Proof methods.
(* Title: CCL/ex/list
ID: $Id$
Author: Martin Coen, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
For list.thy.
*)
open List;
val list_defs = [map_def,comp_def,append_def,filter_def,flat_def,
insert_def,isort_def,partition_def,qsort_def];
(****)
val listBs = map (fn s=>prove_goalw List.thy list_defs s (fn _ => [simp_tac term_ss 1]))
["(f o g) = (%a.f(g(a)))",
"(f o g)(a) = f(g(a))",
"map(f,[]) = []",
"map(f,x$xs) = f(x)$map(f,xs)",
"[] @ m = m",
"x$xs @ m = x$(xs @ m)",
"filter(f,[]) = []",
"filter(f,x$xs) = if f`x then x$filter(f,xs) else filter(f,xs)",
"flat([]) = []",
"flat(x$xs) = x @ flat(xs)",
"insert(f,a,[]) = a$[]",
"insert(f,a,x$xs) = if f`a`x then a$x$xs else x$insert(f,a,xs)"];
val list_ss = nat_ss addsimps listBs;
(****)
val [prem] = goal List.thy "n:Nat ==> map(f) ^ n ` [] = []";
br (prem RS Nat_ind) 1;
by (ALLGOALS (asm_simp_tac list_ss));
val nmapBnil = result();
val [prem] = goal List.thy "n:Nat ==> map(f)^n`(x$xs) = (f^n`x)$(map(f)^n`xs)";
br (prem RS Nat_ind) 1;
by (ALLGOALS (asm_simp_tac list_ss));
val nmapBcons = result();
(***)
val prems = goalw List.thy [map_def]
"[| !!x.x:A==>f(x):B; l : List(A) |] ==> map(f,l) : List(B)";
by (typechk_tac prems 1);
val mapT = result();
val prems = goalw List.thy [append_def]
"[| l : List(A); m : List(A) |] ==> l @ m : List(A)";
by (typechk_tac prems 1);
val appendT = result();
val prems = goal List.thy
"[| l : {l:List(A). m : {m:List(A).P(l @ m)}} |] ==> l @ m : {x:List(A). P(x)}";
by (cut_facts_tac prems 1);
by (fast_tac (set_cs addSIs [SubtypeI,appendT] addSEs [SubtypeE]) 1);
val appendTS = result();
val prems = goalw List.thy [filter_def]
"[| f:A->Bool; l : List(A) |] ==> filter(f,l) : List(A)";
by (typechk_tac prems 1);
val filterT = result();
val prems = goalw List.thy [flat_def]
"l : List(List(A)) ==> flat(l) : List(A)";
by (typechk_tac (appendT::prems) 1);
val flatT = result();
val prems = goalw List.thy [insert_def]
"[| f : A->A->Bool; a:A; l : List(A) |] ==> insert(f,a,l) : List(A)";
by (typechk_tac prems 1);
val insertT = result();
val prems = goal List.thy
"[| f : {f:A->A->Bool. a : {a:A. l : {l:List(A).P(insert(f,a,l))}}} |] ==> \
\ insert(f,a,l) : {x:List(A). P(x)}";
by (cut_facts_tac prems 1);
by (fast_tac (set_cs addSIs [SubtypeI,insertT] addSEs [SubtypeE]) 1);
val insertTS = result();
val prems = goalw List.thy [partition_def]
"[| f:A->Bool; l : List(A) |] ==> partition(f,l) : List(A)*List(A)";
by (typechk_tac prems 1);
by clean_ccs_tac;
br (ListPRI RS wfstI RS (ListPR_wf RS wmap_wf RS wfI)) 2;
br (ListPRI RS wfstI RS (ListPR_wf RS wmap_wf RS wfI)) 1;
by (REPEAT (atac 1));
val partitionT = result();
(*** Correctness Conditions for Insertion Sort ***)
val prems = goalw List.thy [isort_def]
"f:A->A->Bool ==> isort(f) : PROD l:List(A).{x: List(A). Ord(f,x) & Perm(x,l)}";
by (gen_ccs_tac ([insertTS,insertT]@prems) 1);
(*** Correctness Conditions for Quick Sort ***)
val prems = goalw List.thy [qsort_def]
"f:A->A->Bool ==> qsort(f) : PROD l:List(A).{x: List(A). Ord(f,x) & Perm(x,l)}";
by (gen_ccs_tac ([partitionT,appendTS,appendT]@prems) 1);