(* Title: HOL/Library/SCT_Definition.thy
ID: $Id$
Author: Alexander Krauss, TU Muenchen
*)
header "" (* FIXME proper header *)
theory SCT_Definition
imports Graphs Infinite_Set
begin
subsection {* Size-Change Graphs *}
datatype sedge =
LESS ("\<down>")
| LEQ ("\<Down>")
instance sedge :: one
one_sedge_def: "1 \<equiv> \<Down>" ..
instance sedge :: times
mult_sedge_def:" a * b \<equiv> if a = \<down> then \<down> else b" ..
instance sedge :: comm_monoid_mult
proof
fix a b c :: sedge
show "a * b * c = a * (b * c)" by (simp add:mult_sedge_def)
show "1 * a = a" by (simp add:mult_sedge_def one_sedge_def)
show "a * b = b * a" unfolding mult_sedge_def
by (cases a, simp) (cases b, auto)
qed
lemma sedge_UNIV:
"UNIV = { LESS, LEQ }"
by auto (case_tac x, auto) (*FIXME*)
instance sedge :: finite
proof
show "finite (UNIV::sedge set)"
by (simp add: sedge_UNIV)
qed
lemmas [code func] = sedge_UNIV
types scg = "(nat, sedge) graph"
types acg = "(nat, scg) graph"
subsection {* Size-Change Termination *}
abbreviation (input)
"desc P Q == ((\<exists>n.\<forall>i\<ge>n. P i) \<and> (\<exists>\<^sub>\<infinity>i. Q i))"
abbreviation (input)
"dsc G i j \<equiv> has_edge G i LESS j"
abbreviation (input)
"eq G i j \<equiv> has_edge G i LEQ j"
abbreviation
eql :: "scg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
("_ \<turnstile> _ \<leadsto> _")
where
"eql G i j \<equiv> has_edge G i LESS j \<or> has_edge G i LEQ j"
abbreviation (input) descat :: "(nat, scg) ipath \<Rightarrow> nat sequence \<Rightarrow> nat \<Rightarrow> bool"
where
"descat p \<theta> i \<equiv> has_edge (snd (p i)) (\<theta> i) LESS (\<theta> (Suc i))"
abbreviation (input) eqat :: "(nat, scg) ipath \<Rightarrow> nat sequence \<Rightarrow> nat \<Rightarrow> bool"
where
"eqat p \<theta> i \<equiv> has_edge (snd (p i)) (\<theta> i) LEQ (\<theta> (Suc i))"
abbreviation eqlat :: "(nat, scg) ipath \<Rightarrow> nat sequence \<Rightarrow> nat \<Rightarrow> bool"
where
"eqlat p \<theta> i \<equiv> (has_edge (snd (p i)) (\<theta> i) LESS (\<theta> (Suc i))
\<or> has_edge (snd (p i)) (\<theta> i) LEQ (\<theta> (Suc i)))"
definition is_desc_thread :: "nat sequence \<Rightarrow> (nat, scg) ipath \<Rightarrow> bool"
where
"is_desc_thread \<theta> p = ((\<exists>n.\<forall>i\<ge>n. eqlat p \<theta> i) \<and> (\<exists>\<^sub>\<infinity>i. descat p \<theta> i))"
definition SCT :: "acg \<Rightarrow> bool"
where
"SCT \<A> =
(\<forall>p. has_ipath \<A> p \<longrightarrow> (\<exists>\<theta>. is_desc_thread \<theta> p))"
definition no_bad_graphs :: "acg \<Rightarrow> bool"
where
"no_bad_graphs A =
(\<forall>n G. has_edge A n G n \<and> G * G = G
\<longrightarrow> (\<exists>p. has_edge G p LESS p))"
definition SCT' :: "acg \<Rightarrow> bool"
where
"SCT' A = no_bad_graphs (tcl A)"
end