>_n) \<theta>_c = (if x=y then (lookupb x a \<theta>_c c P) else lookup x a \<theta>_n \<theta>_c)"
lemma lookup_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1\<bullet>(lookup x a \<theta>_n \<theta>_c)) = lookup (pi1\<bullet>x) (pi1\<bullet>a) (pi1\<bullet>\<theta>_n) (pi1\<bullet>\<theta>_c)"
and "(pi2\<bullet>(lookup x a \<theta>_n \<theta>_c)) = lookup (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_n) (pi2\<bullet>\<theta>_c)"
apply -
apply(induct \<theta>_n)
apply(auto simp add: eqvts)
apply(induct \<theta>_n)
apply(auto simp add: eqvts)
done
fun
lookupc :: "name\<Rightarrow>coname\<Rightarrow>(name\<times>coname\<times>trm) list\<Rightarrow>trm"
where
"lookupc x a [] = Ax x a"
| "lookupc x a ((y,c,P)#\<theta>_n) = (if x=y then P[c\<turnstile>c>a] else lookupc x a \<theta>_n)"
lemma lookupc_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1\<bullet>(lookupc x a \<theta>_n)) = lookupc (pi1\<bullet>x) (pi1\<bullet>a) (pi1\<bullet>\<theta>_n)"
and "(pi2\<bullet>(lookupc x a \<theta>_n)) = lookupc (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_n)"
apply -
apply(induct \<theta>_n)
apply(auto simp add: eqvts)
apply(induct \<theta>_n)
apply(auto simp add: eqvts)
done
fun
lookupd :: "name\<Rightarrow>coname\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>trm"
where
"lookupd x a [] = Ax x a"
| "lookupd x a ((c,y,P)#\<theta>_c) = (if a=c then P[y\<turnstile>n>x] else lookupd x a \<theta>_c)"
lemma lookupd_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1\<bullet>(lookupd x a \<theta>_n)) = lookupd (pi1\<bullet>x) (pi1\<bullet>a) (pi1\<bullet>\<theta>_n)"
and "(pi2\<bullet>(lookupd x a \<theta>_n)) = lookupd (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_n)"
apply -
apply(induct \<theta>_n)
apply(auto simp add: eqvts)
apply(induct \<theta>_n)
apply(auto simp add: eqvts)
done
lemma lookupa_fresh:
assumes a: "a\<sharp>\<theta>_c"
shows "lookupa y a \<theta>_c = Ax y a"
using a
apply(induct \<theta>_c)
apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
done
lemma lookupa_csubst:
assumes a: "a\<sharp>\<theta>_c"
shows "Cut <a>.Ax y a (x).P = (lookupa y a \<theta>_c){a:=(x).P}"
using a by (simp add: lookupa_fresh)
lemma lookupa_freshness:
fixes a::"coname"
and x::"name"
shows "a\<sharp>(\<theta>_c,c) \<Longrightarrow> a\<sharp>lookupa y c \<theta>_c"
and "x\<sharp>(\<theta>_c,y) \<Longrightarrow> x\<sharp>lookupa y c \<theta>_c"
apply(induct \<theta>_c)
apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
done
lemma lookupa_unicity:
assumes a: "lookupa x a \<theta>_c= Ax y b" "b\<sharp>\<theta>_c" "y\<sharp>\<theta>_c"
shows "x=y \<and> a=b"
using a
apply(induct \<theta>_c)
apply(auto simp add: trm.inject fresh_list_cons fresh_prod fresh_atm)
apply(case_tac "a=aa")
apply(auto)
apply(case_tac "a=aa")
apply(auto)
done
lemma lookupb_csubst:
assumes a: "a\<sharp>(\<theta>_c,c,N)"
shows "Cut <c>.N (x).P = (lookupb y a \<theta>_c c N){a:=(x).P}"
using a
apply(induct \<theta>_c)
apply(auto simp add: fresh_list_cons fresh_atm fresh_prod)
apply(rule sym)
apply(generate_fresh "name")
apply(generate_fresh "coname")
apply(subgoal_tac "Cut <c>.N (y).Ax y a = Cut <caa>.([(caa,c)]\<bullet>N) (ca).Ax ca a")
apply(simp)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh)
apply(simp)
apply(subgoal_tac "a\<sharp>([(caa,c)]\<bullet>N)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(simp add: trm.inject)
apply(rule conjI)
apply(rule sym)
apply(simp add: alpha fresh_prod fresh_atm)
apply(simp add: alpha calc_atm fresh_prod fresh_atm)
done
lemma lookupb_freshness:
fixes a::"coname"
and x::"name"
shows "a\<sharp>(\<theta>_c,c,b,P) \<Longrightarrow> a\<sharp>lookupb y c \<theta>_c b P"
and "x\<sharp>(\<theta>_c,y,P) \<Longrightarrow> x\<sharp>lookupb y c \<theta>_c b P"
apply(induct \<theta>_c)
apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
done
lemma lookupb_unicity:
assumes a: "lookupb x a \<theta>_c c P = Ax y b" "b\<sharp>(\<theta>_c,c,P)" "y\<sharp>\<theta>_c"
shows "x=y \<and> a=b"
using a
apply(induct \<theta>_c)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
apply(case_tac "a=aa")
apply(auto)
apply(case_tac "a=aa")
apply(auto)
done
lemma lookupb_lookupa:
assumes a: "x\<sharp>\<theta>_c"
shows "lookupb x c \<theta>_c a P = (lookupa x c \<theta>_c){x:=<a>.P}"
using a
apply(induct \<theta>_c)
apply(auto simp add: fresh_list_cons fresh_prod)
apply(generate_fresh "coname")
apply(generate_fresh "name")
apply(subgoal_tac "Cut <c>.Ax x c (aa).b = Cut <ca>.Ax x ca (caa).([(caa,aa)]\<bullet>b)")
apply(simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp)
apply(simp)
apply(subgoal_tac "x\<sharp>([(caa,aa)]\<bullet>b)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(simp add: trm.inject)
apply(rule conjI)
apply(simp add: alpha calc_atm fresh_atm fresh_prod)
apply(rule sym)
apply(simp add: alpha calc_atm fresh_atm fresh_prod)
done
lemma lookup_csubst:
assumes a: "a\<sharp>(\<theta>_n,\<theta>_c)"
shows "lookup y c \<theta>_n ((a,x,P)#\<theta>_c) = (lookup y c \<theta>_n \<theta>_c){a:=(x).P}"
using a
apply(induct \<theta>_n)
apply(auto simp add: fresh_prod fresh_list_cons)
apply(simp add: lookupa_csubst)
apply(simp add: lookupa_freshness forget fresh_atm fresh_prod)
apply(rule lookupb_csubst)
apply(simp)
apply(auto simp add: lookupb_freshness forget fresh_atm fresh_prod)
done
lemma lookup_fresh:
assumes a: "x\<sharp>(\<theta>_n,\<theta>_c)"
shows "lookup x c \<theta>_n \<theta>_c = lookupa x c \<theta>_c"
using a
apply(induct \<theta>_n)
apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
done
lemma lookup_unicity:
assumes a: "lookup x a \<theta>_n \<theta>_c= Ax y b" "b\<sharp>(\<theta>_c,\<theta>_n)" "y\<sharp>(\<theta>_c,\<theta>_n)"
shows "x=y \<and> a=b"
using a
apply(induct \<theta>_n)
apply(auto simp add: trm.inject fresh_list_cons fresh_prod fresh_atm)
apply(drule lookupa_unicity)
apply(simp)+
apply(drule lookupa_unicity)
apply(simp)+
apply(case_tac "x=aa")
apply(auto)
apply(drule lookupb_unicity)
apply(simp add: fresh_atm)
apply(simp)
apply(simp)
apply(case_tac "x=aa")
apply(auto)
apply(drule lookupb_unicity)
apply(simp add: fresh_atm)
apply(simp)
apply(simp)
done
lemma lookup_freshness:
fixes a::"coname"
and x::"name"
shows "a\<sharp>(c,\<theta>_c,\<theta>_n) \<Longrightarrow> a\<sharp>lookup y c \<theta>_n \<theta>_c"
and "x\<sharp>(y,\<theta>_c,\<theta>_n) \<Longrightarrow> x\<sharp>lookup y c \<theta>_n \<theta>_c"
apply(induct \<theta>_n)
apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
apply(simp add: fresh_atm fresh_prod lookupa_freshness)
apply(simp add: fresh_atm fresh_prod lookupa_freshness)
apply(simp add: fresh_atm fresh_prod lookupb_freshness)
apply(simp add: fresh_atm fresh_prod lookupb_freshness)
done
lemma lookupc_freshness:
fixes a::"coname"
and x::"name"
shows "a\<sharp>(\<theta>_c,c) \<Longrightarrow> a\<sharp>lookupc y c \<theta>_c"
and "x\<sharp>(\<theta>_c,y) \<Longrightarrow> x\<sharp>lookupc y c \<theta>_c"
apply(induct \<theta>_c)
apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
apply(rule rename_fresh)
apply(simp add: fresh_atm)
apply(rule rename_fresh)
apply(simp add: fresh_atm)
done
lemma lookupc_fresh:
assumes a: "y\<sharp>\<theta>_n"
shows "lookupc y a \<theta>_n = Ax y a"
using a
apply(induct \<theta>_n)
apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
done
lemma lookupc_nmaps:
assumes a: "\<theta>_n nmaps x to Some (c,P)"
shows "lookupc x a \<theta>_n = P[c\<turnstile>c>a]"
using a
apply(induct \<theta>_n)
apply(auto)
done
lemma lookupc_unicity:
assumes a: "lookupc y a \<theta>_n = Ax x b" "x\<sharp>\<theta>_n"
shows "y=x"
using a
apply(induct \<theta>_n)
apply(auto simp add: trm.inject fresh_list_cons fresh_prod)
apply(case_tac "y=aa")
apply(auto)
apply(subgoal_tac "x\<sharp>(ba[aa\<turnstile>c>a])")
apply(simp add: fresh_atm)
apply(rule rename_fresh)
apply(simp)
done
lemma lookupd_fresh:
assumes a: "a\<sharp>\<theta>_c"
shows "lookupd y a \<theta>_c = Ax y a"
using a
apply(induct \<theta>_c)
apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
done
lemma lookupd_unicity:
assumes a: "lookupd y a \<theta>_c = Ax y b" "b\<sharp>\<theta>_c"
shows "a=b"
using a
apply(induct \<theta>_c)
apply(auto simp add: trm.inject fresh_list_cons fresh_prod)
apply(case_tac "a=aa")
apply(auto)
apply(subgoal_tac "b\<sharp>(ba[aa\<turnstile>n>y])")
apply(simp add: fresh_atm)
apply(rule rename_fresh)
apply(simp)
done
lemma lookupd_freshness:
fixes a::"coname"
and x::"name"
shows "a\<sharp>(\<theta>_c,c) \<Longrightarrow> a\<sharp>lookupd y c \<theta>_c"
and "x\<sharp>(\<theta>_c,y) \<Longrightarrow> x\<sharp>lookupd y c \<theta>_c"
apply(induct \<theta>_c)
apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
apply(rule rename_fresh)
apply(simp add: fresh_atm)
apply(rule rename_fresh)
apply(simp add: fresh_atm)
done
lemma lookupd_cmaps:
assumes a: "\<theta>_c cmaps a to Some (x,P)"
shows "lookupd y a \<theta>_c = P[x\<turnstile>n>y]"
using a
apply(induct \<theta>_c)
apply(auto)
done
nominal_primrec (freshness_context: "\<theta>_n::(name\<times>coname\<times>trm)")
stn :: "trm\<Rightarrow>(name\<times>coname\<times>trm) list\<Rightarrow>trm"
where
"stn (Ax x a) \<theta>_n = lookupc x a \<theta>_n"
| "\<lbrakk>a\<sharp>(N,\<theta>_n);x\<sharp>(M,\<theta>_n)\<rbrakk> \<Longrightarrow> stn (Cut <a>.M (x).N) \<theta>_n = (Cut <a>.M (x).N)"
| "x\<sharp>\<theta>_n \<Longrightarrow> stn (NotR (x).M a) \<theta>_n = (NotR (x).M a)"
| "a\<sharp>\<theta>_n \<Longrightarrow>stn (NotL <a>.M x) \<theta>_n = (NotL <a>.M x)"
| "\<lbrakk>a\<sharp>(N,d,b,\<theta>_n);b\<sharp>(M,d,a,\<theta>_n)\<rbrakk> \<Longrightarrow> stn (AndR <a>.M <b>.N d) \<theta>_n = (AndR <a>.M <b>.N d)"
| "x\<sharp>(z,\<theta>_n) \<Longrightarrow> stn (AndL1 (x).M z) \<theta>_n = (AndL1 (x).M z)"
| "x\<sharp>(z,\<theta>_n) \<Longrightarrow> stn (AndL2 (x).M z) \<theta>_n = (AndL2 (x).M z)"
| "a\<sharp>(b,\<theta>_n) \<Longrightarrow> stn (OrR1 <a>.M b) \<theta>_n = (OrR1 <a>.M b)"
| "a\<sharp>(b,\<theta>_n) \<Longrightarrow> stn (OrR2 <a>.M b) \<theta>_n = (OrR2 <a>.M b)"
| "\<lbrakk>x\<sharp>(N,z,u,\<theta>_n);u\<sharp>(M,z,x,\<theta>_n)\<rbrakk> \<Longrightarrow> stn (OrL (x).M (u).N z) \<theta>_n = (OrL (x).M (u).N z)"
| "\<lbrakk>a\<sharp>(b,\<theta>_n);x\<sharp>\<theta>_n\<rbrakk> \<Longrightarrow> stn (ImpR (x).<a>.M b) \<theta>_n = (ImpR (x).<a>.M b)"
| "\<lbrakk>a\<sharp>(N,\<theta>_n);x\<sharp>(M,z,\<theta>_n)\<rbrakk> \<Longrightarrow> stn (ImpL <a>.M (x).N z) \<theta>_n = (ImpL <a>.M (x).N z)"
apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh abs_supp fin_supp)+
apply(fresh_guess)+
done
nominal_primrec (freshness_context: "\<theta>_c::(coname\<times>name\<times>trm)")
stc :: "trm\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>trm"
where
"stc (Ax x a) \<theta>_c = lookupd x a \<theta>_c"
| "\<lbrakk>a\<sharp>(N,\<theta>_c);x\<sharp>(M,\<theta>_c)\<rbrakk> \<Longrightarrow> stc (Cut <a>.M (x).N) \<theta>_c = (Cut <a>.M (x).N)"
| "x\<sharp>\<theta>_c \<Longrightarrow> stc (NotR (x).M a) \<theta>_c = (NotR (x).M a)"
| "a\<sharp>\<theta>_c \<Longrightarrow> stc (NotL <a>.M x) \<theta>_c = (NotL <a>.M x)"
| "\<lbrakk>a\<sharp>(N,d,b,\<theta>_c);b\<sharp>(M,d,a,\<theta>_c)\<rbrakk> \<Longrightarrow> stc (AndR <a>.M <b>.N d) \<theta>_c = (AndR <a>.M <b>.N d)"
| "x\<sharp>(z,\<theta>_c) \<Longrightarrow> stc (AndL1 (x).M z) \<theta>_c = (AndL1 (x).M z)"
| "x\<sharp>(z,\<theta>_c) \<Longrightarrow> stc (AndL2 (x).M z) \<theta>_c = (AndL2 (x).M z)"
| "a\<sharp>(b,\<theta>_c) \<Longrightarrow> stc (OrR1 <a>.M b) \<theta>_c = (OrR1 <a>.M b)"
| "a\<sharp>(b,\<theta>_c) \<Longrightarrow> stc (OrR2 <a>.M b) \<theta>_c = (OrR2 <a>.M b)"
| "\<lbrakk>x\<sharp>(N,z,u,\<theta>_c);u\<sharp>(M,z,x,\<theta>_c)\<rbrakk> \<Longrightarrow> stc (OrL (x).M (u).N z) \<theta>_c = (OrL (x).M (u).N z)"
| "\<lbrakk>a\<sharp>(b,\<theta>_c);x\<sharp>\<theta>_c\<rbrakk> \<Longrightarrow> stc (ImpR (x).<a>.M b) \<theta>_c = (ImpR (x).<a>.M b)"
| "\<lbrakk>a\<sharp>(N,\<theta>_c);x\<sharp>(M,z,\<theta>_c)\<rbrakk> \<Longrightarrow> stc (ImpL <a>.M (x).N z) \<theta>_c = (ImpL <a>.M (x).N z)"
apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh abs_supp fin_supp)+
apply(fresh_guess)+
done
lemma stn_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1\<bullet>(stn M \<theta>_n)) = stn (pi1\<bullet>M) (pi1\<bullet>\<theta>_n)"
and "(pi2\<bullet>(stn M \<theta>_n)) = stn (pi2\<bullet>M) (pi2\<bullet>\<theta>_n)"
apply -
apply(nominal_induct M avoiding: \<theta>_n rule: trm.strong_induct)
apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
apply(nominal_induct M avoiding: \<theta>_n rule: trm.strong_induct)
apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
done
lemma stc_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1\<bullet>(stc M \<theta>_c)) = stc (pi1\<bullet>M) (pi1\<bullet>\<theta>_c)"
and "(pi2\<bullet>(stc M \<theta>_c)) = stc (pi2\<bullet>M) (pi2\<bullet>\<theta>_c)"
apply -
apply(nominal_induct M avoiding: \<theta>_c rule: trm.strong_induct)
apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
apply(nominal_induct M avoiding: \<theta>_c rule: trm.strong_induct)
apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
done
lemma stn_fresh:
fixes a::"coname"
and x::"name"
shows "a\<sharp>(\<theta>_n,M) \<Longrightarrow> a\<sharp>stn M \<theta>_n"
and "x\<sharp>(\<theta>_n,M) \<Longrightarrow> x\<sharp>stn M \<theta>_n"
apply(nominal_induct M avoiding: \<theta>_n a x rule: trm.strong_induct)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)
apply(rule lookupc_freshness)
apply(simp add: fresh_atm)
apply(rule lookupc_freshness)
apply(simp add: fresh_atm)
done
lemma stc_fresh:
fixes a::"coname"
and x::"name"
shows "a\<sharp>(\<theta>_c,M) \<Longrightarrow> a\<sharp>stc M \<theta>_c"
and "x\<sharp>(\<theta>_c,M) \<Longrightarrow> x\<sharp>stc M \<theta>_c"
apply(nominal_induct M avoiding: \<theta>_c a x rule: trm.strong_induct)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
done
lemma case_option_eqvt1[eqvt_force]:
fixes pi1::"name prm"
and pi2::"coname prm"
and B::"(name\<times>trm) option"
and r::"trm"
shows "(pi1\<bullet>(case B of Some (x,P) \<Rightarrow> s x P | None \<Rightarrow> r)) =
(case (pi1\<bullet>B) of Some (x,P) \<Rightarrow> (pi1\<bullet>s) x P | None \<Rightarrow> (pi1\<bullet>r))"
and "(pi2\<bullet>(case B of Some (x,P) \<Rightarrow> s x P| None \<Rightarrow> r)) =
(case (pi2\<bullet>B) of Some (x,P) \<Rightarrow> (pi2\<bullet>s) x P | None \<Rightarrow> (pi2\<bullet>r))"
apply(cases "B")
apply(auto)
apply(perm_simp)
apply(cases "B")
apply(auto)
apply(perm_simp)
done
lemma case_option_eqvt2[eqvt_force]:
fixes pi1::"name prm"
and pi2::"coname prm"
and B::"(coname\<times>trm) option"
and r::"trm"
shows "(pi1\<bullet>(case B of Some (x,P) \<Rightarrow> s x P | None \<Rightarrow> r)) =
(case (pi1\<bullet>B) of Some (x,P) \<Rightarrow> (pi1\<bullet>s) x P | None \<Rightarrow> (pi1\<bullet>r))"
and "(pi2\<bullet>(case B of Some (x,P) \<Rightarrow> s x P| None \<Rightarrow> r)) =
(case (pi2\<bullet>B) of Some (x,P) \<Rightarrow> (pi2\<bullet>s) x P | None \<Rightarrow> (pi2\<bullet>r))"
apply(cases "B")
apply(auto)
apply(perm_simp)
apply(cases "B")
apply(auto)
apply(perm_simp)
done
nominal_primrec (freshness_context: "(\<theta>_n::(name\<times>coname\<times>trm) list,\<theta>_c::(coname\<times>name\<times>trm) list)")
psubst :: "(name\<times>coname\<times>trm) list\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>trm\<Rightarrow>trm" ("_,_<_>" [100,100,100] 100)
where
"\<theta>_n,\<theta>_c<Ax x a> = lookup x a \<theta>_n \<theta>_c"
| "\<lbrakk>a\<sharp>(N,\<theta>_n,\<theta>_c);x\<sharp>(M,\<theta>_n,\<theta>_c)\<rbrakk> \<Longrightarrow> \<theta>_n,\<theta>_c<Cut <a>.M (x).N> =
Cut <a>.(if \<exists>x. M=Ax x a then stn M \<theta>_n else \<theta>_n,\<theta>_c<M>)
(x).(if \<exists>a. N=Ax x a then stc N \<theta>_c else \<theta>_n,\<theta>_c<N>)"
| "x\<sharp>(\<theta>_n,\<theta>_c) \<Longrightarrow> \<theta>_n,\<theta>_c<NotR (x).M a> =
(case (findc \<theta>_c a) of
Some (u,P) \<Rightarrow> fresh_fun (\<lambda>a'. Cut <a'>.NotR (x).(\<theta>_n,\<theta>_c<M>) a' (u).P)
| None \<Rightarrow> NotR (x).(\<theta>_n,\<theta>_c<M>) a)"
| "a\<sharp>(\<theta>_n,\<theta>_c) \<Longrightarrow> \<theta>_n,\<theta>_c<NotL <a>.M x> =
(case (findn \<theta>_n x) of
Some (c,P) \<Rightarrow> fresh_fun (\<lambda>x'. Cut <c>.P (x').(NotL <a>.(\<theta>_n,\<theta>_c<M>) x'))
| None \<Rightarrow> NotL <a>.(\<theta>_n,\<theta>_c<M>) x)"
| "\<lbrakk>a\<sharp>(N,c,\<theta>_n,\<theta>_c);b\<sharp>(M,c,\<theta>_n,\<theta>_c);b\<noteq>a\<rbrakk> \<Longrightarrow> (\<theta>_n,\<theta>_c<AndR <a>.M <b>.N c>) =
(case (findc \<theta>_c c) of
Some (x,P) \<Rightarrow> fresh_fun (\<lambda>a'. Cut <a'>.(AndR <a>.(\<theta>_n,\<theta>_c<M>) <b>.(\<theta>_n,\<theta>_c<N>) a') (x).P)
| None \<Rightarrow> AndR <a>.(\<theta>_n,\<theta>_c<M>) <b>.(\<theta>_n,\<theta>_c<N>) c)"
| "x\<sharp>(z,\<theta>_n,\<theta>_c) \<Longrightarrow> (\<theta>_n,\<theta>_c<AndL1 (x).M z>) =
(case (findn \<theta>_n z) of
Some (c,P) \<Rightarrow> fresh_fun (\<lambda>z'. Cut <c>.P (z').AndL1 (x).(\<theta>_n,\<theta>_c<M>) z')
| None \<Rightarrow> AndL1 (x).(\<theta>_n,\<theta>_c<M>) z)"
| "x\<sharp>(z,\<theta>_n,\<theta>_c) \<Longrightarrow> (\<theta>_n,\<theta>_c<AndL2 (x).M z>) =
(case (findn \<theta>_n z) of
Some (c,P) \<Rightarrow> fresh_fun (\<lambda>z'. Cut <c>.P (z').AndL2 (x).(\<theta>_n,\<theta>_c<M>) z')
| None \<Rightarrow> AndL2 (x).(\<theta>_n,\<theta>_c<M>) z)"
| "\<lbrakk>x\<sharp>(N,z,\<theta>_n,\<theta>_c);u\<sharp>(M,z,\<theta>_n,\<theta>_c);x\<noteq>u\<rbrakk> \<Longrightarrow> (\<theta>_n,\<theta>_c<OrL (x).M (u).N z>) =
(case (findn \<theta>_n z) of
Some (c,P) \<Rightarrow> fresh_fun (\<lambda>z'. Cut <c>.P (z').OrL (x).(\<theta>_n,\<theta>_c<M>) (u).(\<theta>_n,\<theta>_c<N>) z')
| None \<Rightarrow> OrL (x).(\<theta>_n,\<theta>_c<M>) (u).(\<theta>_n,\<theta>_c<N>) z)"
| "a\<sharp>(b,\<theta>_n,\<theta>_c) \<Longrightarrow> (\<theta>_n,\<theta>_c<OrR1 <a>.M b>) =
(case (findc \<theta>_c b) of
Some (x,P) \<Rightarrow> fresh_fun (\<lambda>a'. Cut <a'>.OrR1 <a>.(\<theta>_n,\<theta>_c<M>) a' (x).P)
| None \<Rightarrow> OrR1 <a>.(\<theta>_n,\<theta>_c<M>) b)"
| "a\<sharp>(b,\<theta>_n,\<theta>_c) \<Longrightarrow> (\<theta>_n,\<theta>_c<OrR2 <a>.M b>) =
(case (findc \<theta>_c b) of
Some (x,P) \<Rightarrow> fresh_fun (\<lambda>a'. Cut <a'>.OrR2 <a>.(\<theta>_n,\<theta>_c<M>) a' (x).P)
| None \<Rightarrow> OrR2 <a>.(\<theta>_n,\<theta>_c<M>) b)"
| "\<lbrakk>a\<sharp>(b,\<theta>_n,\<theta>_c); x\<sharp>(\<theta>_n,\<theta>_c)\<rbrakk> \<Longrightarrow> (\<theta>_n,\<theta>_c<ImpR (x).<a>.M b>) =
(case (findc \<theta>_c b) of
Some (z,P) \<Rightarrow> fresh_fun (\<lambda>a'. Cut <a'>.ImpR (x).<a>.(\<theta>_n,\<theta>_c<M>) a' (z).P)
| None \<Rightarrow> ImpR (x).<a>.(\<theta>_n,\<theta>_c<M>) b)"
| "\<lbrakk>a\<sharp>(N,\<theta>_n,\<theta>_c); x\<sharp>(z,M,\<theta>_n,\<theta>_c)\<rbrakk> \<Longrightarrow> (\<theta>_n,\<theta>_c<ImpL <a>.M (x).N z>) =
(case (findn \<theta>_n z) of
Some (c,P) \<Rightarrow> fresh_fun (\<lambda>z'. Cut <c>.P (z').ImpL <a>.(\<theta>_n,\<theta>_c<M>) (x).(\<theta>_n,\<theta>_c<N>) z')
| None \<Rightarrow> ImpL <a>.(\<theta>_n,\<theta>_c<M>) (x).(\<theta>_n,\<theta>_c<N>) z)"
apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh stc_fresh)
apply(simp add: abs_fresh stn_fresh)
apply(case_tac "findc \<theta>_c x3")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findn \<theta>_n x3")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findc \<theta>_c x5")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findc \<theta>_c x5")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule_tac x="x3" in cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findn \<theta>_n x3")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findn \<theta>_n x3")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findc \<theta>_c x3")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findc \<theta>_c x3")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findn \<theta>_n x5")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findn \<theta>_n x5")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule_tac a="x3" in nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findc \<theta>_c x4")
apply(simp add: abs_fresh abs_supp fin_supp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm abs_supp fin_supp)
apply(case_tac "findc \<theta>_c x4")
apply(simp add: abs_fresh abs_supp fin_supp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule_tac x="x2" in cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm abs_supp fin_supp)
apply(case_tac "findn \<theta>_n x5")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findn \<theta>_n x5")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule_tac a="x3" in nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(fresh_guess)+
done
lemma case_cong:
assumes a: "B1=B2" "x1=x2" "y1=y2"
shows "(case B1 of None \<Rightarrow> x1 | Some (x,P) \<Rightarrow> y1 x P) = (case B2 of None \<Rightarrow> x2 | Some (x,P) \<Rightarrow> y2 x P)"
using a
apply(auto)
done
lemma find_maps:
shows "\<theta>_c cmaps a to (findc \<theta>_c a)"
and "\<theta>_n nmaps x to (findn \<theta>_n x)"
apply(auto)
done
lemma psubst_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "pi1\<bullet>(\<theta>_n,\<theta>_c<M>) = (pi1\<bullet>\<theta>_n),(pi1\<bullet>\<theta>_c)<(pi1\<bullet>M)>"
and "pi2\<bullet>(\<theta>_n,\<theta>_c<M>) = (pi2\<bullet>\<theta>_n),(pi2\<bullet>\<theta>_c)<(pi2\<bullet>M)>"
apply(nominal_induct M avoiding: \<theta>_n \<theta>_c rule: trm.strong_induct)
apply(auto simp add: eq_bij fresh_bij eqvts perm_pi_simp)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
done
lemma ax_psubst:
assumes a: "\<theta>_n,\<theta>_c<M> = Ax x a"
and b: "a\<sharp>(\<theta>_n,\<theta>_c)" "x\<sharp>(\<theta>_n,\<theta>_c)"
shows "M = Ax x a"
using a b
apply(nominal_induct M avoiding: \<theta>_n \<theta>_c rule: trm.strong_induct)
apply(auto)
apply(drule lookup_unicity)
apply(simp)+
apply(case_tac "findc \<theta>_c coname")
apply(simp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findn \<theta>_n name")
apply(simp)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findc \<theta>_c coname3")
apply(simp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(simp)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(simp)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(simp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(simp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findn \<theta>_n name3")
apply(simp)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(simp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(simp)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp)
done
lemma better_Cut_substc1:
assumes a: "a\<sharp>(P,b)" "b\<sharp>N"
shows "(Cut <a>.M (x).N){b:=(y).P} = Cut <a>.(M{b:=(y).P}) (x).N"
using a
apply -
apply(generate_fresh "coname")
apply(generate_fresh "name")
apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]\<bullet>M) (ca).([(ca,x)]\<bullet>N)")
apply(simp)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh)
apply(auto)[1]
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm fresh_atm)
apply(subgoal_tac"b\<sharp>([(ca,x)]\<bullet>N)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(perm_simp)
apply(simp add: fresh_left calc_atm)
apply(simp add: trm.inject)
apply(rule conjI)
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
done
lemma better_Cut_substc2:
assumes a: "x\<sharp>(y,P)" "b\<sharp>(a,M)" "N\<noteq>Ax x b"
shows "(Cut <a>.M (x).N){b:=(y).P} = Cut <a>.M (x).(N{b:=(y).P})"
using a
apply -
apply(generate_fresh "coname")
apply(generate_fresh "name")
apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]\<bullet>M) (ca).([(ca,x)]\<bullet>N)")
apply(simp)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh)
apply(auto)[1]
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm fresh_atm fresh_prod)
apply(subgoal_tac"b\<sharp>([(c,a)]\<bullet>M)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(perm_simp)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(simp add: trm.inject)
apply(rule conjI)
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
done
lemma better_Cut_substn1:
assumes a: "y\<sharp>(x,N)" "a\<sharp>(b,P)" "M\<noteq>Ax y a"
shows "(Cut <a>.M (x).N){y:=<b>.P} = Cut <a>.(M{y:=<b>.P}) (x).N"
using a
apply -
apply(generate_fresh "coname")
apply(generate_fresh "name")
apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]\<bullet>M) (ca).([(ca,x)]\<bullet>N)")
apply(simp)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(auto)[1]
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm fresh_atm fresh_prod)
apply(subgoal_tac"y\<sharp>([(ca,x)]\<bullet>N)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(perm_simp)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(simp add: trm.inject)
apply(rule conjI)
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
done
lemma better_Cut_substn2:
assumes a: "x\<sharp>(P,y)" "y\<sharp>M"
shows "(Cut <a>.M (x).N){y:=<b>.P} = Cut <a>.M (x).(N{y:=<b>.P})"
using a
apply -
apply(generate_fresh "coname")
apply(generate_fresh "name")
apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]\<bullet>M) (ca).([(ca,x)]\<bullet>N)")
apply(simp)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(auto)[1]
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm fresh_atm)
apply(subgoal_tac"y\<sharp>([(c,a)]\<bullet>M)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(perm_simp)
apply(simp add: fresh_left calc_atm)
apply(simp add: trm.inject)
apply(rule conjI)
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
done
lemma psubst_fresh_name:
fixes x::"name"
assumes a: "x\<sharp>\<theta>_n" "x\<sharp>\<theta>_c" "x\<sharp>M"
shows "x\<sharp>\<theta>_n,\<theta>_c<M>"
using a
apply(nominal_induct M avoiding: x \<theta>_n \<theta>_c rule: trm.strong_induct)
apply(simp add: lookup_freshness)
apply(auto simp add: abs_fresh)[1]
apply(simp add: lookupc_freshness)
apply(simp add: lookupc_freshness)
apply(simp add: lookupc_freshness)
apply(simp add: lookupd_freshness)
apply(simp add: lookupd_freshness)
apply(simp add: lookupc_freshness)
apply(simp)
apply(case_tac "findc \<theta>_c coname")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn \<theta>_n name")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findc \<theta>_c coname3")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn \<theta>_n name3")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(auto simp add: abs_fresh abs_supp fin_supp)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh abs_supp fin_supp fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
done
lemma psubst_fresh_coname:
fixes a::"coname"
assumes a: "a\<sharp>\<theta>_n" "a\<sharp>\<theta>_c" "a\<sharp>M"
shows "a\<sharp>\<theta>_n,\<theta>_c<M>"
using a
apply(nominal_induct M avoiding: a \<theta>_n \<theta>_c rule: trm.strong_induct)
apply(simp add: lookup_freshness)
apply(auto simp add: abs_fresh)[1]
apply(simp add: lookupd_freshness)
apply(simp add: lookupd_freshness)
apply(simp add: lookupc_freshness)
apply(simp add: lookupd_freshness)
apply(simp add: lookupc_freshness)
apply(simp add: lookupd_freshness)
apply(simp)
apply(case_tac "findc \<theta>_c coname")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn \<theta>_n name")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findc \<theta>_c coname3")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn \<theta>_n name3")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(auto simp add: abs_fresh abs_supp fin_supp)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh abs_supp fin_supp fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
done
lemma psubst_csubst:
assumes a: "a\<sharp>(\<theta>_n,\<theta>_c)"
shows "\<theta>_n,((a,x,P)#\<theta>_c)<M> = ((\<theta>_n,\<theta>_c<M>){a:=(x).P})"
using a
apply(nominal_induct M avoiding: a x \<theta>_n \<theta>_c P rule: trm.strong_induct)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp add: lookup_csubst)
apply(simp add: fresh_list_cons fresh_prod)
apply(auto)[1]
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh fresh_atm)
apply(simp add: lookupd_fresh)
apply(subgoal_tac "a\<sharp>lookupc xa coname \<theta>_n")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(rule sym)
apply(simp add: alpha nrename_swap fresh_atm)
apply(rule lookupc_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(simp add: lookupd_unicity)
apply(rule impI)
apply(subgoal_tac "a\<sharp>lookupc xa coname \<theta>_n")
apply(subgoal_tac "a\<sharp>lookupd name aa \<theta>_c")
apply(simp add: forget)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
apply(rule lookupc_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(drule ax_psubst)
apply(simp)
apply(simp)
apply(blast)
apply(rule impI)
apply(subgoal_tac "a\<sharp>lookupc xa coname \<theta>_n")
apply(simp add: forget)
apply(rule lookupc_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(simp add: trm.inject)
apply(rule sym)
apply(simp add: alpha)
apply(simp add: alpha nrename_swap fresh_atm)
apply(simp add: lookupd_fresh)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(simp add: lookupd_unicity)
apply(rule impI)
apply(subgoal_tac "a\<sharp>lookupd name aa \<theta>_c")
apply(simp add: forget)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule impI)
apply(drule ax_psubst)
apply(simp)
apply(simp)
apply(blast)
(* NotR *)
apply(simp)
apply(case_tac "findc \<theta>_c coname")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule cmaps_false)
apply(assumption)
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc1)
apply(simp)
apply(simp add: cmaps_fresh)
apply(auto simp add: fresh_prod fresh_atm)[1]
(* NotL *)
apply(simp)
apply(case_tac "findn \<theta>_n name")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc2)
apply(simp)
apply(simp)
apply(simp)
apply(simp)
(* AndR *)
apply(simp)
apply(case_tac "findc \<theta>_c coname3")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule cmaps_false)
apply(assumption)
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc1)
apply(simp)
apply(simp add: cmaps_fresh)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
(* AndL1 *)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc2)
apply(simp)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
(* AndL2 *)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc2)
apply(simp)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
(* OrR1 *)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule cmaps_false)
apply(assumption)
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc1)
apply(simp)
apply(simp add: cmaps_fresh)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
(* OrR2 *)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule cmaps_false)
apply(assumption)
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc1)
apply(simp)
apply(simp add: cmaps_fresh)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
(* OrL *)
apply(simp)
apply(case_tac "findn \<theta>_n name3")
apply(simp)
apply(auto simp add: fresh_list_cons psubst_fresh_name fresh_atm fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc2)
apply(simp)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_name fresh_prod fresh_atm)[1]
(* ImpR *)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule cmaps_false)
apply(assumption)
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc1)
apply(simp)
apply(simp add: cmaps_fresh)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
(* ImpL *)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(simp)
apply(auto simp add: fresh_list_cons psubst_fresh_coname psubst_fresh_name fresh_atm fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: abs_fresh subst_fresh)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc2)
apply(simp)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname psubst_fresh_name fresh_prod fresh_atm)[1]
done
lemma psubst_nsubst:
assumes a: "x\<sharp>(\<theta>_n,\<theta>_c)"
shows "((x,a,P)#\<theta>_n),\<theta>_c<M> = ((\<theta>_n,\<theta>_c<M>){x:=<a>.P})"
using a
apply(nominal_induct M avoiding: a x \<theta>_n \<theta>_c P rule: trm.strong_induct)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp add: lookup_fresh)
apply(rule lookupb_lookupa)
apply(simp)
apply(rule sym)
apply(rule forget)
apply(rule lookup_freshness)
apply(simp add: fresh_atm)
apply(auto simp add: lookupc_freshness fresh_list_cons fresh_prod)[1]
apply(simp add: lookupc_fresh)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(simp add: lookupd_fresh)
apply(subgoal_tac "x\<sharp>lookupd name aa \<theta>_c")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(rule sym)
apply(simp add: alpha crename_swap fresh_atm)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(simp add: lookupc_unicity)
apply(rule impI)
apply(subgoal_tac "x\<sharp>lookupc xa coname \<theta>_n")
apply(subgoal_tac "x\<sharp>lookupd name aa \<theta>_c")
apply(simp add: forget)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
apply(rule lookupc_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(simp add: trm.inject)
apply(rule sym)
apply(simp add: alpha crename_swap fresh_atm)
apply(rule impI)
apply(simp add: lookupc_fresh)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(simp add: lookupc_unicity)
apply(rule impI)
apply(subgoal_tac "x\<sharp>lookupc xa coname \<theta>_n")
apply(simp add: forget)
apply(rule lookupc_freshness)
apply(simp add: fresh_prod fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(drule ax_psubst)
apply(simp)
apply(simp)
apply(simp)
apply(blast)
apply(rule impI)
apply(subgoal_tac "x\<sharp>lookupd name aa \<theta>_c")
apply(simp add: forget)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule impI)
apply(drule ax_psubst)
apply(simp)
apply(simp)
apply(blast)
(* NotR *)
apply(simp)
apply(case_tac "findc \<theta>_c coname")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn1)
apply(simp add: cmaps_fresh)
apply(simp)
apply(simp)
apply(simp)
(* NotL *)
apply(simp)
apply(case_tac "findn \<theta>_n name")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule nmaps_false)
apply(simp)
apply(simp)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn2)
apply(simp)
apply(simp add: nmaps_fresh)
apply(simp add: fresh_prod fresh_atm)
(* AndR *)
apply(simp)
apply(case_tac "findc \<theta>_c coname3")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn1)
apply(simp add: cmaps_fresh)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
(* AndL1 *)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule nmaps_false)
apply(simp)
apply(simp)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn2)
apply(simp)
apply(simp add: nmaps_fresh)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
(* AndL2 *)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule nmaps_false)
apply(simp)
apply(simp)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn2)
apply(simp)
apply(simp add: nmaps_fresh)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
(* OrR1 *)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn1)
apply(simp add: cmaps_fresh)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
(* OrR2 *)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn1)
apply(simp add: cmaps_fresh)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
(* OrL *)
apply(simp)
apply(case_tac "findn \<theta>_n name3")
apply(simp)
apply(auto simp add: fresh_list_cons psubst_fresh_name fresh_atm fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule nmaps_false)
apply(simp)
apply(simp)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn2)
apply(simp)
apply(simp add: nmaps_fresh)
apply(auto simp add: psubst_fresh_name fresh_prod fresh_atm)[1]
(* ImpR *)
apply(simp)
apply(case_tac "findc \<theta>_c coname2")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn1)
apply(simp add: cmaps_fresh)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
(* ImpL *)
apply(simp)
apply(case_tac "findn \<theta>_n name2")
apply(simp)
apply(auto simp add: fresh_list_cons psubst_fresh_coname psubst_fresh_name fresh_atm fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule nmaps_false)
apply(simp)
apply(simp)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn2)
apply(simp)
apply(simp add: nmaps_fresh)
apply(auto simp add: psubst_fresh_coname psubst_fresh_name fresh_prod fresh_atm)[1]
done
definition
ncloses :: "(name\<times>coname\<times>trm) list\<Rightarrow>(name\<times>ty) list \<Rightarrow> bool" ("_ ncloses _" [55,55] 55)
where
"\<theta>_n ncloses \<Gamma> \<equiv> \<forall>x B. ((x,B) \<in> set \<Gamma> \<longrightarrow> (\<exists>c P. \<theta>_n nmaps x to Some (c,P) \<and> <c>:P \<in> (\<parallel><B>\<parallel>)))"
definition
ccloses :: "(coname\<times>name\<times>trm) list\<Rightarrow>(coname\<times>ty) list \<Rightarrow> bool" ("_ ccloses _" [55,55] 55)
where
"\<theta>_c ccloses \<Delta> \<equiv> \<forall>a B. ((a,B) \<in> set \<Delta> \<longrightarrow> (\<exists>x P. \<theta>_c cmaps a to Some (x,P) \<and> (x):P \<in> (\<parallel>(B)\<parallel>)))"
lemma ncloses_elim:
assumes a: "(x,B) \<in> set \<Gamma>"
and b: "\<theta>_n ncloses \<Gamma>"
shows "\<exists>c P. \<theta>_n nmaps x to Some (c,P) \<and> <c>:P \<in> (\<parallel><B>\<parallel>)"
using a b by (auto simp add: ncloses_def)
lemma ccloses_elim:
assumes a: "(a,B) \<in> set \<Delta>"
and b: "\<theta>_c ccloses \<Delta>"
shows "\<exists>x P. \<theta>_c cmaps a to Some (x,P) \<and> (x):P \<in> (\<parallel>(B)\<parallel>)"
using a b by (auto simp add: ccloses_def)
lemma ncloses_subset:
assumes a: "\<theta>_n ncloses \<Gamma>"
and b: "set \<Gamma>' \<subseteq> set \<Gamma>"
shows "\<theta>_n ncloses \<Gamma>'"
using a b by (auto simp add: ncloses_def)
lemma ccloses_subset:
assumes a: "\<theta>_c ccloses \<Delta>"
and b: "set \<Delta>' \<subseteq> set \<Delta>"
shows "\<theta>_c ccloses \<Delta>'"
using a b by (auto simp add: ccloses_def)
lemma validc_fresh:
fixes a::"coname"
and \<Delta>::"(coname\<times>ty) list"
assumes a: "a\<sharp>\<Delta>"
shows "\<not>(\<exists>B. (a,B)\<in>set \<Delta>)"
using a
apply(induct \<Delta>)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
lemma validn_fresh:
fixes x::"name"
and \<Gamma>::"(name\<times>ty) list"
assumes a: "x\<sharp>\<Gamma>"
shows "\<not>(\<exists>B. (x,B)\<in>set \<Gamma>)"
using a
apply(induct \<Gamma>)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
lemma ccloses_extend:
assumes a: "\<theta>_c ccloses \<Delta>" "a\<sharp>\<Delta>" "a\<sharp>\<theta>_c" "(x):P\<in>\<parallel>(B)\<parallel>"
shows "(a,x,P)#\<theta>_c ccloses (a,B)#\<Delta>"
using a
apply(simp add: ccloses_def)
apply(drule validc_fresh)
apply(auto)
done
lemma ncloses_extend:
assumes a: "\<theta>_n ncloses \<Gamma>" "x\<sharp>\<Gamma>" "x\<sharp>\<theta>_n" "<a>:P\<in>\<parallel><B>\<parallel>"
shows "(x,a,P)#\<theta>_n ncloses (x,B)#\<Gamma>"
using a
apply(simp add: ncloses_def)
apply(drule validn_fresh)
apply(auto)
done
text \<open>typing relation\<close>
inductive
typing :: "ctxtn \<Rightarrow> trm \<Rightarrow> ctxtc \<Rightarrow> bool" ("_ \<turnstile> _ \<turnstile> _" [100,100,100] 100)
where
TAx: "\<lbrakk>validn \<Gamma>;validc \<Delta>; (x,B)\<in>set \<Gamma>; (a,B)\<in>set \<Delta>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Ax x a \<turnstile> \<Delta>"
| TNotR: "\<lbrakk>x\<sharp>\<Gamma>; ((x,B)#\<Gamma>) \<turnstile> M \<turnstile> \<Delta>; set \<Delta>' = {(a,NOT B)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk>
\<Longrightarrow> \<Gamma> \<turnstile> NotR (x).M a \<turnstile> \<Delta>'"
| TNotL: "\<lbrakk>a\<sharp>\<Delta>; \<Gamma> \<turnstile> M \<turnstile> ((a,B)#\<Delta>); set \<Gamma>' = {(x,NOT B)} \<union> set \<Gamma>; validn \<Gamma>'\<rbrakk>
\<Longrightarrow> \<Gamma>' \<turnstile> NotL <a>.M x \<turnstile> \<Delta>"
| TAndL1: "\<lbrakk>x\<sharp>(\<Gamma>,y); ((x,B1)#\<Gamma>) \<turnstile> M \<turnstile> \<Delta>; set \<Gamma>' = {(y,B1 AND B2)} \<union> set \<Gamma>; validn \<Gamma>'\<rbrakk>
\<Longrightarrow> \<Gamma>' \<turnstile> AndL1 (x).M y \<turnstile> \<Delta>"
| TAndL2: "\<lbrakk>x\<sharp>(\<Gamma>,y); ((x,B2)#\<Gamma>) \<turnstile> M \<turnstile> \<Delta>; set \<Gamma>' = {(y,B1 AND B2)} \<union> set \<Gamma>; validn \<Gamma>'\<rbrakk>
\<Longrightarrow> \<Gamma>' \<turnstile> AndL2 (x).M y \<turnstile> \<Delta>"
| TAndR: "\<lbrakk>a\<sharp>(\<Delta>,N,c); b\<sharp>(\<Delta>,M,c); a\<noteq>b; \<Gamma> \<turnstile> M \<turnstile> ((a,B)#\<Delta>); \<Gamma> \<turnstile> N \<turnstile> ((b,C)#\<Delta>);
set \<Delta>' = {(c,B AND C)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk>
\<Longrightarrow> \<Gamma> \<turnstile> AndR <a>.M <b>.N c \<turnstile> \<Delta>'"
| TOrL: "\<lbrakk>x\<sharp>(\<Gamma>,N,z); y\<sharp>(\<Gamma>,M,z); x\<noteq>y; ((x,B)#\<Gamma>) \<turnstile> M \<turnstile> \<Delta>; ((y,C)#\<Gamma>) \<turnstile> N \<turnstile> \<Delta>;
set \<Gamma>' = {(z,B OR C)} \<union> set \<Gamma>; validn \<Gamma>'\<rbrakk>
\<Longrightarrow> \<Gamma>' \<turnstile> OrL (x).M (y).N z \<turnstile> \<Delta>"
| TOrR1: "\<lbrakk>a\<sharp>(\<Delta>,b); \<Gamma> \<turnstile> M \<turnstile> ((a,B1)#\<Delta>); set \<Delta>' = {(b,B1 OR B2)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk>
\<Longrightarrow> \<Gamma> \<turnstile> OrR1 <a>.M b \<turnstile> \<Delta>'"
| TOrR2: "\<lbrakk>a\<sharp>(\<Delta>,b); \<Gamma> \<turnstile> M \<turnstile> ((a,B2)#\<Delta>); set \<Delta>' = {(b,B1 OR B2)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk>
\<Longrightarrow> \<Gamma> \<turnstile> OrR2 <a>.M b \<turnstile> \<Delta>'"
| TImpL: "\<lbrakk>a\<sharp>(\<Delta>,N); x\<sharp>(\<Gamma>,M,y); \<Gamma> \<turnstile> M \<turnstile> ((a,B)#\<Delta>); ((x,C)#\<Gamma>) \<turnstile> N \<turnstile> \<Delta>;
set \<Gamma>' = {(y,B IMP C)} \<union> set \<Gamma>; validn \<Gamma>'\<rbrakk>
\<Longrightarrow> \<Gamma>' \<turnstile> ImpL <a>.M (x).N y \<turnstile> \<Delta>"
| TImpR: "\<lbrakk>a\<sharp>(\<Delta>,b); x\<sharp>\<Gamma>; ((x,B)#\<Gamma>) \<turnstile> M \<turnstile> ((a,C)#\<Delta>); set \<Delta>' = {(b,B IMP C)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk>
\<Longrightarrow> \<Gamma> \<turnstile> ImpR (x).<a>.M b \<turnstile> \<Delta>'"
| TCut: "\<lbrakk>a\<sharp>(\<Delta>,N); x\<sharp>(\<Gamma>,M); \<Gamma> \<turnstile> M \<turnstile> ((a,B)#\<Delta>); ((x,B)#\<Gamma>) \<turnstile> N \<turnstile> \<Delta>\<rbrakk>
\<Longrightarrow> \<Gamma> \<turnstile> Cut <a>.M (x).N \<turnstile> \<Delta>"
equivariance typing
lemma fresh_set_member:
fixes x::"name"
and a::"coname"
shows "x\<sharp>L \<Longrightarrow> e\<in>set L \<Longrightarrow> x\<sharp>e"
and "a\<sharp>L \<Longrightarrow> e\<in>set L \<Longrightarrow> a\<sharp>e"
by (induct L) (auto simp add: fresh_list_cons)
lemma fresh_subset:
fixes x::"name"
and a::"coname"
shows "x\<sharp>L \<Longrightarrow> set L' \<subseteq> set L \<Longrightarrow> x\<sharp>L'"
and "a\<sharp>L \<Longrightarrow> set L' \<subseteq> set L \<Longrightarrow> a\<sharp>L'"
apply(induct L' arbitrary: L)
apply(auto simp add: fresh_list_cons fresh_list_nil intro: fresh_set_member)
done
lemma fresh_subset_ext:
fixes x::"name"
and a::"coname"
shows "x\<sharp>L \<Longrightarrow> x\<sharp>e \<Longrightarrow> set L' \<subseteq> set (e#L) \<Longrightarrow> x\<sharp>L'"
and "a\<sharp>L \<Longrightarrow> a\<sharp>e \<Longrightarrow> set L' \<subseteq> set (e#L) \<Longrightarrow> a\<sharp>L'"
apply(induct L' arbitrary: L)
apply(auto simp add: fresh_list_cons fresh_list_nil intro: fresh_set_member)
done
lemma fresh_under_insert:
fixes x::"name"
and a::"coname"
and \<Gamma>::"ctxtn"
and \<Delta>::"ctxtc"
shows "x\<sharp>\<Gamma> \<Longrightarrow> x\<noteq>y \<Longrightarrow> set \<Gamma>' = insert (y,B) (set \<Gamma>) \<Longrightarrow> x\<sharp>\<Gamma>'"
and "a\<sharp>\<Delta> \<Longrightarrow> a\<noteq>c \<Longrightarrow> set \<Delta>' = insert (c,B) (set \<Delta>) \<Longrightarrow> a\<sharp>\<Delta>'"
apply(rule fresh_subset_ext(1))
apply(auto simp add: fresh_prod fresh_atm fresh_ty)
apply(rule fresh_subset_ext(2))
apply(auto simp add: fresh_prod fresh_atm fresh_ty)
done
nominal_inductive typing
apply (simp_all add: abs_fresh fresh_atm fresh_list_cons fresh_prod fresh_ty fresh_ctxt
fresh_list_append abs_supp fin_supp)
apply(auto intro: fresh_under_insert)
done
lemma validn_elim:
assumes a: "validn ((x,B)#\<Gamma>)"
shows "validn \<Gamma> \<and> x\<sharp>\<Gamma>"
using a
apply(erule_tac validn.cases)
apply(auto)
done
lemma validc_elim:
assumes a: "validc ((a,B)#\<Delta>)"
shows "validc \<Delta> \<and> a\<sharp>\<Delta>"
using a
apply(erule_tac validc.cases)
apply(auto)
done
lemma context_fresh:
fixes x::"name"
and a::"coname"
shows "x\<sharp>\<Gamma> \<Longrightarrow> \<not>(\<exists>B. (x,B)\<in>set \<Gamma>)"
and "a\<sharp>\<Delta> \<Longrightarrow> \<not>(\<exists>B. (a,B)\<in>set \<Delta>)"
apply -
apply(induct \<Gamma>)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
apply(induct \<Delta>)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
lemma typing_implies_valid:
assumes a: "\<Gamma> \<turnstile> M \<turnstile> \<Delta>"
shows "validn \<Gamma> \<and> validc \<Delta>"
using a
apply(nominal_induct rule: typing.strong_induct)
apply(auto dest: validn_elim validc_elim)
done
lemma ty_perm:
fixes pi1::"name prm"
and pi2::"coname prm"
and B::"ty"
shows "pi1\<bullet>B=B" and "pi2\<bullet>B=B"
apply(nominal_induct B rule: ty.strong_induct)
apply(auto simp add: perm_string)
done
lemma ctxt_perm:
fixes pi1::"name prm"
and pi2::"coname prm"
and \<Gamma>::"ctxtn"
and \<Delta>::"ctxtc"
shows "pi2\<bullet>\<Gamma>=\<Gamma>" and "pi1\<bullet>\<Delta>=\<Delta>"
apply -
apply(induct \<Gamma>)
apply(auto simp add: calc_atm ty_perm)
apply(induct \<Delta>)
apply(auto simp add: calc_atm ty_perm)
done
lemma typing_Ax_elim1:
assumes a: "\<Gamma> \<turnstile> Ax x a \<turnstile> ((a,B)#\<Delta>)"
shows "(x,B)\<in>set \<Gamma>"
using a
apply(erule_tac typing.cases)
apply(simp_all add: trm.inject)
apply(auto)
apply(auto dest: validc_elim context_fresh)
done
lemma typing_Ax_elim2:
assumes a: "((x,B)#\<Gamma>) \<turnstile> Ax x a \<turnstile> \<Delta>"
shows "(a,B)\<in>set \<Delta>"
using a
apply(erule_tac typing.cases)
apply(simp_all add: trm.inject)
apply(auto dest!: validn_elim context_fresh)
done
lemma psubst_Ax_aux:
assumes a: "\<theta>_c cmaps a to Some (y,N)"
shows "lookupb x a \<theta>_c c P = Cut <c>.P (y).N"
using a
apply(induct \<theta>_c)
apply(auto)
done
lemma psubst_Ax:
assumes a: "\<theta>_n nmaps x to Some (c,P)"
and b: "\<theta>_c cmaps a to Some (y,N)"
shows "\<theta>_n,\<theta>_c<Ax x a> = Cut <c>.P (y).N"
using a b
apply(induct \<theta>_n)
apply(auto simp add: psubst_Ax_aux)
done
lemma psubst_Cut:
assumes a: "\<forall>x. M\<noteq>Ax x c"
and b: "\<forall>a. N\<noteq>Ax x a"
and c: "c\<sharp>(\<theta>_n,\<theta>_c,N)" "x\<sharp>(\<theta>_n,\<theta>_c,M)"
shows "\<theta>_n,\<theta>_c<Cut <c>.M (x).N> = Cut <c>.(\<theta>_n,\<theta>_c<M>) (x).(\<theta>_n,\<theta>_c<N>)"
using a b c
apply(simp)
done
lemma all_CAND:
assumes a: "\<Gamma> \<turnstile> M \<turnstile> \<Delta>"
and b: "\<theta>_n ncloses \<Gamma>"
and c: "\<theta>_c ccloses \<Delta>"
shows "SNa (\<theta>_n,\<theta>_c<M>)"
using a b c
proof(nominal_induct avoiding: \<theta>_n \<theta>_c rule: typing.strong_induct)
case (TAx \<Gamma> \<Delta> x B a \<theta>_n \<theta>_c)
then show ?case
apply -
apply(drule ncloses_elim)
apply(assumption)
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(erule conjE)+
apply(rule_tac s="Cut <c>.P (xa).Pa" and t="\<theta>_n,\<theta>_c<Ax x a>" in subst)
apply(rule sym)
apply(simp only: psubst_Ax)
apply(simp add: CUT_SNa)
done
next
case (TNotR x \<Gamma> B M \<Delta> \<Delta>' a \<theta>_n \<theta>_c)
then show ?case
apply(simp)
apply(subgoal_tac "(a,NOT B) \<in> set \<Delta>'")
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(rule_tac B="NOT B" in CUT_SNa)
apply(simp)
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="c" in exI)
apply(rule_tac x="x" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp)
apply(rule conjI)
apply(rule fic.intros)
apply(rule psubst_fresh_coname)
apply(simp)
apply(simp)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp)
apply(rule_tac x="x" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp)
apply(rule allI)+
apply(rule impI)
apply(simp add: psubst_nsubst[symmetric])
apply(drule_tac x="(x,aa,Pa)#\<theta>_n" in meta_spec)
apply(drule_tac x="\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(assumption)
apply(simp)
apply(blast)
done
next
case (TNotL a \<Delta> \<Gamma> M B \<Gamma>' x \<theta>_n \<theta>_c)
then show ?case
apply(simp)
apply(subgoal_tac "(x,NOT B) \<in> set \<Gamma>'")
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(rule_tac B="NOT B" in CUT_SNa)
apply(simp)
apply(rule NEG_intro)
apply(simp (no_asm))
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="a" in exI)
apply(rule_tac x="ca" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp del: NEGc.simps)
apply(rule conjI)
apply(rule fin.intros)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp (no_asm))
apply(rule_tac x="a" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp (no_asm))
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
apply(drule_tac x="\<theta>_n" in meta_spec)
apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(blast)
done
next
case (TAndL1 x \<Gamma> y B1 M \<Delta> \<Gamma>' B2 \<theta>_n \<theta>_c)
then show ?case
apply(simp)
apply(subgoal_tac "(y,B1 AND B2) \<in> set \<Gamma>'")
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(rule_tac B="B1 AND B2" in CUT_SNa)
apply(simp)
apply(rule NEG_intro)
apply(simp (no_asm))
apply(rule disjI2)
apply(rule disjI2)
apply(rule disjI1)
apply(rule_tac x="x" in exI)
apply(rule_tac x="ca" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp del: NEGc.simps)
apply(rule conjI)
apply(rule fin.intros)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp (no_asm))
apply(rule_tac x="x" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp (no_asm))
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
apply(drule_tac x="(x,a,Pa)#\<theta>_n" in meta_spec)
apply(drule_tac x="\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(simp)
apply(drule meta_mp)
apply(assumption)
apply(assumption)
apply(blast)
done
next
case (TAndL2 x \<Gamma> y B2 M \<Delta> \<Gamma>' B1 \<theta>_n \<theta>_c)
then show ?case
apply(simp)
apply(subgoal_tac "(y,B1 AND B2) \<in> set \<Gamma>'")
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(rule_tac B="B1 AND B2" in CUT_SNa)
apply(simp)
apply(rule NEG_intro)
apply(simp (no_asm))
apply(rule disjI2)
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="x" in exI)
apply(rule_tac x="ca" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp del: NEGc.simps)
apply(rule conjI)
apply(rule fin.intros)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp (no_asm))
apply(rule_tac x="x" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp (no_asm))
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
apply(drule_tac x="(x,a,Pa)#\<theta>_n" in meta_spec)
apply(drule_tac x="\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(simp)
apply(drule meta_mp)
apply(assumption)
apply(assumption)
apply(blast)
done
next
case (TAndR a \<Delta> N c b M \<Gamma> B C \<Delta>' \<theta>_n \<theta>_c)
then show ?case
apply(simp)
apply(subgoal_tac "(c,B AND C) \<in> set \<Delta>'")
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(rule_tac B="B AND C" in CUT_SNa)
apply(simp)
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="ca" in exI)
apply(rule_tac x="a" in exI)
apply(rule_tac x="b" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
apply(simp)
apply(rule conjI)
apply(rule fic.intros)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_coname)
apply(simp)
apply(simp)
apply(simp)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_coname)
apply(simp)
apply(simp)
apply(simp)
apply(rule conjI)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp)
apply(rule_tac x="a" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp)
apply(rule allI)+
apply(rule impI)
apply(simp add: psubst_csubst[symmetric])
apply(drule_tac x="\<theta>_n" in meta_spec)
apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(assumption)
apply(assumption)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp)
apply(rule_tac x="b" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
apply(simp)
apply(rule allI)+
apply(rule impI)
apply(simp add: psubst_csubst[symmetric])
apply(rotate_tac 14)
apply(drule_tac x="\<theta>_n" in meta_spec)
apply(drule_tac x="(b,xa,Pa)#\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(assumption)
apply(assumption)
apply(simp)
apply(blast)
done
next
case (TOrL x \<Gamma> N z y M B \<Delta> C \<Gamma>' \<theta>_n \<theta>_c)
then show ?case
apply(simp)
apply(subgoal_tac "(z,B OR C) \<in> set \<Gamma>'")
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(rule_tac B="B OR C" in CUT_SNa)
apply(simp)
apply(rule NEG_intro)
apply(simp (no_asm))
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="x" in exI)
apply(rule_tac x="y" in exI)
apply(rule_tac x="ca" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
apply(simp del: NEGc.simps)
apply(rule conjI)
apply(rule fin.intros)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(rule conjI)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp del: NEGc.simps)
apply(rule_tac x="x" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp del: NEGc.simps)
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
apply(drule_tac x="(x,a,Pa)#\<theta>_n" in meta_spec)
apply(drule_tac x="\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(assumption)
apply(drule meta_mp)
apply(assumption)
apply(assumption)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp del: NEGc.simps)
apply(rule_tac x="y" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
apply(simp del: NEGc.simps)
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
apply(rotate_tac 14)
apply(drule_tac x="(y,a,Pa)#\<theta>_n" in meta_spec)
apply(drule_tac x="\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(assumption)
apply(drule meta_mp)
apply(assumption)
apply(assumption)
apply(blast)
done
next
case (TOrR1 a \<Delta> b \<Gamma> M B1 \<Delta>' B2 \<theta>_n \<theta>_c)
then show ?case
apply(simp)
apply(subgoal_tac "(b,B1 OR B2) \<in> set \<Delta>'")
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(rule_tac B="B1 OR B2" in CUT_SNa)
apply(simp)
apply(rule disjI2)
apply(rule disjI2)
apply(rule disjI1)
apply(rule_tac x="a" in exI)
apply(rule_tac x="c" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp)
apply(rule conjI)
apply(rule fic.intros)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_coname)
apply(simp)
apply(simp)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp (no_asm))
apply(rule_tac x="a" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp (no_asm))
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
apply(drule_tac x="\<theta>_n" in meta_spec)
apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(simp)
apply(assumption)
apply(simp)
apply(blast)
done
next
case (TOrR2 a \<Delta> b \<Gamma> M B2 \<Delta>' B1 \<theta>_n \<theta>_c)
then show ?case
apply(simp)
apply(subgoal_tac "(b,B1 OR B2) \<in> set \<Delta>'")
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(rule_tac B="B1 OR B2" in CUT_SNa)
apply(simp)
apply(rule disjI2)
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="a" in exI)
apply(rule_tac x="c" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp)
apply(rule conjI)
apply(rule fic.intros)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_coname)
apply(simp)
apply(simp)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp (no_asm))
apply(rule_tac x="a" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp (no_asm))
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
apply(drule_tac x="\<theta>_n" in meta_spec)
apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(simp)
apply(assumption)
apply(simp)
apply(blast)
done
next
case (TImpL a \<Delta> N x \<Gamma> M y B C \<Gamma>' \<theta>_n \<theta>_c)
then show ?case
apply(simp)
apply(subgoal_tac "(y,B IMP C) \<in> set \<Gamma>'")
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(rule_tac B="B IMP C" in CUT_SNa)
apply(simp)
apply(rule NEG_intro)
apply(simp (no_asm))
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="x" in exI)
apply(rule_tac x="a" in exI)
apply(rule_tac x="ca" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
apply(simp del: NEGc.simps)
apply(rule conjI)
apply(rule fin.intros)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(rule conjI)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp del: NEGc.simps)
apply(rule_tac x="a" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp del: NEGc.simps)
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
apply(drule_tac x="\<theta>_n" in meta_spec)
apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(assumption)
apply(simp)
apply(simp)
apply(assumption)
apply(assumption)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp del: NEGc.simps)
apply(rule_tac x="x" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
apply(simp del: NEGc.simps)
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
apply(rotate_tac 12)
apply(drule_tac x="(x,aa,Pa)#\<theta>_n" in meta_spec)
apply(drule_tac x="\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(assumption)
apply(drule meta_mp)
apply(assumption)
apply(assumption)
apply(blast)
done
next
case (TImpR a \<Delta> b x \<Gamma> B M C \<Delta>' \<theta>_n \<theta>_c)
then show ?case
apply(simp)
apply(subgoal_tac "(b,B IMP C) \<in> set \<Delta>'")
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(rule_tac B="B IMP C" in CUT_SNa)
apply(simp)
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="x" in exI)
apply(rule_tac x="a" in exI)
apply(rule_tac x="c" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp)
apply(rule conjI)
apply(rule fic.intros)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_coname)
apply(simp)
apply(simp)
apply(simp)
apply(rule conjI)
apply(rule allI)+
apply(rule impI)
apply(simp add: psubst_csubst[symmetric])
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp)
apply(rule_tac x="x" in exI)
apply(rule_tac x="\<theta>_n,((a,z,Pa)#\<theta>_c)<M>" in exI)
apply(simp)
apply(rule allI)+
apply(rule impI)
apply(rule_tac t="\<theta>_n,((a,z,Pa)#\<theta>_c)<M>{x:=<aa>.Pb}" and
s="((x,aa,Pb)#\<theta>_n),((a,z,Pa)#\<theta>_c)<M>" in subst)
apply(rule psubst_nsubst)
apply(simp add: fresh_prod fresh_atm fresh_list_cons)
apply(drule_tac x="(x,aa,Pb)#\<theta>_n" in meta_spec)
apply(drule_tac x="(a,z,Pa)#\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(assumption)
apply(simp)
apply(simp)
apply(simp)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(auto intro: fresh_subset simp del: NEGc.simps)[1]
apply(simp)
apply(simp)
apply(assumption)
apply(rule allI)+
apply(rule impI)
apply(simp add: psubst_nsubst[symmetric])
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp)
apply(rule_tac x="a" in exI)
apply(rule_tac x="((x,ca,Q)#\<theta>_n),\<theta>_c<M>" in exI)
apply(simp)
apply(rule allI)+
apply(rule impI)
apply(rule_tac t="((x,ca,Q)#\<theta>_n),\<theta>_c<M>{a:=(xaa).Pa}" and
s="((x,ca,Q)#\<theta>_n),((a,xaa,Pa)#\<theta>_c)<M>" in subst)
apply(rule psubst_csubst)
apply(simp add: fresh_prod fresh_atm fresh_list_cons)
apply(drule_tac x="(x,ca,Q)#\<theta>_n" in meta_spec)
apply(drule_tac x="(a,xaa,Pa)#\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(assumption)
apply(simp)
apply(simp)
apply(simp)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(auto intro: fresh_subset simp del: NEGc.simps)[1]
apply(simp)
apply(simp)
apply(assumption)
apply(simp)
apply(blast)
done
next
case (TCut a \<Delta> N x \<Gamma> M B \<theta>_n \<theta>_c)
then show ?case
apply -
apply(case_tac "\<forall>y. M\<noteq>Ax y a")
apply(case_tac "\<forall>c. N\<noteq>Ax x c")
apply(simp)
apply(rule_tac B="B" in CUT_SNa)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp)
apply(rule_tac x="a" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp)
apply(rule allI)
apply(rule allI)
apply(rule impI)
apply(simp add: psubst_csubst[symmetric]) (*?*)
apply(drule_tac x="\<theta>_n" in meta_spec)
apply(drule_tac x="(a,xa,P)#\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp)
apply(rule_tac x="x" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
apply(simp)
apply(rule allI)
apply(rule allI)
apply(rule impI)
apply(simp add: psubst_nsubst[symmetric]) (*?*)
apply(rotate_tac 11)
apply(drule_tac x="(x,aa,P)#\<theta>_n" in meta_spec)
apply(drule_tac x="\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(drule_tac meta_mp)
apply(assumption)
apply(assumption)
(* cases at least one axiom *)
apply(simp (no_asm_use))
apply(erule exE)
apply(simp del: psubst.simps)
apply(drule typing_Ax_elim2)
apply(auto simp add: trm.inject)[1]
apply(rule_tac B="B" in CUT_SNa)
(* left term *)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp)
apply(rule_tac x="a" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
apply(simp)
apply(rule allI)+
apply(rule impI)
apply(drule_tac x="\<theta>_n" in meta_spec)
apply(drule_tac x="(a,xa,P)#\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(simp add: psubst_csubst[symmetric]) (*?*)
(* right term -axiom *)
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(erule conjE)
apply(frule_tac y="x" in lookupd_cmaps)
apply(drule cmaps_fresh)
apply(assumption)
apply(simp)
apply(subgoal_tac "(x):P[xa\<turnstile>n>x] = (xa):P")
apply(simp)
apply(simp add: ntrm.inject)
apply(simp add: alpha fresh_prod fresh_atm)
apply(rule sym)
apply(rule nrename_swap)
apply(simp)
(* M is axiom *)
apply(simp)
apply(auto)[1]
(* both are axioms *)
apply(rule_tac B="B" in CUT_SNa)
apply(drule typing_Ax_elim1)
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(erule conjE)
apply(frule_tac a="a" in lookupc_nmaps)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(simp)
apply(subgoal_tac "<a>:P[c\<turnstile>c>a] = <c>:P")
apply(simp)
apply(simp add: ctrm.inject)
apply(simp add: alpha fresh_prod fresh_atm)
apply(rule sym)
apply(rule crename_swap)
apply(simp)
apply(drule typing_Ax_elim2)
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(erule conjE)
apply(frule_tac y="x" in lookupd_cmaps)
apply(drule cmaps_fresh)
apply(assumption)
apply(simp)
apply(subgoal_tac "(x):P[xa\<turnstile>n>x] = (xa):P")
apply(simp)
apply(simp add: ntrm.inject)
apply(simp add: alpha fresh_prod fresh_atm)
apply(rule sym)
apply(rule nrename_swap)
apply(simp)
(* N is not axioms *)
apply(rule_tac B="B" in CUT_SNa)
(* left term *)
apply(drule typing_Ax_elim1)
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(erule conjE)
apply(frule_tac a="a" in lookupc_nmaps)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(simp)
apply(subgoal_tac "<a>:P[c\<turnstile>c>a] = <c>:P")
apply(simp)
apply(simp add: ctrm.inject)
apply(simp add: alpha fresh_prod fresh_atm)
apply(rule sym)
apply(rule crename_swap)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp)
apply(rule_tac x="x" in exI)
apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
apply(simp)
apply(rule allI)
apply(rule allI)
apply(rule impI)
apply(simp add: psubst_nsubst[symmetric]) (*?*)
apply(rotate_tac 10)
apply(drule_tac x="(x,aa,P)#\<theta>_n" in meta_spec)
apply(drule_tac x="\<theta>_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(drule_tac meta_mp)
apply(assumption)
apply(assumption)
done
qed
primrec "idn" :: "(name\<times>ty) list\<Rightarrow>coname\<Rightarrow>(name\<times>coname\<times>trm) list" where
"idn [] a = []"
| "idn (p#\<Gamma>) a = ((fst p),a,Ax (fst p) a)#(idn \<Gamma> a)"
primrec "idc" :: "(coname\<times>ty) list\<Rightarrow>name\<Rightarrow>(coname\<times>name\<times>trm) list" where
"idc [] x = []"
| "idc (p#\<Delta>) x = ((fst p),x,Ax x (fst p))#(idc \<Delta> x)"
lemma idn_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1\<bullet>(idn \<Gamma> a)) = idn (pi1\<bullet>\<Gamma>) (pi1\<bullet>a)"
and "(pi2\<bullet>(idn \<Gamma> a)) = idn (pi2\<bullet>\<Gamma>) (pi2\<bullet>a)"
apply(induct \<Gamma>)
apply(auto)
done
lemma idc_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1\<bullet>(idc \<Delta> x)) = idc (pi1\<bullet>\<Delta>) (pi1\<bullet>x)"
and "(pi2\<bullet>(idc \<Delta> x)) = idc (pi2\<bullet>\<Delta>) (pi2\<bullet>x)"
apply(induct \<Delta>)
apply(auto)
done
lemma ccloses_id:
shows "(idc \<Delta> x) ccloses \<Delta>"
apply(induct \<Delta>)
apply(auto simp add: ccloses_def)
apply(rule Ax_in_CANDs)
apply(rule Ax_in_CANDs)
done
lemma ncloses_id:
shows "(idn \<Gamma> a) ncloses \<Gamma>"
apply(induct \<Gamma>)
apply(auto simp add: ncloses_def)
apply(rule Ax_in_CANDs)
apply(rule Ax_in_CANDs)
done
lemma fresh_idn:
fixes x::"name"
and a::"coname"
shows "x\<sharp>\<Gamma> \<Longrightarrow> x\<sharp>idn \<Gamma> a"
and "a\<sharp>(\<Gamma>,b) \<Longrightarrow> a\<sharp>idn \<Gamma> b"
apply(induct \<Gamma>)
apply(auto simp add: fresh_list_cons fresh_list_nil fresh_atm fresh_prod)
done
lemma fresh_idc:
fixes x::"name"
and a::"coname"
shows "x\<sharp>(\<Delta>,y) \<Longrightarrow> x\<sharp>idc \<Delta> y"
and "a\<sharp>\<Delta> \<Longrightarrow> a\<sharp>idc \<Delta> y"
apply(induct \<Delta>)
apply(auto simp add: fresh_list_cons fresh_list_nil fresh_atm fresh_prod)
done
lemma idc_cmaps:
assumes a: "idc \<Delta> y cmaps b to Some (x,M)"
shows "M=Ax x b"
using a
apply(induct \<Delta>)
apply(auto)
apply(case_tac "b=a")
apply(auto)
done
lemma idn_nmaps:
assumes a: "idn \<Gamma> a nmaps x to Some (b,M)"
shows "M=Ax x b"
using a
apply(induct \<Gamma>)
apply(auto)
apply(case_tac "aa=x")
apply(auto)
done
lemma lookup1:
assumes a: "x\<sharp>(idn \<Gamma> b)"
shows "lookup x a (idn \<Gamma> b) \<theta>_c = lookupa x a \<theta>_c"
using a
apply(induct \<Gamma>)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
lemma lookup2:
assumes a: "\<not>(x\<sharp>(idn \<Gamma> b))"
shows "lookup x a (idn \<Gamma> b) \<theta>_c = lookupb x a \<theta>_c b (Ax x b)"
using a
apply(induct \<Gamma>)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
done
lemma lookup3:
assumes a: "a\<sharp>(idc \<Delta> y)"
shows "lookupa x a (idc \<Delta> y) = Ax x a"
using a
apply(induct \<Delta>)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
lemma lookup4:
assumes a: "\<not>(a\<sharp>(idc \<Delta> y))"
shows "lookupa x a (idc \<Delta> y) = Cut <a>.(Ax x a) (y).Ax y a"
using a
apply(induct \<Delta>)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
done
lemma lookup5:
assumes a: "a\<sharp>(idc \<Delta> y)"
shows "lookupb x a (idc \<Delta> y) c P = Cut <c>.P (x).Ax x a"
using a
apply(induct \<Delta>)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
done
lemma lookup6:
assumes a: "\<not>(a\<sharp>(idc \<Delta> y))"
shows "lookupb x a (idc \<Delta> y) c P = Cut <c>.P (y).Ax y a"
using a
apply(induct \<Delta>)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
done
lemma lookup7:
shows "lookupc x a (idn \<Gamma> b) = Ax x a"
apply(induct \<Gamma>)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
done
lemma lookup8:
shows "lookupd x a (idc \<Delta> y) = Ax x a"
apply(induct \<Delta>)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
done
lemma id_redu:
shows "(idn \<Gamma> x),(idc \<Delta> a)<M> \<longrightarrow>\<^sub>a* M"
apply(nominal_induct M avoiding: \<Gamma> \<Delta> x a rule: trm.strong_induct)
apply(auto)
(* Ax *)
apply(case_tac "name\<sharp>(idn \<Gamma> x)")
apply(simp add: lookup1)
apply(case_tac "coname\<sharp>(idc \<Delta> a)")
apply(simp add: lookup3)
apply(simp add: lookup4)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp)
apply(simp add: lookup2)
apply(case_tac "coname\<sharp>(idc \<Delta> a)")
apply(simp add: lookup5)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp)
apply(simp add: lookup6)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp)
(* Cut *)
apply(auto simp add: fresh_idn fresh_idc psubst_fresh_name psubst_fresh_coname fresh_atm fresh_prod )[1]
apply(simp add: lookup7 lookup8)
apply(simp add: lookup7 lookup8)
apply(simp add: a_star_Cut)
apply(simp add: lookup7 lookup8)
apply(simp add: a_star_Cut)
apply(simp add: a_star_Cut)
(* NotR *)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findc (idc \<Delta> a) coname")
apply(simp)
apply(simp add: a_star_NotR)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(drule idc_cmaps)
apply(simp)
apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(assumption)
apply(simp add: crename_fresh)
apply(simp add: a_star_NotR)
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
(* NotL *)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findn (idn \<Gamma> x) name")
apply(simp)
apply(simp add: a_star_NotL)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(drule idn_nmaps)
apply(simp)
apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(rule fin.intros)
apply(assumption)
apply(simp add: nrename_fresh)
apply(simp add: a_star_NotL)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
(* AndR *)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findc (idc \<Delta> a) coname3")
apply(simp)
apply(simp add: a_star_AndR)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(drule idc_cmaps)
apply(simp)
apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm1>")
apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm2>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(auto simp add: fresh_idn fresh_idc psubst_fresh_name crename_fresh fresh_atm fresh_prod )[1]
apply(rule aux3)
apply(rule crename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp add: fresh_prod fresh_atm)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp add: fresh_prod fresh_atm)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(simp)
apply(simp)
apply(simp add: crename_fresh)
apply(simp add: a_star_AndR)
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
(* AndL1 *)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findn (idn \<Gamma> x) name2")
apply(simp)
apply(simp add: a_star_AndL1)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(drule idn_nmaps)
apply(simp)
apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(rule fin.intros)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule nrename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(simp)
apply(simp add: nrename_fresh)
apply(simp add: a_star_AndL1)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
(* AndL2 *)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findn (idn \<Gamma> x) name2")
apply(simp)
apply(simp add: a_star_AndL2)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(drule idn_nmaps)
apply(simp)
apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(rule fin.intros)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule nrename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(simp)
apply(simp add: nrename_fresh)
apply(simp add: a_star_AndL2)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
(* OrR1 *)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findc (idc \<Delta> a) coname2")
apply(simp)
apply(simp add: a_star_OrR1)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(drule idc_cmaps)
apply(simp)
apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule crename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(simp)
apply(simp add: crename_fresh)
apply(simp add: a_star_OrR1)
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
(* OrR2 *)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findc (idc \<Delta> a) coname2")
apply(simp)
apply(simp add: a_star_OrR2)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(drule idc_cmaps)
apply(simp)
apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule crename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(simp)
apply(simp add: crename_fresh)
apply(simp add: a_star_OrR2)
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
(* OrL *)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findn (idn \<Gamma> x) name3")
apply(simp)
apply(simp add: a_star_OrL)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(drule idn_nmaps)
apply(simp)
apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm1>")
apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm2>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(rule fin.intros)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule nrename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
apply(simp)
apply(simp)
apply(simp add: nrename_fresh)
apply(simp add: a_star_OrL)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
(* ImpR *)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findc (idc \<Delta> a) coname2")
apply(simp)
apply(simp add: a_star_ImpR)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(drule idc_cmaps)
apply(simp)
apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule crename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(simp)
apply(simp add: crename_fresh)
apply(simp add: a_star_ImpR)
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
(* ImpL *)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findn (idn \<Gamma> x) name2")
apply(simp)
apply(simp add: a_star_ImpL)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(drule idn_nmaps)
apply(simp)
apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm1>")
apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm2>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(rule fin.intros)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule nrename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp add: fresh_atm)
apply(rule fresh_idc)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
apply(simp)
apply(simp add: nrename_fresh)
apply(simp add: a_star_ImpL)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
done
theorem ALL_SNa:
assumes a: "\<Gamma> \<turnstile> M \<turnstile> \<Delta>"
shows "SNa M"
proof -
fix x have "(idc \<Delta> x) ccloses \<Delta>" by (simp add: ccloses_id)
moreover
fix a have "(idn \<Gamma> a) ncloses \<Gamma>" by (simp add: ncloses_id)
ultimately have "SNa ((idn \<Gamma> a),(idc \<Delta> x)<M>)" using a by (simp add: all_CAND)
moreover
have "((idn \<Gamma> a),(idc \<Delta> x)<M>) \<longrightarrow>\<^sub>a* M" by (simp add: id_redu)
ultimately show "SNa M" by (simp add: a_star_preserves_SNa)
qed
end