Proof methods.
(* Title: CCL/ex/list.thy
ID: $Id$
Author: Martin Coen, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Programs defined over lists.
*)
List = Nat +
consts
map :: "[i=>i,i]=>i"
"o" :: "[i=>i,i=>i]=>i=>i" (infixr 55)
"@" :: "[i,i]=>i" (infixr 55)
mem :: "[i,i]=>i" (infixr 55)
filter :: "[i,i]=>i"
flat :: "i=>i"
partition :: "[i,i]=>i"
insert :: "[i,i,i]=>i"
isort :: "i=>i"
qsort :: "i=>i"
rules
map_def "map(f,l) == lrec(l,[],%x xs g.f(x)$g)"
comp_def "f o g == (%x.f(g(x)))"
append_def "l @ m == lrec(l,m,%x xs g.x$g)"
mem_def "a mem l == lrec(l,false,%h t g.if eq(a,h) then true else g)"
filter_def "filter(f,l) == lrec(l,[],%x xs g.if f`x then x$g else g)"
flat_def "flat(l) == lrec(l,[],%h t g.h @ g)"
insert_def "insert(f,a,l) == lrec(l,a$[],%h t g.if f`a`h then a$h$t else h$g)"
isort_def "isort(f) == lam l.lrec(l,[],%h t g.insert(f,h,g))"
partition_def
"partition(f,l) == letrec part l a b be lcase(l,<a,b>,%x xs.\
\ if f`x then part(xs,x$a,b) else part(xs,a,x$b)) \
\ in part(l,[],[])"
qsort_def "qsort(f) == lam l. letrec qsortx l be lcase(l,[],%h t. \
\ let p be partition(f`h,t) \
\ in split(p,%x y.qsortx(x) @ h$qsortx(y))) \
\ in qsortx(l)"
end