added Attrib.setup_config_XXX conveniences, with implicit setup of the background theory;
proper name bindings;
(* Title: HOL/Algebra/IntRing.thy
Author: Stephan Hohe, TU Muenchen
Author: Clemens Ballarin
*)
theory IntRing
imports QuotRing Lattice Int "~~/src/HOL/Old_Number_Theory/Primes"
begin
section {* The Ring of Integers *}
subsection {* Some properties of @{typ int} *}
lemma dvds_eq_abseq:
"(l dvd k \<and> k dvd l) = (abs l = abs (k::int))"
apply rule
apply (simp add: zdvd_antisym_abs)
apply (simp add: dvd_if_abs_eq)
done
subsection {* @{text "\<Z>"}: The Set of Integers as Algebraic Structure *}
abbreviation
int_ring :: "int ring" ("\<Z>") where
"int_ring == (| carrier = UNIV, mult = op *, one = 1, zero = 0, add = op + |)"
lemma int_Zcarr [intro!, simp]:
"k \<in> carrier \<Z>"
by simp
lemma int_is_cring:
"cring \<Z>"
apply (rule cringI)
apply (rule abelian_groupI, simp_all)
defer 1
apply (rule comm_monoidI, simp_all)
apply (rule zadd_zmult_distrib)
apply (fast intro: zadd_zminus_inverse2)
done
(*
lemma int_is_domain:
"domain \<Z>"
apply (intro domain.intro domain_axioms.intro)
apply (rule int_is_cring)
apply (unfold int_ring_def, simp+)
done
*)
subsection {* Interpretations *}
text {* Since definitions of derived operations are global, their
interpretation needs to be done as early as possible --- that is,
with as few assumptions as possible. *}
interpretation int: monoid \<Z>
where "carrier \<Z> = UNIV"
and "mult \<Z> x y = x * y"
and "one \<Z> = 1"
and "pow \<Z> x n = x^n"
proof -
-- "Specification"
show "monoid \<Z>" proof qed auto
then interpret int: monoid \<Z> .
-- "Carrier"
show "carrier \<Z> = UNIV" by simp
-- "Operations"
{ fix x y show "mult \<Z> x y = x * y" by simp }
note mult = this
show one: "one \<Z> = 1" by simp
show "pow \<Z> x n = x^n" by (induct n) simp_all
qed
interpretation int: comm_monoid \<Z>
where "finprod \<Z> f A = (if finite A then setprod f A else undefined)"
proof -
-- "Specification"
show "comm_monoid \<Z>" proof qed auto
then interpret int: comm_monoid \<Z> .
-- "Operations"
{ fix x y have "mult \<Z> x y = x * y" by simp }
note mult = this
have one: "one \<Z> = 1" by simp
show "finprod \<Z> f A = (if finite A then setprod f A else undefined)"
proof (cases "finite A")
case True then show ?thesis proof induct
case empty show ?case by (simp add: one)
next
case insert then show ?case by (simp add: Pi_def mult)
qed
next
case False then show ?thesis by (simp add: finprod_def)
qed
qed
interpretation int: abelian_monoid \<Z>
where int_carrier_eq: "carrier \<Z> = UNIV"
and int_zero_eq: "zero \<Z> = 0"
and int_add_eq: "add \<Z> x y = x + y"
and int_finsum_eq: "finsum \<Z> f A = (if finite A then setsum f A else undefined)"
proof -
-- "Specification"
show "abelian_monoid \<Z>" proof qed auto
then interpret int: abelian_monoid \<Z> .
-- "Carrier"
show "carrier \<Z> = UNIV" by simp
-- "Operations"
{ fix x y show "add \<Z> x y = x + y" by simp }
note add = this
show zero: "zero \<Z> = 0" by simp
show "finsum \<Z> f A = (if finite A then setsum f A else undefined)"
proof (cases "finite A")
case True then show ?thesis proof induct
case empty show ?case by (simp add: zero)
next
case insert then show ?case by (simp add: Pi_def add)
qed
next
case False then show ?thesis by (simp add: finsum_def finprod_def)
qed
qed
interpretation int: abelian_group \<Z>
(* The equations from the interpretation of abelian_monoid need to be repeated.
Since the morphisms through which the abelian structures are interpreted are
not the identity, the equations of these interpretations are not inherited. *)
(* FIXME *)
where "carrier \<Z> = UNIV"
and "zero \<Z> = 0"
and "add \<Z> x y = x + y"
and "finsum \<Z> f A = (if finite A then setsum f A else undefined)"
and int_a_inv_eq: "a_inv \<Z> x = - x"
and int_a_minus_eq: "a_minus \<Z> x y = x - y"
proof -
-- "Specification"
show "abelian_group \<Z>"
proof (rule abelian_groupI)
show "!!x. x \<in> carrier \<Z> ==> EX y : carrier \<Z>. y \<oplus>\<^bsub>\<Z>\<^esub> x = \<zero>\<^bsub>\<Z>\<^esub>"
by simp arith
qed auto
then interpret int: abelian_group \<Z> .
-- "Operations"
{ fix x y have "add \<Z> x y = x + y" by simp }
note add = this
have zero: "zero \<Z> = 0" by simp
{ fix x
have "add \<Z> (-x) x = zero \<Z>" by (simp add: add zero)
then show "a_inv \<Z> x = - x" by (simp add: int.minus_equality) }
note a_inv = this
show "a_minus \<Z> x y = x - y" by (simp add: int.minus_eq add a_inv)
qed (simp add: int_carrier_eq int_zero_eq int_add_eq int_finsum_eq)+
interpretation int: "domain" \<Z>
where "carrier \<Z> = UNIV"
and "zero \<Z> = 0"
and "add \<Z> x y = x + y"
and "finsum \<Z> f A = (if finite A then setsum f A else undefined)"
and "a_inv \<Z> x = - x"
and "a_minus \<Z> x y = x - y"
proof -
show "domain \<Z>" by unfold_locales (auto simp: left_distrib right_distrib)
qed (simp
add: int_carrier_eq int_zero_eq int_add_eq int_finsum_eq int_a_inv_eq int_a_minus_eq)+
text {* Removal of occurrences of @{term UNIV} in interpretation result
--- experimental. *}
lemma UNIV:
"x \<in> UNIV = True"
"A \<subseteq> UNIV = True"
"(ALL x : UNIV. P x) = (ALL x. P x)"
"(EX x : UNIV. P x) = (EX x. P x)"
"(True --> Q) = Q"
"(True ==> PROP R) == PROP R"
by simp_all
interpretation int (* FIXME [unfolded UNIV] *) :
partial_order "(| carrier = UNIV::int set, eq = op =, le = op \<le> |)"
where "carrier (| carrier = UNIV::int set, eq = op =, le = op \<le> |) = UNIV"
and "le (| carrier = UNIV::int set, eq = op =, le = op \<le> |) x y = (x \<le> y)"
and "lless (| carrier = UNIV::int set, eq = op =, le = op \<le> |) x y = (x < y)"
proof -
show "partial_order (| carrier = UNIV::int set, eq = op =, le = op \<le> |)"
proof qed simp_all
show "carrier (| carrier = UNIV::int set, eq = op =, le = op \<le> |) = UNIV"
by simp
show "le (| carrier = UNIV::int set, eq = op =, le = op \<le> |) x y = (x \<le> y)"
by simp
show "lless (| carrier = UNIV::int set, eq = op =, le = op \<le> |) x y = (x < y)"
by (simp add: lless_def) auto
qed
interpretation int (* FIXME [unfolded UNIV] *) :
lattice "(| carrier = UNIV::int set, eq = op =, le = op \<le> |)"
where "join (| carrier = UNIV::int set, eq = op =, le = op \<le> |) x y = max x y"
and "meet (| carrier = UNIV::int set, eq = op =, le = op \<le> |) x y = min x y"
proof -
let ?Z = "(| carrier = UNIV::int set, eq = op =, le = op \<le> |)"
show "lattice ?Z"
apply unfold_locales
apply (simp add: least_def Upper_def)
apply arith
apply (simp add: greatest_def Lower_def)
apply arith
done
then interpret int: lattice "?Z" .
show "join ?Z x y = max x y"
apply (rule int.joinI)
apply (simp_all add: least_def Upper_def)
apply arith
done
show "meet ?Z x y = min x y"
apply (rule int.meetI)
apply (simp_all add: greatest_def Lower_def)
apply arith
done
qed
interpretation int (* [unfolded UNIV] *) :
total_order "(| carrier = UNIV::int set, eq = op =, le = op \<le> |)"
proof qed clarsimp
subsection {* Generated Ideals of @{text "\<Z>"} *}
lemma int_Idl:
"Idl\<^bsub>\<Z>\<^esub> {a} = {x * a | x. True}"
apply (subst int.cgenideal_eq_genideal[symmetric]) apply simp
apply (simp add: cgenideal_def)
done
lemma multiples_principalideal:
"principalideal {x * a | x. True } \<Z>"
apply (subst int_Idl[symmetric], rule principalidealI)
apply (rule int.genideal_ideal, simp)
apply fast
done
lemma prime_primeideal:
assumes prime: "prime (nat p)"
shows "primeideal (Idl\<^bsub>\<Z>\<^esub> {p}) \<Z>"
apply (rule primeidealI)
apply (rule int.genideal_ideal, simp)
apply (rule int_is_cring)
apply (simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)
apply clarsimp defer 1
apply (simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)
apply (elim exE)
proof -
fix a b x
from prime
have ppos: "0 <= p" by (simp add: prime_def)
have unnat: "!!x. nat p dvd nat (abs x) ==> p dvd x"
proof -
fix x
assume "nat p dvd nat (abs x)"
hence "int (nat p) dvd x" by (simp add: int_dvd_iff[symmetric])
thus "p dvd x" by (simp add: ppos)
qed
assume "a * b = x * p"
hence "p dvd a * b" by simp
hence "nat p dvd nat (abs (a * b))" using ppos by (simp add: nat_dvd_iff)
hence "nat p dvd (nat (abs a) * nat (abs b))" by (simp add: nat_abs_mult_distrib)
hence "nat p dvd nat (abs a) | nat p dvd nat (abs b)" by (rule prime_dvd_mult[OF prime])
hence "p dvd a | p dvd b" by (fast intro: unnat)
thus "(EX x. a = x * p) | (EX x. b = x * p)"
proof
assume "p dvd a"
hence "EX x. a = p * x" by (simp add: dvd_def)
from this obtain x
where "a = p * x" by fast
hence "a = x * p" by simp
hence "EX x. a = x * p" by simp
thus "(EX x. a = x * p) | (EX x. b = x * p)" ..
next
assume "p dvd b"
hence "EX x. b = p * x" by (simp add: dvd_def)
from this obtain x
where "b = p * x" by fast
hence "b = x * p" by simp
hence "EX x. b = x * p" by simp
thus "(EX x. a = x * p) | (EX x. b = x * p)" ..
qed
next
assume "UNIV = {uu. EX x. uu = x * p}"
from this obtain x
where "1 = x * p" by best
from this [symmetric]
have "p * x = 1" by (subst zmult_commute)
hence "\<bar>p * x\<bar> = 1" by simp
hence "\<bar>p\<bar> = 1" by (rule abs_zmult_eq_1)
from this and prime
show "False" by (simp add: prime_def)
qed
subsection {* Ideals and Divisibility *}
lemma int_Idl_subset_ideal:
"Idl\<^bsub>\<Z>\<^esub> {k} \<subseteq> Idl\<^bsub>\<Z>\<^esub> {l} = (k \<in> Idl\<^bsub>\<Z>\<^esub> {l})"
by (rule int.Idl_subset_ideal', simp+)
lemma Idl_subset_eq_dvd:
"(Idl\<^bsub>\<Z>\<^esub> {k} \<subseteq> Idl\<^bsub>\<Z>\<^esub> {l}) = (l dvd k)"
apply (subst int_Idl_subset_ideal, subst int_Idl, simp)
apply (rule, clarify)
apply (simp add: dvd_def)
apply (simp add: dvd_def mult_ac)
done
lemma dvds_eq_Idl:
"(l dvd k \<and> k dvd l) = (Idl\<^bsub>\<Z>\<^esub> {k} = Idl\<^bsub>\<Z>\<^esub> {l})"
proof -
have a: "l dvd k = (Idl\<^bsub>\<Z>\<^esub> {k} \<subseteq> Idl\<^bsub>\<Z>\<^esub> {l})" by (rule Idl_subset_eq_dvd[symmetric])
have b: "k dvd l = (Idl\<^bsub>\<Z>\<^esub> {l} \<subseteq> Idl\<^bsub>\<Z>\<^esub> {k})" by (rule Idl_subset_eq_dvd[symmetric])
have "(l dvd k \<and> k dvd l) = ((Idl\<^bsub>\<Z>\<^esub> {k} \<subseteq> Idl\<^bsub>\<Z>\<^esub> {l}) \<and> (Idl\<^bsub>\<Z>\<^esub> {l} \<subseteq> Idl\<^bsub>\<Z>\<^esub> {k}))"
by (subst a, subst b, simp)
also have "((Idl\<^bsub>\<Z>\<^esub> {k} \<subseteq> Idl\<^bsub>\<Z>\<^esub> {l}) \<and> (Idl\<^bsub>\<Z>\<^esub> {l} \<subseteq> Idl\<^bsub>\<Z>\<^esub> {k})) = (Idl\<^bsub>\<Z>\<^esub> {k} = Idl\<^bsub>\<Z>\<^esub> {l})" by (rule, fast+)
finally
show ?thesis .
qed
lemma Idl_eq_abs:
"(Idl\<^bsub>\<Z>\<^esub> {k} = Idl\<^bsub>\<Z>\<^esub> {l}) = (abs l = abs k)"
apply (subst dvds_eq_abseq[symmetric])
apply (rule dvds_eq_Idl[symmetric])
done
subsection {* Ideals and the Modulus *}
definition
ZMod :: "int => int => int set"
where "ZMod k r = (Idl\<^bsub>\<Z>\<^esub> {k}) +>\<^bsub>\<Z>\<^esub> r"
lemmas ZMod_defs =
ZMod_def genideal_def
lemma rcos_zfact:
assumes kIl: "k \<in> ZMod l r"
shows "EX x. k = x * l + r"
proof -
from kIl[unfolded ZMod_def]
have "\<exists>xl\<in>Idl\<^bsub>\<Z>\<^esub> {l}. k = xl + r" by (simp add: a_r_coset_defs)
from this obtain xl
where xl: "xl \<in> Idl\<^bsub>\<Z>\<^esub> {l}"
and k: "k = xl + r"
by auto
from xl obtain x
where "xl = x * l"
by (simp add: int_Idl, fast)
from k and this
have "k = x * l + r" by simp
thus "\<exists>x. k = x * l + r" ..
qed
lemma ZMod_imp_zmod:
assumes zmods: "ZMod m a = ZMod m b"
shows "a mod m = b mod m"
proof -
interpret ideal "Idl\<^bsub>\<Z>\<^esub> {m}" \<Z> by (rule int.genideal_ideal, fast)
from zmods
have "b \<in> ZMod m a"
unfolding ZMod_def
by (simp add: a_repr_independenceD)
from this
have "EX x. b = x * m + a" by (rule rcos_zfact)
from this obtain x
where "b = x * m + a"
by fast
hence "b mod m = (x * m + a) mod m" by simp
also
have "\<dots> = ((x * m) mod m) + (a mod m)" by (simp add: mod_add_eq)
also
have "\<dots> = a mod m" by simp
finally
have "b mod m = a mod m" .
thus "a mod m = b mod m" ..
qed
lemma ZMod_mod:
shows "ZMod m a = ZMod m (a mod m)"
proof -
interpret ideal "Idl\<^bsub>\<Z>\<^esub> {m}" \<Z> by (rule int.genideal_ideal, fast)
show ?thesis
unfolding ZMod_def
apply (rule a_repr_independence'[symmetric])
apply (simp add: int_Idl a_r_coset_defs)
proof -
have "a = m * (a div m) + (a mod m)" by (simp add: zmod_zdiv_equality)
hence "a = (a div m) * m + (a mod m)" by simp
thus "\<exists>h. (\<exists>x. h = x * m) \<and> a = h + a mod m" by fast
qed simp
qed
lemma zmod_imp_ZMod:
assumes modeq: "a mod m = b mod m"
shows "ZMod m a = ZMod m b"
proof -
have "ZMod m a = ZMod m (a mod m)" by (rule ZMod_mod)
also have "\<dots> = ZMod m (b mod m)" by (simp add: modeq[symmetric])
also have "\<dots> = ZMod m b" by (rule ZMod_mod[symmetric])
finally show ?thesis .
qed
corollary ZMod_eq_mod:
shows "(ZMod m a = ZMod m b) = (a mod m = b mod m)"
by (rule, erule ZMod_imp_zmod, erule zmod_imp_ZMod)
subsection {* Factorization *}
definition
ZFact :: "int \<Rightarrow> int set ring"
where "ZFact k = \<Z> Quot (Idl\<^bsub>\<Z>\<^esub> {k})"
lemmas ZFact_defs = ZFact_def FactRing_def
lemma ZFact_is_cring:
shows "cring (ZFact k)"
apply (unfold ZFact_def)
apply (rule ideal.quotient_is_cring)
apply (intro ring.genideal_ideal)
apply (simp add: cring.axioms[OF int_is_cring] ring.intro)
apply simp
apply (rule int_is_cring)
done
lemma ZFact_zero:
"carrier (ZFact 0) = (\<Union>a. {{a}})"
apply (insert int.genideal_zero)
apply (simp add: ZFact_defs A_RCOSETS_defs r_coset_def ring_record_simps)
done
lemma ZFact_one:
"carrier (ZFact 1) = {UNIV}"
apply (simp only: ZFact_defs A_RCOSETS_defs r_coset_def ring_record_simps)
apply (subst int.genideal_one)
apply (rule, rule, clarsimp)
apply (rule, rule, clarsimp)
apply (rule, clarsimp, arith)
apply (rule, clarsimp)
apply (rule exI[of _ "0"], clarsimp)
done
lemma ZFact_prime_is_domain:
assumes pprime: "prime (nat p)"
shows "domain (ZFact p)"
apply (unfold ZFact_def)
apply (rule primeideal.quotient_is_domain)
apply (rule prime_primeideal[OF pprime])
done
end