(* Title: ZF/Constructible/Reflection.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
*)
section \<open>The Reflection Theorem\<close>
theory Reflection imports Normal begin
lemma all_iff_not_ex_not: "(\<forall>x. P(x)) \<longleftrightarrow> (~ (\<exists>x. ~ P(x)))"
by blast
lemma ball_iff_not_bex_not: "(\<forall>x\<in>A. P(x)) \<longleftrightarrow> (~ (\<exists>x\<in>A. ~ P(x)))"
by blast
text\<open>From the notes of A. S. Kechris, page 6, and from
Andrzej Mostowski, \emph{Constructible Sets with Applications},
North-Holland, 1969, page 23.\<close>
subsection\<open>Basic Definitions\<close>
text\<open>First part: the cumulative hierarchy defining the class \<open>M\<close>.
To avoid handling multiple arguments, we assume that \<open>Mset(l)\<close> is
closed under ordered pairing provided \<open>l\<close> is limit. Possibly this
could be avoided: the induction hypothesis \<^term>\<open>Cl_reflects\<close>
(in locale \<open>ex_reflection\<close>) could be weakened to
\<^term>\<open>\<forall>y\<in>Mset(a). \<forall>z\<in>Mset(a). P(<y,z>) \<longleftrightarrow> Q(a,<y,z>)\<close>, removing most
uses of \<^term>\<open>Pair_in_Mset\<close>. But there isn't much point in doing so, since
ultimately the \<open>ex_reflection\<close> proof is packaged up using the
predicate \<open>Reflects\<close>.
\<close>
locale reflection =
fixes Mset and M and Reflects
assumes Mset_mono_le : "mono_le_subset(Mset)"
and Mset_cont : "cont_Ord(Mset)"
and Pair_in_Mset : "[| x \<in> Mset(a); y \<in> Mset(a); Limit(a) |]
==> <x,y> \<in> Mset(a)"
defines "M(x) == \<exists>a. Ord(a) & x \<in> Mset(a)"
and "Reflects(Cl,P,Q) == Closed_Unbounded(Cl) &
(\<forall>a. Cl(a) \<longrightarrow> (\<forall>x\<in>Mset(a). P(x) \<longleftrightarrow> Q(a,x)))"
fixes F0 \<comment> \<open>ordinal for a specific value \<^term>\<open>y\<close>\<close>
fixes FF \<comment> \<open>sup over the whole level, \<^term>\<open>y\<in>Mset(a)\<close>\<close>
fixes ClEx \<comment> \<open>Reflecting ordinals for the formula \<^term>\<open>\<exists>z. P\<close>\<close>
defines "F0(P,y) == \<mu> b. (\<exists>z. M(z) & P(<y,z>)) \<longrightarrow>
(\<exists>z\<in>Mset(b). P(<y,z>))"
and "FF(P) == \<lambda>a. \<Union>y\<in>Mset(a). F0(P,y)"
and "ClEx(P,a) == Limit(a) & normalize(FF(P),a) = a"
lemma (in reflection) Mset_mono: "i\<le>j ==> Mset(i) \<subseteq> Mset(j)"
apply (insert Mset_mono_le)
apply (simp add: mono_le_subset_def leI)
done
text\<open>Awkward: we need a version of \<open>ClEx_def\<close> as an equality
at the level of classes, which do not really exist\<close>
lemma (in reflection) ClEx_eq:
"ClEx(P) == \<lambda>a. Limit(a) & normalize(FF(P),a) = a"
by (simp add: ClEx_def [symmetric])
subsection\<open>Easy Cases of the Reflection Theorem\<close>
theorem (in reflection) Triv_reflection [intro]:
"Reflects(Ord, P, \<lambda>a x. P(x))"
by (simp add: Reflects_def)
theorem (in reflection) Not_reflection [intro]:
"Reflects(Cl,P,Q) ==> Reflects(Cl, \<lambda>x. ~P(x), \<lambda>a x. ~Q(a,x))"
by (simp add: Reflects_def)
theorem (in reflection) And_reflection [intro]:
"[| Reflects(Cl,P,Q); Reflects(C',P',Q') |]
==> Reflects(\<lambda>a. Cl(a) & C'(a), \<lambda>x. P(x) & P'(x),
\<lambda>a x. Q(a,x) & Q'(a,x))"
by (simp add: Reflects_def Closed_Unbounded_Int, blast)
theorem (in reflection) Or_reflection [intro]:
"[| Reflects(Cl,P,Q); Reflects(C',P',Q') |]
==> Reflects(\<lambda>a. Cl(a) & C'(a), \<lambda>x. P(x) | P'(x),
\<lambda>a x. Q(a,x) | Q'(a,x))"
by (simp add: Reflects_def Closed_Unbounded_Int, blast)
theorem (in reflection) Imp_reflection [intro]:
"[| Reflects(Cl,P,Q); Reflects(C',P',Q') |]
==> Reflects(\<lambda>a. Cl(a) & C'(a),
\<lambda>x. P(x) \<longrightarrow> P'(x),
\<lambda>a x. Q(a,x) \<longrightarrow> Q'(a,x))"
by (simp add: Reflects_def Closed_Unbounded_Int, blast)
theorem (in reflection) Iff_reflection [intro]:
"[| Reflects(Cl,P,Q); Reflects(C',P',Q') |]
==> Reflects(\<lambda>a. Cl(a) & C'(a),
\<lambda>x. P(x) \<longleftrightarrow> P'(x),
\<lambda>a x. Q(a,x) \<longleftrightarrow> Q'(a,x))"
by (simp add: Reflects_def Closed_Unbounded_Int, blast)
subsection\<open>Reflection for Existential Quantifiers\<close>
lemma (in reflection) F0_works:
"[| y\<in>Mset(a); Ord(a); M(z); P(<y,z>) |] ==> \<exists>z\<in>Mset(F0(P,y)). P(<y,z>)"
apply (unfold F0_def M_def, clarify)
apply (rule LeastI2)
apply (blast intro: Mset_mono [THEN subsetD])
apply (blast intro: lt_Ord2, blast)
done
lemma (in reflection) Ord_F0 [intro,simp]: "Ord(F0(P,y))"
by (simp add: F0_def)
lemma (in reflection) Ord_FF [intro,simp]: "Ord(FF(P,y))"
by (simp add: FF_def)
lemma (in reflection) cont_Ord_FF: "cont_Ord(FF(P))"
apply (insert Mset_cont)
apply (simp add: cont_Ord_def FF_def, blast)
done
text\<open>Recall that \<^term>\<open>F0\<close> depends upon \<^term>\<open>y\<in>Mset(a)\<close>,
while \<^term>\<open>FF\<close> depends only upon \<^term>\<open>a\<close>.\<close>
lemma (in reflection) FF_works:
"[| M(z); y\<in>Mset(a); P(<y,z>); Ord(a) |] ==> \<exists>z\<in>Mset(FF(P,a)). P(<y,z>)"
apply (simp add: FF_def)
apply (simp_all add: cont_Ord_Union [of concl: Mset]
Mset_cont Mset_mono_le not_emptyI)
apply (blast intro: F0_works)
done
lemma (in reflection) FFN_works:
"[| M(z); y\<in>Mset(a); P(<y,z>); Ord(a) |]
==> \<exists>z\<in>Mset(normalize(FF(P),a)). P(<y,z>)"
apply (drule FF_works [of concl: P], assumption+)
apply (blast intro: cont_Ord_FF le_normalize [THEN Mset_mono, THEN subsetD])
done
text\<open>Locale for the induction hypothesis\<close>
locale ex_reflection = reflection +
fixes P \<comment> \<open>the original formula\<close>
fixes Q \<comment> \<open>the reflected formula\<close>
fixes Cl \<comment> \<open>the class of reflecting ordinals\<close>
assumes Cl_reflects: "[| Cl(a); Ord(a) |] ==> \<forall>x\<in>Mset(a). P(x) \<longleftrightarrow> Q(a,x)"
lemma (in ex_reflection) ClEx_downward:
"[| M(z); y\<in>Mset(a); P(<y,z>); Cl(a); ClEx(P,a) |]
==> \<exists>z\<in>Mset(a). Q(a,<y,z>)"
apply (simp add: ClEx_def, clarify)
apply (frule Limit_is_Ord)
apply (frule FFN_works [of concl: P], assumption+)
apply (drule Cl_reflects, assumption+)
apply (auto simp add: Limit_is_Ord Pair_in_Mset)
done
lemma (in ex_reflection) ClEx_upward:
"[| z\<in>Mset(a); y\<in>Mset(a); Q(a,<y,z>); Cl(a); ClEx(P,a) |]
==> \<exists>z. M(z) & P(<y,z>)"
apply (simp add: ClEx_def M_def)
apply (blast dest: Cl_reflects
intro: Limit_is_Ord Pair_in_Mset)
done
text\<open>Class \<open>ClEx\<close> indeed consists of reflecting ordinals...\<close>
lemma (in ex_reflection) ZF_ClEx_iff:
"[| y\<in>Mset(a); Cl(a); ClEx(P,a) |]
==> (\<exists>z. M(z) & P(<y,z>)) \<longleftrightarrow> (\<exists>z\<in>Mset(a). Q(a,<y,z>))"
by (blast intro: dest: ClEx_downward ClEx_upward)
text\<open>...and it is closed and unbounded\<close>
lemma (in ex_reflection) ZF_Closed_Unbounded_ClEx:
"Closed_Unbounded(ClEx(P))"
apply (simp add: ClEx_eq)
apply (fast intro: Closed_Unbounded_Int Normal_imp_fp_Closed_Unbounded
Closed_Unbounded_Limit Normal_normalize)
done
text\<open>The same two theorems, exported to locale \<open>reflection\<close>.\<close>
text\<open>Class \<open>ClEx\<close> indeed consists of reflecting ordinals...\<close>
lemma (in reflection) ClEx_iff:
"[| y\<in>Mset(a); Cl(a); ClEx(P,a);
!!a. [| Cl(a); Ord(a) |] ==> \<forall>x\<in>Mset(a). P(x) \<longleftrightarrow> Q(a,x) |]
==> (\<exists>z. M(z) & P(<y,z>)) \<longleftrightarrow> (\<exists>z\<in>Mset(a). Q(a,<y,z>))"
apply (unfold ClEx_def FF_def F0_def M_def)
apply (rule ex_reflection.ZF_ClEx_iff
[OF ex_reflection.intro, OF reflection.intro ex_reflection_axioms.intro,
of Mset Cl])
apply (simp_all add: Mset_mono_le Mset_cont Pair_in_Mset)
done
(*Alternative proof, less unfolding:
apply (rule Reflection.ZF_ClEx_iff [of Mset _ _ Cl, folded M_def])
apply (fold ClEx_def FF_def F0_def)
apply (rule ex_reflection.intro, assumption)
apply (simp add: ex_reflection_axioms.intro, assumption+)
*)
lemma (in reflection) Closed_Unbounded_ClEx:
"(!!a. [| Cl(a); Ord(a) |] ==> \<forall>x\<in>Mset(a). P(x) \<longleftrightarrow> Q(a,x))
==> Closed_Unbounded(ClEx(P))"
apply (unfold ClEx_eq FF_def F0_def M_def)
apply (rule ex_reflection.ZF_Closed_Unbounded_ClEx [of Mset _ _ Cl])
apply (rule ex_reflection.intro, rule reflection_axioms)
apply (blast intro: ex_reflection_axioms.intro)
done
subsection\<open>Packaging the Quantifier Reflection Rules\<close>
lemma (in reflection) Ex_reflection_0:
"Reflects(Cl,P0,Q0)
==> Reflects(\<lambda>a. Cl(a) & ClEx(P0,a),
\<lambda>x. \<exists>z. M(z) & P0(<x,z>),
\<lambda>a x. \<exists>z\<in>Mset(a). Q0(a,<x,z>))"
apply (simp add: Reflects_def)
apply (intro conjI Closed_Unbounded_Int)
apply blast
apply (rule Closed_Unbounded_ClEx [of Cl P0 Q0], blast, clarify)
apply (rule_tac Cl=Cl in ClEx_iff, assumption+, blast)
done
lemma (in reflection) All_reflection_0:
"Reflects(Cl,P0,Q0)
==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x.~P0(x), a),
\<lambda>x. \<forall>z. M(z) \<longrightarrow> P0(<x,z>),
\<lambda>a x. \<forall>z\<in>Mset(a). Q0(a,<x,z>))"
apply (simp only: all_iff_not_ex_not ball_iff_not_bex_not)
apply (rule Not_reflection, drule Not_reflection, simp)
apply (erule Ex_reflection_0)
done
theorem (in reflection) Ex_reflection [intro]:
"Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x)))
==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. P(fst(x),snd(x)), a),
\<lambda>x. \<exists>z. M(z) & P(x,z),
\<lambda>a x. \<exists>z\<in>Mset(a). Q(a,x,z))"
by (rule Ex_reflection_0 [of _ " \<lambda>x. P(fst(x),snd(x))"
"\<lambda>a x. Q(a,fst(x),snd(x))", simplified])
theorem (in reflection) All_reflection [intro]:
"Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x)))
==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. ~P(fst(x),snd(x)), a),
\<lambda>x. \<forall>z. M(z) \<longrightarrow> P(x,z),
\<lambda>a x. \<forall>z\<in>Mset(a). Q(a,x,z))"
by (rule All_reflection_0 [of _ "\<lambda>x. P(fst(x),snd(x))"
"\<lambda>a x. Q(a,fst(x),snd(x))", simplified])
text\<open>And again, this time using class-bounded quantifiers\<close>
theorem (in reflection) Rex_reflection [intro]:
"Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x)))
==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. P(fst(x),snd(x)), a),
\<lambda>x. \<exists>z[M]. P(x,z),
\<lambda>a x. \<exists>z\<in>Mset(a). Q(a,x,z))"
by (unfold rex_def, blast)
theorem (in reflection) Rall_reflection [intro]:
"Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x)))
==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. ~P(fst(x),snd(x)), a),
\<lambda>x. \<forall>z[M]. P(x,z),
\<lambda>a x. \<forall>z\<in>Mset(a). Q(a,x,z))"
by (unfold rall_def, blast)
text\<open>No point considering bounded quantifiers, where reflection is trivial.\<close>
subsection\<open>Simple Examples of Reflection\<close>
text\<open>Example 1: reflecting a simple formula. The reflecting class is first
given as the variable \<open>?Cl\<close> and later retrieved from the final
proof state.\<close>
schematic_goal (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & x \<in> y,
\<lambda>a x. \<exists>y\<in>Mset(a). x \<in> y)"
by fast
text\<open>Problem here: there needs to be a conjunction (class intersection)
in the class of reflecting ordinals. The \<^term>\<open>Ord(a)\<close> is redundant,
though harmless.\<close>
lemma (in reflection)
"Reflects(\<lambda>a. Ord(a) & ClEx(\<lambda>x. fst(x) \<in> snd(x), a),
\<lambda>x. \<exists>y. M(y) & x \<in> y,
\<lambda>a x. \<exists>y\<in>Mset(a). x \<in> y)"
by fast
text\<open>Example 2\<close>
schematic_goal (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> z \<subseteq> x \<longrightarrow> z \<in> y),
\<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x \<longrightarrow> z \<in> y)"
by fast
text\<open>Example 2'. We give the reflecting class explicitly.\<close>
lemma (in reflection)
"Reflects
(\<lambda>a. (Ord(a) &
ClEx(\<lambda>x. ~ (snd(x) \<subseteq> fst(fst(x)) \<longrightarrow> snd(x) \<in> snd(fst(x))), a)) &
ClEx(\<lambda>x. \<forall>z. M(z) \<longrightarrow> z \<subseteq> fst(x) \<longrightarrow> z \<in> snd(x), a),
\<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> z \<subseteq> x \<longrightarrow> z \<in> y),
\<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x \<longrightarrow> z \<in> y)"
by fast
text\<open>Example 2''. We expand the subset relation.\<close>
schematic_goal (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> (\<forall>w. M(w) \<longrightarrow> w\<in>z \<longrightarrow> w\<in>x) \<longrightarrow> z\<in>y),
\<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). (\<forall>w\<in>Mset(a). w\<in>z \<longrightarrow> w\<in>x) \<longrightarrow> z\<in>y)"
by fast
text\<open>Example 2'''. Single-step version, to reveal the reflecting class.\<close>
schematic_goal (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> z \<subseteq> x \<longrightarrow> z \<in> y),
\<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x \<longrightarrow> z \<in> y)"
apply (rule Ex_reflection)
txt\<open>
@{goals[display,indent=0,margin=60]}
\<close>
apply (rule All_reflection)
txt\<open>
@{goals[display,indent=0,margin=60]}
\<close>
apply (rule Triv_reflection)
txt\<open>
@{goals[display,indent=0,margin=60]}
\<close>
done
text\<open>Example 3. Warning: the following examples make sense only
if \<^term>\<open>P\<close> is quantifier-free, since it is not being relativized.\<close>
schematic_goal (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> z \<in> y \<longleftrightarrow> z \<in> x & P(z)),
\<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<in> y \<longleftrightarrow> z \<in> x & P(z))"
by fast
text\<open>Example 3'\<close>
schematic_goal (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & y = Collect(x,P),
\<lambda>a x. \<exists>y\<in>Mset(a). y = Collect(x,P))"
by fast
text\<open>Example 3''\<close>
schematic_goal (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & y = Replace(x,P),
\<lambda>a x. \<exists>y\<in>Mset(a). y = Replace(x,P))"
by fast
text\<open>Example 4: Axiom of Choice. Possibly wrong, since \<open>\<Pi>\<close> needs
to be relativized.\<close>
schematic_goal (in reflection)
"Reflects(?Cl,
\<lambda>A. 0\<notin>A \<longrightarrow> (\<exists>f. M(f) & f \<in> (\<Prod>X \<in> A. X)),
\<lambda>a A. 0\<notin>A \<longrightarrow> (\<exists>f\<in>Mset(a). f \<in> (\<Prod>X \<in> A. X)))"
by fast
end