renamed linear_continuum_topology to connected_linorder_topology (and mention in NEWS)
(* Title: HOL/Tools/code_evaluation.ML
Author: Florian Haftmann, TU Muenchen
Evaluation and reconstruction of terms in ML.
*)
signature CODE_EVALUATION =
sig
val dynamic_value: theory -> term -> term option
val dynamic_value_strict: theory -> term -> term
val dynamic_value_exn: theory -> term -> term Exn.result
val static_value: theory -> string list -> typ list -> term -> term option
val static_value_strict: theory -> string list -> typ list -> term -> term
val static_value_exn: theory -> string list -> typ list -> term -> term Exn.result
val dynamic_conv: theory -> conv
val static_conv: theory -> string list -> typ list -> conv
val put_term: (unit -> term) -> Proof.context -> Proof.context
val tracing: string -> 'a -> 'a
val setup: theory -> theory
end;
structure Code_Evaluation : CODE_EVALUATION =
struct
(** term_of instances **)
(* formal definition *)
fun add_term_of tyco raw_vs thy =
let
val vs = map (fn (v, _) => (v, @{sort typerep})) raw_vs;
val ty = Type (tyco, map TFree vs);
val lhs = Const (@{const_name term_of}, ty --> @{typ term})
$ Free ("x", ty);
val rhs = @{term "undefined :: term"};
val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs));
fun triv_name_of t = (fst o dest_Free o fst o strip_comb o fst
o HOLogic.dest_eq o HOLogic.dest_Trueprop) t ^ "_triv";
in
thy
|> Class.instantiation ([tyco], vs, @{sort term_of})
|> `(fn lthy => Syntax.check_term lthy eq)
|-> (fn eq => Specification.definition (NONE, ((Binding.name (triv_name_of eq), []), eq)))
|> snd
|> Class.prove_instantiation_exit (K (Class.intro_classes_tac []))
end;
fun ensure_term_of (tyco, (raw_vs, _)) thy =
let
val need_inst = not (Sorts.has_instance (Sign.classes_of thy) tyco @{sort term_of})
andalso Sorts.has_instance (Sign.classes_of thy) tyco @{sort typerep};
in if need_inst then add_term_of tyco raw_vs thy else thy end;
(* code equations for datatypes *)
fun mk_term_of_eq thy ty (c, (_, tys)) =
let
val t = list_comb (Const (c, tys ---> ty),
map Free (Name.invent_names Name.context "a" tys));
val (arg, rhs) =
pairself (Thm.cterm_of thy o Logic.unvarify_types_global o Logic.varify_global)
(t,
map_aterms (fn t as Free (_, ty) => HOLogic.mk_term_of ty t | t => t)
(HOLogic.reflect_term t));
val cty = Thm.ctyp_of thy ty;
in
@{thm term_of_anything}
|> Drule.instantiate' [SOME cty] [SOME arg, SOME rhs]
|> Thm.varifyT_global
end;
fun add_term_of_code tyco raw_vs raw_cs thy =
let
val algebra = Sign.classes_of thy;
val vs = map (fn (v, sort) =>
(v, curry (Sorts.inter_sort algebra) @{sort typerep} sort)) raw_vs;
val ty = Type (tyco, map TFree vs);
val cs = (map o apsnd o apsnd o map o map_atyps)
(fn TFree (v, _) => TFree (v, (the o AList.lookup (op =) vs) v)) raw_cs;
val const = Axclass.param_of_inst thy (@{const_name term_of}, tyco);
val eqs = map (mk_term_of_eq thy ty) cs;
in
thy
|> Code.del_eqns const
|> fold Code.add_eqn eqs
end;
fun ensure_term_of_code (tyco, (raw_vs, cs)) thy =
let
val has_inst = Sorts.has_instance (Sign.classes_of thy) tyco @{sort term_of};
in if has_inst then add_term_of_code tyco raw_vs cs thy else thy end;
(* code equations for abstypes *)
fun mk_abs_term_of_eq thy ty abs ty_rep proj =
let
val arg = Var (("x", 0), ty);
val rhs = Abs ("y", @{typ term}, HOLogic.reflect_term (Const (abs, ty_rep --> ty) $ Bound 0)) $
(HOLogic.mk_term_of ty_rep (Const (proj, ty --> ty_rep) $ arg))
|> Thm.cterm_of thy;
val cty = Thm.ctyp_of thy ty;
in
@{thm term_of_anything}
|> Drule.instantiate' [SOME cty] [SOME (Thm.cterm_of thy arg), SOME rhs]
|> Thm.varifyT_global
end;
fun add_abs_term_of_code tyco raw_vs abs raw_ty_rep proj thy =
let
val algebra = Sign.classes_of thy;
val vs = map (fn (v, sort) =>
(v, curry (Sorts.inter_sort algebra) @{sort typerep} sort)) raw_vs;
val ty = Type (tyco, map TFree vs);
val ty_rep = map_atyps
(fn TFree (v, _) => TFree (v, (the o AList.lookup (op =) vs) v)) raw_ty_rep;
val const = Axclass.param_of_inst thy (@{const_name term_of}, tyco);
val eq = mk_abs_term_of_eq thy ty abs ty_rep proj;
in
thy
|> Code.del_eqns const
|> Code.add_eqn eq
end;
fun ensure_abs_term_of_code (tyco, (raw_vs, ((abs, (_, ty)), (proj, _)))) thy =
let
val has_inst = Sorts.has_instance (Sign.classes_of thy) tyco @{sort term_of};
in if has_inst then add_abs_term_of_code tyco raw_vs abs ty proj thy else thy end;
(** termifying syntax **)
fun map_default f xs =
let val ys = map f xs
in if exists is_some ys
then SOME (map2 the_default xs ys)
else NONE
end;
fun subst_termify_app (Const (@{const_name termify}, _), [t]) =
if not (Term.has_abs t)
then if fold_aterms (fn Const _ => I | _ => K false) t true
then SOME (HOLogic.reflect_term t)
else error "Cannot termify expression containing variable"
else error "Cannot termify expression containing abstraction"
| subst_termify_app (t, ts) = case map_default subst_termify ts
of SOME ts' => SOME (list_comb (t, ts'))
| NONE => NONE
and subst_termify (Abs (v, T, t)) = (case subst_termify t
of SOME t' => SOME (Abs (v, T, t'))
| NONE => NONE)
| subst_termify t = subst_termify_app (strip_comb t)
fun check_termify ctxt ts =
the_default ts (map_default subst_termify ts);
(** evaluation **)
structure Evaluation = Proof_Data
(
type T = unit -> term
(* FIXME avoid user error with non-user text *)
fun init _ () = error "Evaluation"
);
val put_term = Evaluation.put;
val cookie = (Evaluation.get, put_term, "Code_Evaluation.put_term");
fun mk_term_of t = HOLogic.mk_term_of (fastype_of t) t;
fun term_of_const_for thy = Axclass.unoverload_const thy o dest_Const o HOLogic.term_of_const;
fun gen_dynamic_value dynamic_value thy t =
dynamic_value cookie thy NONE I (mk_term_of t) [];
val dynamic_value = gen_dynamic_value Code_Runtime.dynamic_value;
val dynamic_value_strict = gen_dynamic_value Code_Runtime.dynamic_value_strict;
val dynamic_value_exn = gen_dynamic_value Code_Runtime.dynamic_value_exn;
fun gen_static_value static_value thy consts Ts =
static_value cookie thy NONE I (union (op =) (map (term_of_const_for thy) Ts) consts)
o mk_term_of;
val static_value = gen_static_value Code_Runtime.static_value;
val static_value_strict = gen_static_value Code_Runtime.static_value_strict;
val static_value_exn = gen_static_value Code_Runtime.static_value_exn;
fun certify_eval thy value conv ct =
let
val t = Thm.term_of ct;
val T = fastype_of t;
val mk_eq = Thm.mk_binop (Thm.cterm_of thy (Const ("==", T --> T --> propT)));
in case value t
of NONE => Thm.reflexive ct
| SOME t' => conv (mk_eq ct (Thm.cterm_of thy t')) RS @{thm eq_eq_TrueD}
handle THM _ =>
error ("Failed to certify evaluation result of " ^ Syntax.string_of_term_global thy t)
end;
fun dynamic_conv thy = certify_eval thy (dynamic_value thy)
(Code_Runtime.dynamic_holds_conv thy);
fun static_conv thy consts Ts =
let
val eqs = "==" :: @{const_name HOL.eq} ::
map (fn T => Axclass.unoverload_const thy (@{const_name HOL.equal}, T)) Ts;
(*assumes particular code equations for "==" etc.*)
in
certify_eval thy (static_value thy consts Ts)
(Code_Runtime.static_holds_conv thy (union (op =) eqs consts))
end;
(** diagnostic **)
fun tracing s x = (Output.tracing s; x);
(** setup **)
val setup =
Code.datatype_interpretation ensure_term_of
#> Code.abstype_interpretation ensure_term_of
#> Code.datatype_interpretation ensure_term_of_code
#> Code.abstype_interpretation ensure_abs_term_of_code
#> Context.theory_map (Syntax_Phases.term_check 0 "termify" check_termify)
#> Value.add_evaluator ("code", dynamic_value_strict o Proof_Context.theory_of);
end;