(* Title: Pure/Isar/code.ML
Author: Florian Haftmann, TU Muenchen
Abstract executable content of theory. Management of data dependent on
executable content. Cache assumes non-concurrent processing of a single theory.
*)
signature CODE =
sig
(*constructor sets*)
val constrset_of_consts: theory -> (string * typ) list
-> string * ((string * sort) list * (string * typ list) list)
(*typ instantiations*)
val typscheme: theory -> string * typ -> (string * sort) list * typ
val inst_thm: theory -> sort Vartab.table -> thm -> thm
(*constants*)
val string_of_typ: theory -> typ -> string
val string_of_const: theory -> string -> string
val no_args: theory -> string -> int
val check_const: theory -> term -> string
val read_bare_const: theory -> string -> string * typ
val read_const: theory -> string -> string
(*constant aliasses*)
val add_const_alias: thm -> theory -> theory
val triv_classes: theory -> class list
val resubst_alias: theory -> string -> string
(*code equations*)
val mk_eqn: theory -> (string -> bool) -> thm * bool -> thm * bool
val mk_eqn_liberal: theory -> (string -> bool) -> thm -> (thm * bool) option
val assert_eqn: theory -> thm * bool -> thm * bool
val assert_eqns_const: theory -> string
-> (thm * bool) list -> (thm * bool) list
val const_typ_eqn: thm -> string * typ
val const_eqn: theory -> thm -> string
val typscheme_eqn: theory -> thm -> (string * sort) list * typ
val expand_eta: theory -> int -> thm -> thm
val rewrite_eqn: simpset -> thm -> thm
val rewrite_head: thm list -> thm -> thm
val norm_args: theory -> thm list -> thm list
val norm_varnames: theory -> thm list -> thm list
(*case certificates*)
val case_cert: thm -> string * (int * string list)
(*infrastructure*)
val add_attribute: string * attribute parser -> theory -> theory
val purge_data: theory -> theory
(*executable content*)
val add_datatype: (string * typ) list -> theory -> theory
val add_datatype_cmd: string list -> theory -> theory
val type_interpretation:
(string * ((string * sort) list * (string * typ list) list)
-> theory -> theory) -> theory -> theory
val add_eqn: thm -> theory -> theory
val add_nbe_eqn: thm -> theory -> theory
val add_default_eqn: thm -> theory -> theory
val add_default_eqn_attribute: attribute
val add_default_eqn_attrib: Attrib.src
val del_eqn: thm -> theory -> theory
val del_eqns: string -> theory -> theory
val add_eqnl: string * (thm * bool) list lazy -> theory -> theory
val add_case: thm -> theory -> theory
val add_undefined: string -> theory -> theory
(*data retrieval*)
val get_datatype: theory -> string -> ((string * sort) list * (string * typ list) list)
val get_datatype_of_constr: theory -> string -> string option
val default_typscheme: theory -> string -> (string * sort) list * typ
val these_eqns: theory -> string -> (thm * bool) list
val get_case_scheme: theory -> string -> (int * (int * string list)) option
val is_undefined: theory -> string -> bool
val print_codesetup: theory -> unit
end;
signature CODE_DATA_ARGS =
sig
type T
val empty: T
val purge: theory -> string list -> T -> T
end;
signature CODE_DATA =
sig
type T
val get: theory -> T
val change: theory -> (T -> T) -> T
val change_yield: theory -> (T -> 'a * T) -> 'a * T
end;
signature PRIVATE_CODE =
sig
include CODE
val declare_data: Object.T -> (theory -> string list -> Object.T -> Object.T)
-> serial
val get_data: serial * ('a -> Object.T) * (Object.T -> 'a)
-> theory -> 'a
val change_data: serial * ('a -> Object.T) * (Object.T -> 'a)
-> theory -> ('a -> 'a) -> 'a
val change_yield_data: serial * ('a -> Object.T) * (Object.T -> 'a)
-> theory -> ('a -> 'b * 'a) -> 'b * 'a
end;
structure Code : PRIVATE_CODE =
struct
(* auxiliary *)
fun string_of_typ thy = setmp show_sorts true (Syntax.string_of_typ_global thy);
fun string_of_const thy c = case AxClass.inst_of_param thy c
of SOME (c, tyco) => Sign.extern_const thy c ^ " " ^ enclose "[" "]" (Sign.extern_type thy tyco)
| NONE => Sign.extern_const thy c;
fun no_args thy = length o fst o strip_type o Sign.the_const_type thy;
(* utilities *)
fun typscheme thy (c, ty) =
let
val ty' = Logic.unvarifyT ty;
fun dest (TFree (v, sort)) = (v, sort)
| dest ty = error ("Illegal type parameter in type scheme: " ^ Syntax.string_of_typ_global thy ty);
val vs = map dest (Sign.const_typargs thy (c, ty'));
in (vs, Type.strip_sorts ty') end;
fun inst_thm thy tvars' thm =
let
val tvars = (Term.add_tvars o Thm.prop_of) thm [];
val inter_sort = Sorts.inter_sort (Sign.classes_of thy);
fun mk_inst (tvar as (v, sort)) = case Vartab.lookup tvars' v
of SOME sort' => SOME (pairself (Thm.ctyp_of thy o TVar)
(tvar, (v, inter_sort (sort, sort'))))
| NONE => NONE;
val insts = map_filter mk_inst tvars;
in Thm.instantiate (insts, []) thm end;
fun expand_eta thy k thm =
let
val (lhs, rhs) = (Logic.dest_equals o Thm.plain_prop_of) thm;
val (head, args) = strip_comb lhs;
val l = if k = ~1
then (length o fst o strip_abs) rhs
else Int.max (0, k - length args);
val used = Name.make_context (map (fst o fst) (Term.add_vars lhs []));
fun get_name _ 0 = pair []
| get_name (Abs (v, ty, t)) k =
Name.variants [v]
##>> get_name t (k - 1)
#>> (fn ([v'], vs') => (v', ty) :: vs')
| get_name t k =
let
val (tys, _) = (strip_type o fastype_of) t
in case tys
of [] => raise TERM ("expand_eta", [t])
| ty :: _ =>
Name.variants [""]
#-> (fn [v] => get_name (t $ Var ((v, 0), ty)) (k - 1)
#>> (fn vs' => (v, ty) :: vs'))
end;
val (vs, _) = get_name rhs l used;
fun expand (v, ty) thm = Drule.fun_cong_rule thm
(Thm.cterm_of thy (Var ((v, 0), ty)));
in
thm
|> fold expand vs
|> Conv.fconv_rule Drule.beta_eta_conversion
end;
fun eqn_conv conv =
let
fun lhs_conv ct = if can Thm.dest_comb ct
then (Conv.combination_conv lhs_conv conv) ct
else Conv.all_conv ct;
in Conv.combination_conv (Conv.arg_conv lhs_conv) conv end;
fun head_conv conv =
let
fun lhs_conv ct = if can Thm.dest_comb ct
then (Conv.fun_conv lhs_conv) ct
else conv ct;
in Conv.fun_conv (Conv.arg_conv lhs_conv) end;
val rewrite_eqn = Conv.fconv_rule o eqn_conv o Simplifier.rewrite;
val rewrite_head = Conv.fconv_rule o head_conv o MetaSimplifier.rewrite false;
fun norm_args thy thms =
let
val num_args_of = length o snd o strip_comb o fst o Logic.dest_equals;
val k = fold (curry Int.max o num_args_of o Thm.prop_of) thms 0;
in
thms
|> map (expand_eta thy k)
|> map (Conv.fconv_rule Drule.beta_eta_conversion)
end;
fun canonical_tvars thy thm =
let
val ctyp = Thm.ctyp_of thy;
val purify_tvar = unprefix "'" #> Name.desymbolize false #> prefix "'";
fun tvars_subst_for thm = (fold_types o fold_atyps)
(fn TVar (v_i as (v, _), sort) => let
val v' = purify_tvar v
in if v = v' then I
else insert (op =) (v_i, (v', sort)) end
| _ => I) (prop_of thm) [];
fun mk_inst (v_i, (v', sort)) (maxidx, acc) =
let
val ty = TVar (v_i, sort)
in
(maxidx + 1, (ctyp ty, ctyp (TVar ((v', maxidx), sort))) :: acc)
end;
val maxidx = Thm.maxidx_of thm + 1;
val (_, inst) = fold mk_inst (tvars_subst_for thm) (maxidx + 1, []);
in Thm.instantiate (inst, []) thm end;
fun canonical_vars thy thm =
let
val cterm = Thm.cterm_of thy;
val purify_var = Name.desymbolize false;
fun vars_subst_for thm = fold_aterms
(fn Var (v_i as (v, _), ty) => let
val v' = purify_var v
in if v = v' then I
else insert (op =) (v_i, (v', ty)) end
| _ => I) (prop_of thm) [];
fun mk_inst (v_i as (v, i), (v', ty)) (maxidx, acc) =
let
val t = Var (v_i, ty)
in
(maxidx + 1, (cterm t, cterm (Var ((v', maxidx), ty))) :: acc)
end;
val maxidx = Thm.maxidx_of thm + 1;
val (_, inst) = fold mk_inst (vars_subst_for thm) (maxidx + 1, []);
in Thm.instantiate ([], inst) thm end;
fun canonical_absvars thm =
let
val t = Thm.plain_prop_of thm;
val purify_var = Name.desymbolize false;
val t' = Term.map_abs_vars purify_var t;
in Thm.rename_boundvars t t' thm end;
fun norm_varnames thy thms =
let
fun burrow_thms f [] = []
| burrow_thms f thms =
thms
|> Conjunction.intr_balanced
|> f
|> Conjunction.elim_balanced (length thms)
in
thms
|> map (canonical_vars thy)
|> map canonical_absvars
|> map Drule.zero_var_indexes
|> burrow_thms (canonical_tvars thy)
|> Drule.zero_var_indexes_list
end;
(* const aliasses *)
structure ConstAlias = TheoryDataFun
(
type T = ((string * string) * thm) list * class list;
val empty = ([], []);
val copy = I;
val extend = I;
fun merge _ ((alias1, classes1), (alias2, classes2)) : T =
(Library.merge (eq_snd Thm.eq_thm_prop) (alias1, alias2),
Library.merge (op =) (classes1, classes2));
);
fun add_const_alias thm thy =
let
val lhs_rhs = case try Logic.dest_equals (Thm.prop_of thm)
of SOME lhs_rhs => lhs_rhs
| _ => error ("Not an equation: " ^ Display.string_of_thm thm);
val c_c' = case try (pairself (AxClass.unoverload_const thy o dest_Const)) lhs_rhs
of SOME c_c' => c_c'
| _ => error ("Not an equation with two constants: " ^ Display.string_of_thm thm);
val some_class = the_list (AxClass.class_of_param thy (snd c_c'));
in thy |>
ConstAlias.map (fn (alias, classes) =>
((c_c', thm) :: alias, fold (insert (op =)) some_class classes))
end;
fun resubst_alias thy =
let
val alias = fst (ConstAlias.get thy);
val subst_inst_param = Option.map fst o AxClass.inst_of_param thy;
fun subst_alias c =
get_first (fn ((c', c''), _) => if c = c'' then SOME c' else NONE) alias;
in
perhaps subst_inst_param
#> perhaps subst_alias
end;
val triv_classes = snd o ConstAlias.get;
(* reading constants as terms *)
fun check_bare_const thy t = case try dest_Const t
of SOME c_ty => c_ty
| NONE => error ("Not a constant: " ^ Syntax.string_of_term_global thy t);
fun check_const thy = AxClass.unoverload_const thy o check_bare_const thy;
fun read_bare_const thy = check_bare_const thy o Syntax.read_term_global thy;
fun read_const thy = AxClass.unoverload_const thy o read_bare_const thy;
(* constructor sets *)
fun constrset_of_consts thy cs =
let
val _ = map (fn (c, _) => if (is_some o AxClass.class_of_param thy) c
then error ("Is a class parameter: " ^ string_of_const thy c) else ()) cs;
fun no_constr (c, ty) = error ("Not a datatype constructor: " ^ string_of_const thy c
^ " :: " ^ string_of_typ thy ty);
fun last_typ c_ty ty =
let
val frees = OldTerm.typ_tfrees ty;
val (tyco, vs) = ((apsnd o map) (dest_TFree) o dest_Type o snd o strip_type) ty
handle TYPE _ => no_constr c_ty
val _ = if has_duplicates (eq_fst (op =)) vs then no_constr c_ty else ();
val _ = if length frees <> length vs then no_constr c_ty else ();
in (tyco, vs) end;
fun ty_sorts (c, ty) =
let
val ty_decl = (Logic.unvarifyT o Sign.the_const_type thy) c;
val (tyco, _) = last_typ (c, ty) ty_decl;
val (_, vs) = last_typ (c, ty) ty;
in ((tyco, map snd vs), (c, (map fst vs, ty))) end;
fun add ((tyco', sorts'), c) ((tyco, sorts), cs) =
let
val _ = if tyco' <> tyco
then error "Different type constructors in constructor set"
else ();
val sorts'' = map2 (curry (Sorts.inter_sort (Sign.classes_of thy))) sorts' sorts
in ((tyco, sorts), c :: cs) end;
fun inst vs' (c, (vs, ty)) =
let
val the_v = the o AList.lookup (op =) (vs ~~ vs');
val ty' = map_atyps (fn TFree (v, _) => TFree (the_v v)) ty;
in (c, (fst o strip_type) ty') end;
val c' :: cs' = map ty_sorts cs;
val ((tyco, sorts), cs'') = fold add cs' (apsnd single c');
val vs = Name.names Name.context Name.aT sorts;
val cs''' = map (inst vs) cs'';
in (tyco, (vs, rev cs''')) end;
(* code equations *)
exception BAD_THM of string;
fun bad_thm msg = raise BAD_THM msg;
fun error_thm f thm = f thm handle BAD_THM msg => error msg;
fun try_thm f thm = SOME (f thm) handle BAD_THM _ => NONE;
fun is_linear thm =
let val (_, args) = (strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of) thm
in not (has_duplicates (op =) ((fold o fold_aterms)
(fn Var (v, _) => cons v | _ => I) args [])) end;
fun gen_assert_eqn thy is_constr_head is_constr_pat (thm, proper) =
let
val (lhs, rhs) = (Logic.dest_equals o Thm.plain_prop_of) thm
handle TERM _ => bad_thm ("Not an equation: " ^ Display.string_of_thm thm)
| THM _ => bad_thm ("Not an equation: " ^ Display.string_of_thm thm);
fun vars_of t = fold_aterms (fn Var (v, _) => insert (op =) v
| Free _ => bad_thm ("Illegal free variable in equation\n"
^ Display.string_of_thm thm)
| _ => I) t [];
fun tvars_of t = fold_term_types (fn _ =>
fold_atyps (fn TVar (v, _) => insert (op =) v
| TFree _ => bad_thm
("Illegal free type variable in equation\n" ^ Display.string_of_thm thm))) t [];
val lhs_vs = vars_of lhs;
val rhs_vs = vars_of rhs;
val lhs_tvs = tvars_of lhs;
val rhs_tvs = tvars_of rhs;
val _ = if null (subtract (op =) lhs_vs rhs_vs)
then ()
else bad_thm ("Free variables on right hand side of equation\n"
^ Display.string_of_thm thm);
val _ = if null (subtract (op =) lhs_tvs rhs_tvs)
then ()
else bad_thm ("Free type variables on right hand side of equation\n"
^ Display.string_of_thm thm) val (head, args) = (strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of) thm;
val (c, ty) = case head
of Const (c_ty as (_, ty)) => (AxClass.unoverload_const thy c_ty, ty)
| _ => bad_thm ("Equation not headed by constant\n" ^ Display.string_of_thm thm);
fun check _ (Abs _) = bad_thm
("Abstraction on left hand side of equation\n"
^ Display.string_of_thm thm)
| check 0 (Var _) = ()
| check _ (Var _) = bad_thm
("Variable with application on left hand side of equation\n"
^ Display.string_of_thm thm)
| check n (t1 $ t2) = (check (n+1) t1; check 0 t2)
| check n (Const (c_ty as (c, ty))) = if n = (length o fst o strip_type) ty
then if not proper orelse is_constr_pat (AxClass.unoverload_const thy c_ty)
then ()
else bad_thm (quote c ^ " is not a constructor, on left hand side of equation\n"
^ Display.string_of_thm thm)
else bad_thm
("Partially applied constant " ^ quote c ^ " on left hand side of equation\n"
^ Display.string_of_thm thm);
val _ = map (check 0) args;
val _ = if not proper orelse is_linear thm then ()
else bad_thm ("Duplicate variables on left hand side of equation\n"
^ Display.string_of_thm thm);
val _ = if (is_none o AxClass.class_of_param thy) c
then ()
else bad_thm ("Polymorphic constant as head in equation\n"
^ Display.string_of_thm thm)
val _ = if not (is_constr_head c)
then ()
else bad_thm ("Constructor as head in equation\n"
^ Display.string_of_thm thm)
val ty_decl = Sign.the_const_type thy c;
val _ = if Sign.typ_equiv thy (Type.strip_sorts ty_decl, Type.strip_sorts ty)
then () else bad_thm ("Type\n" ^ string_of_typ thy ty
^ "\nof equation\n"
^ Display.string_of_thm thm
^ "\nis incompatible with declared function type\n"
^ string_of_typ thy ty_decl)
in (thm, proper) end;
fun assert_eqn thy is_constr = error_thm (gen_assert_eqn thy is_constr is_constr);
val const_typ_eqn = dest_Const o fst o strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of;
(*those following are permissive wrt. to overloaded constants!*)
fun mk_eqn thy is_constr_head = error_thm (gen_assert_eqn thy is_constr_head (K true)) o
apfst (LocalDefs.meta_rewrite_rule (ProofContext.init thy));
fun mk_eqn_liberal thy is_constr_head = Option.map (fn (thm, _) => (thm, is_linear thm))
o try_thm (gen_assert_eqn thy is_constr_head (K true))
o rpair false o LocalDefs.meta_rewrite_rule (ProofContext.init thy);
fun const_typ_eqn_unoverload thy thm =
let
val (c, ty) = const_typ_eqn thm;
val c' = AxClass.unoverload_const thy (c, ty);
in (c', ty) end;
fun typscheme_eqn thy = typscheme thy o const_typ_eqn_unoverload thy;
fun const_eqn thy = fst o const_typ_eqn_unoverload thy;
(* case cerificates *)
fun case_certificate thm =
let
val ((head, raw_case_expr), cases) = (apfst Logic.dest_equals
o apsnd Logic.dest_conjunctions o Logic.dest_implies o Thm.prop_of) thm;
val _ = case head of Free _ => true
| Var _ => true
| _ => raise TERM ("case_cert", []);
val ([(case_var, _)], case_expr) = Term.strip_abs_eta 1 raw_case_expr;
val (Const (case_const, _), raw_params) = strip_comb case_expr;
val n = find_index (fn Free (v, _) => v = case_var | _ => false) raw_params;
val _ = if n = ~1 then raise TERM ("case_cert", []) else ();
val params = map (fst o dest_Var) (nth_drop n raw_params);
fun dest_case t =
let
val (head' $ t_co, rhs) = Logic.dest_equals t;
val _ = if head' = head then () else raise TERM ("case_cert", []);
val (Const (co, _), args) = strip_comb t_co;
val (Var (param, _), args') = strip_comb rhs;
val _ = if args' = args then () else raise TERM ("case_cert", []);
in (param, co) end;
fun analyze_cases cases =
let
val co_list = fold (AList.update (op =) o dest_case) cases [];
in map (the o AList.lookup (op =) co_list) params end;
fun analyze_let t =
let
val (head' $ arg, Var (param', _) $ arg') = Logic.dest_equals t;
val _ = if head' = head then () else raise TERM ("case_cert", []);
val _ = if arg' = arg then () else raise TERM ("case_cert", []);
val _ = if [param'] = params then () else raise TERM ("case_cert", []);
in [] end;
fun analyze (cases as [let_case]) =
(analyze_cases cases handle Bind => analyze_let let_case)
| analyze cases = analyze_cases cases;
in (case_const, (n, analyze cases)) end;
fun case_cert thm = case_certificate thm
handle Bind => error "bad case certificate"
| TERM _ => error "bad case certificate";
(** code attributes **)
structure CodeAttr = TheoryDataFun (
type T = (string * attribute parser) list;
val empty = [];
val copy = I;
val extend = I;
fun merge _ = AList.merge (op = : string * string -> bool) (K true);
);
fun add_attribute (attr as (name, _)) =
let
fun add_parser ("", parser) attrs = attrs |> rev |> AList.update (op =) ("", parser) |> rev
| add_parser (name, parser) attrs = (name, Args.$$$ name |-- parser) :: attrs;
in CodeAttr.map (fn attrs => if not (name = "") andalso AList.defined (op =) attrs name
then error ("Code attribute " ^ name ^ " already declared") else add_parser attr attrs)
end;
val _ = Context.>> (Context.map_theory
(Attrib.setup (Binding.name "code")
(Scan.peek (fn context =>
List.foldr op || Scan.fail (map snd (CodeAttr.get (Context.theory_of context)))))
"declare theorems for code generation"));
(** logical and syntactical specification of executable code **)
(* code equations *)
type eqns = bool * (thm * bool) list lazy;
(*default flag, theorems with proper flag (perhaps lazy)*)
fun pretty_lthms ctxt r = case Lazy.peek r
of SOME thms => map (ProofContext.pretty_thm ctxt o fst) (Exn.release thms)
| NONE => [Pretty.str "[...]"];
fun certificate thy f r =
case Lazy.peek r
of SOME thms => (Lazy.value o f thy) (Exn.release thms)
| NONE => let
val thy_ref = Theory.check_thy thy;
in Lazy.lazy (fn () => (f (Theory.deref thy_ref) o Lazy.force) r) end;
fun add_drop_redundant thy (thm, proper) thms =
let
val args_of = snd o strip_comb o map_types Type.strip_sorts
o fst o Logic.dest_equals o Thm.plain_prop_of;
val args = args_of thm;
val incr_idx = Logic.incr_indexes ([], Thm.maxidx_of thm + 1);
fun matches_args args' = length args <= length args' andalso
Pattern.matchess thy (args, (map incr_idx o curry Library.take (length args)) args');
fun drop (thm', proper') = if (proper orelse not proper')
andalso matches_args (args_of thm') then
(warning ("Code generator: dropping redundant code equation\n" ^ Display.string_of_thm thm'); true)
else false;
in (thm, proper) :: filter_out drop thms end;
fun add_thm thy _ thm (false, thms) = (false, Lazy.map_force (add_drop_redundant thy thm) thms)
| add_thm thy true thm (true, thms) = (true, Lazy.map_force (fn thms => thms @ [thm]) thms)
| add_thm thy false thm (true, thms) = (false, Lazy.value [thm]);
fun add_lthms lthms _ = (false, lthms);
fun del_thm thm = (apsnd o Lazy.map_force) (remove (eq_fst Thm.eq_thm_prop) (thm, true));
(* specification data *)
datatype spec = Spec of {
concluded_history: bool,
eqns: ((bool * eqns) * (serial * eqns) list) Symtab.table
(*with explicit history*),
dtyps: ((serial * ((string * sort) list * (string * typ list) list)) list) Symtab.table
(*with explicit history*),
cases: (int * (int * string list)) Symtab.table * unit Symtab.table
};
fun mk_spec ((concluded_history, eqns), (dtyps, cases)) =
Spec { concluded_history = concluded_history, eqns = eqns, dtyps = dtyps, cases = cases };
val empty_spec =
mk_spec ((false, Symtab.empty), (Symtab.empty, (Symtab.empty, Symtab.empty)));
fun map_spec f (Spec { concluded_history = concluded_history, eqns = eqns,
dtyps = dtyps, cases = cases }) =
mk_spec (f ((concluded_history, eqns), (dtyps, cases)));
fun merge_spec (Spec { concluded_history = _, eqns = eqns1, dtyps = dtyps1, cases = (cases1, undefs1) },
Spec { concluded_history = _, eqns = eqns2, dtyps = dtyps2, cases = (cases2, undefs2) }) =
let
fun merge_eqns ((_, history1), (_, history2)) =
let
val raw_history = AList.merge (op = : serial * serial -> bool)
(K true) (history1, history2)
val filtered_history = filter_out (fst o snd) raw_history
val history = if null filtered_history
then raw_history else filtered_history;
in ((false, (snd o hd) history), history) end;
val eqns = Symtab.join (K merge_eqns) (eqns1, eqns2);
val dtyps = Symtab.join (K (AList.merge (op =) (K true))) (dtyps1, dtyps2);
val cases = (Symtab.merge (K true) (cases1, cases2),
Symtab.merge (K true) (undefs1, undefs2));
in mk_spec ((false, eqns), (dtyps, cases)) end;
(* code setup data *)
fun the_spec (Spec x) = x;
val the_eqns = #eqns o the_spec;
val the_dtyps = #dtyps o the_spec;
val the_cases = #cases o the_spec;
val map_concluded_history = map_spec o apfst o apfst;
val map_eqns = map_spec o apfst o apsnd;
val map_dtyps = map_spec o apsnd o apfst;
val map_cases = map_spec o apsnd o apsnd;
(* data slots dependent on executable content *)
(*private copy avoids potential conflict of table exceptions*)
structure Datatab = TableFun(type key = int val ord = int_ord);
local
type kind = {
empty: Object.T,
purge: theory -> string list -> Object.T -> Object.T
};
val kinds = ref (Datatab.empty: kind Datatab.table);
val kind_keys = ref ([]: serial list);
fun invoke f k = case Datatab.lookup (! kinds) k
of SOME kind => f kind
| NONE => sys_error "Invalid code data identifier";
in
fun declare_data empty purge =
let
val k = serial ();
val kind = {empty = empty, purge = purge};
val _ = change kinds (Datatab.update (k, kind));
val _ = change kind_keys (cons k);
in k end;
fun invoke_init k = invoke (fn kind => #empty kind) k;
fun invoke_purge_all thy cs =
fold (fn k => Datatab.map_entry k
(invoke (fn kind => #purge kind thy cs) k)) (! kind_keys);
end; (*local*)
(** theory store **)
local
type data = Object.T Datatab.table;
val empty_data = Datatab.empty : data;
structure Code_Data = TheoryDataFun
(
type T = spec * data ref;
val empty = (empty_spec, ref empty_data);
fun copy (spec, data) = (spec, ref (! data));
val extend = copy;
fun merge pp ((spec1, data1), (spec2, data2)) =
(merge_spec (spec1, spec2), ref empty_data);
);
fun thy_data f thy = f ((snd o Code_Data.get) thy);
fun get_ensure_init kind data_ref =
case Datatab.lookup (! data_ref) kind
of SOME x => x
| NONE => let val y = invoke_init kind
in (change data_ref (Datatab.update (kind, y)); y) end;
in
(* access to executable content *)
val the_exec = fst o Code_Data.get;
fun complete_class_params thy cs =
fold (fn c => case AxClass.inst_of_param thy c
of NONE => insert (op =) c
| SOME (c', _) => insert (op =) c' #> insert (op =) c) cs [];
fun map_exec_purge touched f thy =
Code_Data.map (fn (exec, data) => (f exec, ref (case touched
of SOME cs => invoke_purge_all thy (complete_class_params thy cs) (! data)
| NONE => empty_data))) thy;
val purge_data = (Code_Data.map o apsnd) (K (ref empty_data));
(* tackling equation history *)
fun get_eqns thy c =
Symtab.lookup ((the_eqns o the_exec) thy) c
|> Option.map (Lazy.force o snd o snd o fst)
|> these;
fun continue_history thy = if (#concluded_history o the_spec o the_exec) thy
then thy
|> (Code_Data.map o apfst o map_concluded_history) (K false)
|> SOME
else NONE;
fun conclude_history thy = if (#concluded_history o the_spec o the_exec) thy
then NONE
else thy
|> (Code_Data.map o apfst)
((map_eqns o Symtab.map) (fn ((changed, current), history) =>
((false, current),
if changed then (serial (), current) :: history else history))
#> map_concluded_history (K true))
|> SOME;
val _ = Context.>> (Context.map_theory (Code_Data.init
#> Theory.at_begin continue_history
#> Theory.at_end conclude_history));
(* access to data dependent on abstract executable content *)
fun get_data (kind, _, dest) = thy_data (get_ensure_init kind #> dest);
fun change_data (kind, mk, dest) =
let
fun chnge data_ref f =
let
val data = get_ensure_init kind data_ref;
val data' = f (dest data);
in (change data_ref (Datatab.update (kind, mk data')); data') end;
in thy_data chnge end;
fun change_yield_data (kind, mk, dest) =
let
fun chnge data_ref f =
let
val data = get_ensure_init kind data_ref;
val (x, data') = f (dest data);
in (x, (change data_ref (Datatab.update (kind, mk data')); data')) end;
in thy_data chnge end;
end; (*local*)
fun print_codesetup thy =
let
val ctxt = ProofContext.init thy;
val exec = the_exec thy;
fun pretty_eqn (s, (_, lthms)) =
(Pretty.block o Pretty.fbreaks) (
Pretty.str s :: pretty_lthms ctxt lthms
);
fun pretty_dtyp (s, []) =
Pretty.str s
| pretty_dtyp (s, cos) =
(Pretty.block o Pretty.breaks) (
Pretty.str s
:: Pretty.str "="
:: separate (Pretty.str "|") (map (fn (c, []) => Pretty.str (string_of_const thy c)
| (c, tys) =>
(Pretty.block o Pretty.breaks)
(Pretty.str (string_of_const thy c)
:: Pretty.str "of"
:: map (Pretty.quote o Syntax.pretty_typ_global thy) tys)) cos)
);
val eqns = the_eqns exec
|> Symtab.dest
|> (map o apfst) (string_of_const thy)
|> (map o apsnd) (snd o fst)
|> sort (string_ord o pairself fst);
val dtyps = the_dtyps exec
|> Symtab.dest
|> map (fn (dtco, (_, (vs, cos)) :: _) =>
(Syntax.string_of_typ_global thy (Type (dtco, map TFree vs)), cos))
|> sort (string_ord o pairself fst)
in
(Pretty.writeln o Pretty.chunks) [
Pretty.block (
Pretty.str "code equations:"
:: Pretty.fbrk
:: (Pretty.fbreaks o map pretty_eqn) eqns
),
Pretty.block (
Pretty.str "datatypes:"
:: Pretty.fbrk
:: (Pretty.fbreaks o map pretty_dtyp) dtyps
)
]
end;
(** theorem transformation and certification **)
fun common_typ_eqns thy [] = []
| common_typ_eqns thy [thm] = [thm]
| common_typ_eqns thy (thms as thm :: _) = (*FIXME is too general*)
let
fun incr_thm thm max =
let
val thm' = incr_indexes max thm;
val max' = Thm.maxidx_of thm' + 1;
in (thm', max') end;
val (thms', maxidx) = fold_map incr_thm thms 0;
val ty1 :: tys = map (snd o const_typ_eqn) thms';
fun unify ty env = Sign.typ_unify thy (ty1, ty) env
handle Type.TUNIFY =>
error ("Type unificaton failed, while unifying code equations\n"
^ (cat_lines o map Display.string_of_thm) thms
^ "\nwith types\n"
^ (cat_lines o map (string_of_typ thy)) (ty1 :: tys));
val (env, _) = fold unify tys (Vartab.empty, maxidx)
val instT = Vartab.fold (fn (x_i, (sort, ty)) =>
cons (Thm.ctyp_of thy (TVar (x_i, sort)), Thm.ctyp_of thy ty)) env [];
in map (Thm.instantiate (instT, [])) thms' end;
(** interfaces and attributes **)
fun get_datatype thy tyco =
case these (Symtab.lookup ((the_dtyps o the_exec) thy) tyco)
of (_, spec) :: _ => spec
| [] => Sign.arity_number thy tyco
|> Name.invents Name.context Name.aT
|> map (rpair [])
|> rpair [];
fun get_datatype_of_constr thy c =
case (snd o strip_type o Sign.the_const_type thy) c
of Type (tyco, _) => if member (op =) ((map fst o snd o get_datatype thy) tyco) c
then SOME tyco else NONE
| _ => NONE;
fun is_constr thy = is_some o get_datatype_of_constr thy;
val assert_eqn = fn thy => assert_eqn thy (is_constr thy);
fun assert_eqns_const thy c eqns =
let
fun cert (eqn as (thm, _)) = if c = const_eqn thy thm
then eqn else error ("Wrong head of code equation,\nexpected constant "
^ string_of_const thy c ^ "\n" ^ Display.string_of_thm thm)
in map (cert o assert_eqn thy) eqns end;
fun change_eqns delete c f = (map_exec_purge (SOME [c]) o map_eqns
o (if delete then Symtab.map_entry c else Symtab.map_default (c, ((false, (true, Lazy.value [])), [])))
o apfst) (fn (_, eqns) => (true, f eqns));
fun gen_add_eqn default (eqn as (thm, _)) thy =
let val c = const_eqn thy thm
in change_eqns false c (add_thm thy default eqn) thy end;
fun add_eqn thm thy =
gen_add_eqn false (mk_eqn thy (is_constr thy) (thm, true)) thy;
fun add_default_eqn thm thy =
case mk_eqn_liberal thy (is_constr thy) thm
of SOME eqn => gen_add_eqn true eqn thy
| NONE => thy;
fun add_nbe_eqn thm thy =
gen_add_eqn false (mk_eqn thy (is_constr thy) (thm, false)) thy;
fun add_eqnl (c, lthms) thy =
let
val lthms' = certificate thy (fn thy => assert_eqns_const thy c) lthms;
in change_eqns false c (add_lthms lthms') thy end;
val add_default_eqn_attribute = Thm.declaration_attribute
(fn thm => Context.mapping (add_default_eqn thm) I);
val add_default_eqn_attrib = Attrib.internal (K add_default_eqn_attribute);
fun del_eqn thm thy = case mk_eqn_liberal thy (is_constr thy) thm
of SOME (thm, _) => change_eqns true (const_eqn thy thm) (del_thm thm) thy
| NONE => thy;
fun del_eqns c = change_eqns true c (K (false, Lazy.value []));
fun get_case_scheme thy = Symtab.lookup ((fst o the_cases o the_exec) thy);
val is_undefined = Symtab.defined o snd o the_cases o the_exec;
structure TypeInterpretation = InterpretationFun(type T = string * serial val eq = eq_snd (op =) : T * T -> bool);
fun add_datatype raw_cs thy =
let
val cs = map (fn c_ty as (_, ty) => (AxClass.unoverload_const thy c_ty, ty)) raw_cs;
val (tyco, vs_cos) = constrset_of_consts thy cs;
val old_cs = (map fst o snd o get_datatype thy) tyco;
fun drop_outdated_cases cases = fold Symtab.delete_safe
(Symtab.fold (fn (c, (_, (_, cos))) =>
if exists (member (op =) old_cs) cos
then insert (op =) c else I) cases []) cases;
in
thy
|> fold (del_eqns o fst) cs
|> map_exec_purge NONE
((map_dtyps o Symtab.map_default (tyco, [])) (cons (serial (), vs_cos))
#> (map_cases o apfst) drop_outdated_cases)
|> TypeInterpretation.data (tyco, serial ())
end;
fun type_interpretation f = TypeInterpretation.interpretation
(fn (tyco, _) => fn thy => f (tyco, get_datatype thy tyco) thy);
fun add_datatype_cmd raw_cs thy =
let
val cs = map (read_bare_const thy) raw_cs;
in add_datatype cs thy end;
fun add_case thm thy =
let
val (c, (k, case_pats)) = case_cert thm;
val _ = case filter_out (is_constr thy) case_pats
of [] => ()
| cs => error ("Non-constructor(s) in case certificate: " ^ commas (map quote cs));
val entry = (1 + Int.max (1, length case_pats), (k, case_pats))
in (map_exec_purge (SOME [c]) o map_cases o apfst) (Symtab.update (c, entry)) thy end;
fun add_undefined c thy =
(map_exec_purge (SOME [c]) o map_cases o apsnd) (Symtab.update (c, ())) thy;
val _ = Context.>> (Context.map_theory
(let
fun mk_attribute f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I);
fun add_simple_attribute (name, f) =
add_attribute (name, Scan.succeed (mk_attribute f));
fun add_del_attribute (name, (add, del)) =
add_attribute (name, Args.del |-- Scan.succeed (mk_attribute del)
|| Scan.succeed (mk_attribute add))
in
TypeInterpretation.init
#> add_del_attribute ("", (add_eqn, del_eqn))
#> add_simple_attribute ("nbe", add_nbe_eqn)
end));
fun these_eqns thy c =
get_eqns thy c
|> (map o apfst) (Thm.transfer thy)
|> burrow_fst (common_typ_eqns thy);
fun default_typscheme thy c =
let
fun the_const_typscheme c = (curry (typscheme thy) c o snd o dest_Const
o TermSubst.zero_var_indexes o curry Const "" o Sign.the_const_type thy) c;
fun strip_sorts (vs, ty) = (map (fn (v, _) => (v, [])) vs, ty);
in case AxClass.class_of_param thy c
of SOME class => ([(Name.aT, [class])], snd (the_const_typscheme c))
| NONE => if is_constr thy c
then strip_sorts (the_const_typscheme c)
else case get_eqns thy c
of (thm, _) :: _ => (typscheme_eqn thy o Drule.zero_var_indexes) thm
| [] => strip_sorts (the_const_typscheme c) end;
end; (*struct*)
(** type-safe interfaces for data depedent on executable content **)
functor CodeDataFun(Data: CODE_DATA_ARGS): CODE_DATA =
struct
type T = Data.T;
exception Data of T;
fun dest (Data x) = x
val kind = Code.declare_data (Data Data.empty)
(fn thy => fn cs => fn Data x => Data (Data.purge thy cs x));
val data_op = (kind, Data, dest);
val get = Code.get_data data_op;
val change = Code.change_data data_op;
fun change_yield thy = Code.change_yield_data data_op thy;
end;
structure Code : CODE = struct open Code; end;