(* Author: Clemens Ballarin
Normalisation method for locales ring and cring.
*)
signature RINGSIMP =
sig
val print_structures: Proof.context -> unit
val add_struct: string * term list -> attribute
val del_struct: string * term list -> attribute
val algebra_tac: Proof.context -> int -> tactic
end;
structure Ringsimp: RINGSIMP =
struct
(** Theory and context data **)
fun struct_eq ((s1: string, ts1), (s2, ts2)) =
(s1 = s2) andalso eq_list (op aconv) (ts1, ts2);
structure Data = Generic_Data
(
type T = ((string * term list) * thm list) list;
(* Algebraic structures:
identifier of the structure, list of operations and simp rules,
identifier and operations identify the structure uniquely. *)
val empty = [];
val merge = AList.join struct_eq (K Thm.merge_thms);
);
fun print_structures ctxt =
let
val structs = Data.get (Context.Proof ctxt);
val pretty_term = Pretty.quote o Syntax.pretty_term ctxt;
fun pretty_struct ((s, ts), _) = Pretty.block
[Pretty.str s, Pretty.str ":", Pretty.brk 1,
Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
in Pretty.writeln (Pretty.big_list "Algebraic structures:" (map pretty_struct structs)) end;
(** Method **)
fun struct_tac ctxt ((s, ts), simps) =
let
val ops = map (fst o Term.strip_comb) ts;
fun ord (Const (a, _)) = find_index (fn (Const (b, _)) => a=b | _ => false) ops
| ord (Free (a, _)) = find_index (fn (Free (b, _)) => a=b | _ => false) ops;
in
asm_full_simp_tac
(put_simpset HOL_ss ctxt addsimps simps |> Simplifier.set_term_ord (Term_Ord.term_lpo ord))
end;
fun algebra_tac ctxt =
EVERY' (map (fn s => TRY o struct_tac ctxt s) (Data.get (Context.Proof ctxt)));
(** Attribute **)
fun add_struct s =
Thm.declaration_attribute
(fn thm => Data.map (AList.map_default struct_eq (s, []) (insert Thm.eq_thm_prop thm)));
fun del_struct s =
Thm.declaration_attribute
(fn _ => Data.map (AList.delete struct_eq s));
end;