src/HOL/Real/HahnBanach/README.html
author wenzelm
Mon, 18 Jun 2007 23:30:46 +0200
changeset 23414 927203ad4b3a
parent 15582 7219facb3fd0
permissions -rw-r--r--
tuned conjunction tactics: slightly smaller proof terms;

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<!-- $Id$ -->

<HTML>

<HEAD>
  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
  <TITLE>HOL/Real/HahnBanach/README</TITLE>
</HEAD>

<BODY>

<H3>The Hahn-Banach Theorem for Real Vector Spaces (Isabelle/Isar)</H3>

Author: Gertrud Bauer, Technische Universit&auml;t M&uuml;nchen<P>

This directory contains the proof of the Hahn-Banach theorem for real vectorspaces,
following H. Heuser, Funktionalanalysis, p. 228 -232.
The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis.
It is a conclusion of Zorn's lemma.<P>

Two different formaulations of the theorem are presented, one for general real vectorspaces
and its application to normed vectorspaces. <P>

The theorem says, that every continous linearform, defined on arbitrary subspaces
(not only one-dimensional subspaces), can be extended to a continous linearform on
the whole vectorspace.


<HR>

<ADDRESS>
<A NAME="bauerg@in.tum.de" HREF="mailto:bauerg@in.tum.de">bauerg@in.tum.de</A>
</ADDRESS>

</BODY>
</HTML>