(* Title: Sequents/modal.ML
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
Simple modal reasoner.
*)
signature MODAL_PROVER_RULE =
sig
val rewrite_rls : thm list
val safe_rls : thm list
val unsafe_rls : thm list
val bound_rls : thm list
val aside_rls : thm list
end;
signature MODAL_PROVER =
sig
val rule_tac : Proof.context -> thm list -> int ->tactic
val step_tac : Proof.context -> int -> tactic
val solven_tac : Proof.context -> int -> int -> tactic
val solve_tac : Proof.context -> int -> tactic
end;
functor Modal_ProverFun (Modal_Rule: MODAL_PROVER_RULE) : MODAL_PROVER =
struct
(*Returns the list of all formulas in the sequent*)
fun forms_of_seq \<^Const_>\<open>SeqO' for P u\<close> = P :: forms_of_seq u
| forms_of_seq (H $ u) = forms_of_seq u
| forms_of_seq _ = [];
(*Tests whether two sequences (left or right sides) could be resolved.
seqp is a premise (subgoal), seqc is a conclusion of an object-rule.
Assumes each formula in seqc is surrounded by sequence variables
-- checks that each concl formula looks like some subgoal formula.*)
fun could_res (seqp,seqc) =
forall (fn Qc => exists (fn Qp => Term.could_unify (Qp,Qc))
(forms_of_seq seqp))
(forms_of_seq seqc);
(*Tests whether two sequents G|-H could be resolved, comparing each side.*)
fun could_resolve_seq (prem,conc) =
case (prem,conc) of
(_ $ Abs(_,_,leftp) $ Abs(_,_,rightp),
_ $ Abs(_,_,leftc) $ Abs(_,_,rightc)) =>
could_res (leftp,leftc) andalso could_res (rightp,rightc)
| _ => false;
(*Like filt_resolve_tac, using could_resolve_seq
Much faster than resolve_tac when there are many rules.
Resolve subgoal i using the rules, unless more than maxr are compatible. *)
fun filseq_resolve_tac ctxt rules maxr = SUBGOAL(fn (prem,i) =>
let val rls = filter_thms could_resolve_seq (maxr+1, prem, rules)
in if length rls > maxr then no_tac else resolve_tac ctxt rls i
end);
fun fresolve_tac ctxt rls n = filseq_resolve_tac ctxt rls 999 n;
(* NB No back tracking possible with aside rules *)
val aside_net = Tactic.build_net Modal_Rule.aside_rls;
fun aside_tac ctxt n = DETERM (REPEAT (filt_resolve_from_net_tac ctxt 999 aside_net n));
fun rule_tac ctxt rls n = fresolve_tac ctxt rls n THEN aside_tac ctxt n;
fun fres_safe_tac ctxt = fresolve_tac ctxt Modal_Rule.safe_rls;
fun fres_unsafe_tac ctxt = fresolve_tac ctxt Modal_Rule.unsafe_rls THEN' aside_tac ctxt;
fun fres_bound_tac ctxt = fresolve_tac ctxt Modal_Rule.bound_rls;
fun UPTOGOAL n tf = let fun tac i = if i<n then all_tac
else tf(i) THEN tac(i-1)
in fn st => tac (Thm.nprems_of st) st end;
(* Depth first search bounded by d *)
fun solven_tac ctxt d n st = st |>
(if d < 0 then no_tac
else if Thm.nprems_of st = 0 then all_tac
else (DETERM(fres_safe_tac ctxt n) THEN UPTOGOAL n (solven_tac ctxt d)) ORELSE
((fres_unsafe_tac ctxt n THEN UPTOGOAL n (solven_tac ctxt d)) APPEND
(fres_bound_tac ctxt n THEN UPTOGOAL n (solven_tac ctxt (d - 1)))));
fun solve_tac ctxt d =
rewrite_goals_tac ctxt Modal_Rule.rewrite_rls THEN solven_tac ctxt d 1;
fun step_tac ctxt n =
COND (has_fewer_prems 1) all_tac
(DETERM(fres_safe_tac ctxt n) ORELSE
(fres_unsafe_tac ctxt n APPEND fres_bound_tac ctxt n));
end;