proper Args.name vs. Args.text as documented (in contrast to adhoc union in 75aaee32893d, which had to cope with more limited Args.T);
(* Title: Sequents/simpdata.ML
Author: Lawrence C Paulson
Copyright 1999 University of Cambridge
Instantiation of the generic simplifier for LK.
Borrows from the DC simplifier of Soren Heilmann.
*)
(** Conversion into rewrite rules **)
(*Make atomic rewrite rules*)
fun atomize r =
case concl_of r of
Const(@{const_name Trueprop},_) $ Abs(_,_,a) $ Abs(_,_,c) =>
(case (Cla.forms_of_seq a, Cla.forms_of_seq c) of
([], [p]) =>
(case p of
Const(@{const_name imp},_)$_$_ => atomize(r RS @{thm mp_R})
| Const(@{const_name conj},_)$_$_ => atomize(r RS @{thm conjunct1}) @
atomize(r RS @{thm conjunct2})
| Const(@{const_name All},_)$_ => atomize(r RS @{thm spec})
| Const(@{const_name True},_) => [] (*True is DELETED*)
| Const(@{const_name False},_) => [] (*should False do something?*)
| _ => [r])
| _ => []) (*ignore theorem unless it has precisely one conclusion*)
| _ => [r];
(*Make meta-equalities.*)
fun mk_meta_eq ctxt th = case concl_of th of
Const(@{const_name Pure.eq},_)$_$_ => th
| Const(@{const_name Trueprop},_) $ Abs(_,_,a) $ Abs(_,_,c) =>
(case (Cla.forms_of_seq a, Cla.forms_of_seq c) of
([], [p]) =>
(case p of
(Const(@{const_name equal},_)$_$_) => th RS @{thm eq_reflection}
| (Const(@{const_name iff},_)$_$_) => th RS @{thm iff_reflection}
| (Const(@{const_name Not},_)$_) => th RS @{thm iff_reflection_F}
| _ => th RS @{thm iff_reflection_T})
| _ => error ("addsimps: unable to use theorem\n" ^ Display.string_of_thm ctxt th));
(*Replace premises x=y, X<->Y by X==Y*)
fun mk_meta_prems ctxt =
rule_by_tactic ctxt
(REPEAT_FIRST (resolve_tac [@{thm meta_eq_to_obj_eq}, @{thm def_imp_iff}]));
(*Congruence rules for = or <-> (instead of ==)*)
fun mk_meta_cong ctxt rl =
Drule.zero_var_indexes (mk_meta_eq ctxt (mk_meta_prems ctxt rl))
handle THM _ =>
error("Premises and conclusion of congruence rules must use =-equality or <->");
(*** Standard simpsets ***)
val triv_rls = [@{thm FalseL}, @{thm TrueR}, @{thm basic}, @{thm refl},
@{thm iff_refl}, reflexive_thm];
fun unsafe_solver ctxt =
FIRST' [resolve_tac (triv_rls @ Simplifier.prems_of ctxt), assume_tac];
(*No premature instantiation of variables during simplification*)
fun safe_solver ctxt =
FIRST' [fn i => DETERM (match_tac (triv_rls @ Simplifier.prems_of ctxt) i), eq_assume_tac];
(*No simprules, but basic infrastructure for simplification*)
val LK_basic_ss =
empty_simpset @{context}
setSSolver (mk_solver "safe" safe_solver)
setSolver (mk_solver "unsafe" unsafe_solver)
|> Simplifier.set_subgoaler asm_simp_tac
|> Simplifier.set_mksimps (fn ctxt => map (mk_meta_eq ctxt) o atomize o gen_all)
|> Simplifier.set_mkcong mk_meta_cong
|> simpset_of;
val LK_simps =
[@{thm triv_forall_equality}, (* prunes params *)
@{thm refl} RS @{thm P_iff_T}] @
@{thms conj_simps} @ @{thms disj_simps} @ @{thms not_simps} @
@{thms imp_simps} @ @{thms iff_simps} @ @{thms quant_simps} @
@{thms all_simps} @ @{thms ex_simps} @
[@{thm de_Morgan_conj}, @{thm de_Morgan_disj}, @{thm imp_disj1}, @{thm imp_disj2}] @
@{thms LK_extra_simps};
val LK_ss =
put_simpset LK_basic_ss @{context} addsimps LK_simps
|> Simplifier.add_eqcong @{thm left_cong}
|> Simplifier.add_cong @{thm imp_cong}
|> simpset_of;