(* Title: HOLCF/ex/loop.ML
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Lemmas for theory loop.thy
*)
open Loop;
(* --------------------------------------------------------------------------- *)
(* access to definitions *)
(* --------------------------------------------------------------------------- *)
val step_def2 = prove_goalw Loop.thy [step_def]
"step[b][g][x] = If b[x] then g[x] else x fi"
(fn prems =>
[
(simp_tac Cfun_ss 1)
]);
val while_def2 = prove_goalw Loop.thy [while_def]
"while[b][g] = fix[LAM f x. If b[x] then f[g[x]] else x fi]"
(fn prems =>
[
(simp_tac Cfun_ss 1)
]);
(* ------------------------------------------------------------------------- *)
(* rekursive properties of while *)
(* ------------------------------------------------------------------------- *)
val while_unfold = prove_goal Loop.thy
"while[b][g][x] = If b[x] then while[b][g][g[x]] else x fi"
(fn prems =>
[
(fix_tac5 while_def2 1),
(simp_tac Cfun_ss 1)
]);
val while_unfold2 = prove_goal Loop.thy
"!x.while[b][g][x] = while[b][g][iterate(k,step[b][g],x)]"
(fn prems =>
[
(nat_ind_tac "k" 1),
(simp_tac (HOLCF_ss addsimps [iterate_0,iterate_Suc]) 1),
(rtac allI 1),
(rtac trans 1),
(rtac (while_unfold RS ssubst) 1),
(rtac refl 2),
(rtac (iterate_Suc2 RS ssubst) 1),
(rtac trans 1),
(etac spec 2),
(rtac (step_def2 RS ssubst) 1),
(res_inst_tac [("p","b[x]")] trE 1),
(asm_simp_tac HOLCF_ss 1),
(rtac (while_unfold RS ssubst) 1),
(res_inst_tac [("s","UU"),("t","b[UU]")] ssubst 1),
(etac (flat_tr RS flat_codom RS disjE) 1),
(atac 1),
(etac spec 1),
(simp_tac HOLCF_ss 1),
(asm_simp_tac HOLCF_ss 1),
(asm_simp_tac HOLCF_ss 1),
(rtac (while_unfold RS ssubst) 1),
(asm_simp_tac HOLCF_ss 1)
]);
val while_unfold3 = prove_goal Loop.thy
"while[b][g][x] = while[b][g][step[b][g][x]]"
(fn prems =>
[
(res_inst_tac [("s","while[b][g][iterate(Suc(0),step[b][g],x)]")] trans 1),
(rtac (while_unfold2 RS spec) 1),
(simp_tac iterate_ss 1)
]);
(* --------------------------------------------------------------------------- *)
(* properties of while and iterations *)
(* --------------------------------------------------------------------------- *)
val loop_lemma1 = prove_goal Loop.thy
"[|? y.b[y]=FF; iterate(k,step[b][g],x)=UU|]==>iterate(Suc(k),step[b][g],x)=UU"
(fn prems =>
[
(cut_facts_tac prems 1),
(simp_tac iterate_ss 1),
(rtac trans 1),
(rtac step_def2 1),
(asm_simp_tac HOLCF_ss 1),
(etac exE 1),
(etac (flat_tr RS flat_codom RS disjE) 1),
(asm_simp_tac HOLCF_ss 1),
(asm_simp_tac HOLCF_ss 1)
]);
val loop_lemma2 = prove_goal Loop.thy
"[|? y.b[y]=FF;~iterate(Suc(k),step[b][g],x)=UU |]==>\
\~iterate(k,step[b][g],x)=UU"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac contrapos 1),
(etac loop_lemma1 2),
(atac 1),
(atac 1)
]);
val loop_lemma3 = prove_goal Loop.thy
"[|!x. INV(x) & b[x]=TT & ~g[x]=UU --> INV(g[x]);\
\? y.b[y]=FF; INV(x)|] ==>\
\~iterate(k,step[b][g],x)=UU --> INV(iterate(k,step[b][g],x))"
(fn prems =>
[
(cut_facts_tac prems 1),
(nat_ind_tac "k" 1),
(asm_simp_tac iterate_ss 1),
(strip_tac 1),
(simp_tac (iterate_ss addsimps [step_def2]) 1),
(res_inst_tac [("p","b[iterate(k1, step[b][g], x)]")] trE 1),
(etac notE 1),
(asm_simp_tac (HOLCF_ss addsimps [step_def2,iterate_Suc] ) 1),
(asm_simp_tac HOLCF_ss 1),
(rtac mp 1),
(etac spec 1),
(asm_simp_tac (HOLCF_ss addsimps [loop_lemma2] ) 1),
(res_inst_tac [("s","iterate(Suc(k1), step[b][g], x)"),
("t","g[iterate(k1, step[b][g], x)]")] ssubst 1),
(atac 2),
(asm_simp_tac (HOLCF_ss addsimps [iterate_Suc,step_def2] ) 1),
(asm_simp_tac (HOLCF_ss addsimps [loop_lemma2] ) 1)
]);
val loop_lemma4 = prove_goal Loop.thy
"!x. b[iterate(k,step[b][g],x)]=FF --> while[b][g][x]=iterate(k,step[b][g],x)"
(fn prems =>
[
(nat_ind_tac "k" 1),
(simp_tac iterate_ss 1),
(strip_tac 1),
(rtac (while_unfold RS ssubst) 1),
(asm_simp_tac HOLCF_ss 1),
(rtac allI 1),
(rtac (iterate_Suc2 RS ssubst) 1),
(strip_tac 1),
(rtac trans 1),
(rtac while_unfold3 1),
(asm_simp_tac HOLCF_ss 1)
]);
val loop_lemma5 = prove_goal Loop.thy
"!k. ~b[iterate(k,step[b][g],x)]=FF ==>\
\ !m. while[b][g][iterate(m,step[b][g],x)]=UU"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac (while_def2 RS ssubst) 1),
(rtac fix_ind 1),
(rtac (allI RS adm_all) 1),
(rtac adm_eq 1),
(contX_tacR 1),
(simp_tac HOLCF_ss 1),
(rtac allI 1),
(simp_tac HOLCF_ss 1),
(res_inst_tac [("p","b[iterate(m, step[b][g],x)]")] trE 1),
(asm_simp_tac HOLCF_ss 1),
(asm_simp_tac HOLCF_ss 1),
(res_inst_tac [("s","xa[iterate(Suc(m), step[b][g], x)]")] trans 1),
(etac spec 2),
(rtac cfun_arg_cong 1),
(rtac trans 1),
(rtac (iterate_Suc RS sym) 2),
(asm_simp_tac (HOLCF_ss addsimps [step_def2]) 1),
(dtac spec 1),
(contr_tac 1)
]);
val loop_lemma6 = prove_goal Loop.thy
"!k. ~b[iterate(k,step[b][g],x)]=FF ==> while[b][g][x]=UU"
(fn prems =>
[
(res_inst_tac [("t","x")] (iterate_0 RS subst) 1),
(rtac (loop_lemma5 RS spec) 1),
(resolve_tac prems 1)
]);
val loop_lemma7 = prove_goal Loop.thy
"~while[b][g][x]=UU ==> ? k. b[iterate(k,step[b][g],x)]=FF"
(fn prems =>
[
(cut_facts_tac prems 1),
(etac swap 1),
(rtac loop_lemma6 1),
(fast_tac HOL_cs 1)
]);
val loop_lemma8 = prove_goal Loop.thy
"~while[b][g][x]=UU ==> ? y. b[y]=FF"
(fn prems =>
[
(cut_facts_tac prems 1),
(dtac loop_lemma7 1),
(fast_tac HOL_cs 1)
]);
(* --------------------------------------------------------------------------- *)
(* an invariant rule for loops *)
(* --------------------------------------------------------------------------- *)
val loop_inv2 = prove_goal Loop.thy
"[| (!y. INV(y) & b[y]=TT & ~g[y]=UU --> INV(g[y]));\
\ (!y. INV(y) & b[y]=FF --> Q(y));\
\ INV(x); ~while[b][g][x]=UU |] ==> Q(while[b][g][x])"
(fn prems =>
[
(res_inst_tac [("P","%k.b[iterate(k,step[b][g],x)]=FF")] exE 1),
(rtac loop_lemma7 1),
(resolve_tac prems 1),
(rtac ((loop_lemma4 RS spec RS mp) RS ssubst) 1),
(atac 1),
(rtac (nth_elem (1,prems) RS spec RS mp) 1),
(rtac conjI 1),
(atac 2),
(rtac (loop_lemma3 RS mp) 1),
(resolve_tac prems 1),
(rtac loop_lemma8 1),
(resolve_tac prems 1),
(resolve_tac prems 1),
(rtac classical3 1),
(resolve_tac prems 1),
(etac box_equals 1),
(rtac (loop_lemma4 RS spec RS mp RS sym) 1),
(atac 1),
(rtac refl 1)
]);
val loop_inv3 = prove_goal Loop.thy
"[| !!y.[| INV(y); b[y]=TT; ~g[y]=UU|] ==> INV(g[y]);\
\ !!y.[| INV(y); b[y]=FF|]==> Q(y);\
\ INV(x); ~while[b][g][x]=UU |] ==> Q(while[b][g][x])"
(fn prems =>
[
(rtac loop_inv2 1),
(rtac allI 1),
(rtac impI 1),
(resolve_tac prems 1),
(fast_tac HOL_cs 1),
(fast_tac HOL_cs 1),
(fast_tac HOL_cs 1),
(rtac allI 1),
(rtac impI 1),
(resolve_tac prems 1),
(fast_tac HOL_cs 1),
(fast_tac HOL_cs 1),
(resolve_tac prems 1),
(resolve_tac prems 1)
]);
val loop_inv = prove_goal Loop.thy
"[| P(x);\
\ !!y.P(y) ==> INV(y);\
\ !!y.[| INV(y); b[y]=TT; ~g[y]=UU|] ==> INV(g[y]);\
\ !!y.[| INV(y); b[y]=FF|]==> Q(y);\
\ ~while[b][g][x]=UU |] ==> Q(while[b][g][x])"
(fn prems =>
[
(rtac loop_inv3 1),
(eresolve_tac prems 1),
(atac 1),
(atac 1),
(resolve_tac prems 1),
(atac 1),
(atac 1),
(resolve_tac prems 1),
(resolve_tac prems 1),
(resolve_tac prems 1)
]);