src/HOL/IMP/Def_Init_Sound_Big.thy
author wenzelm
Fri, 17 May 2013 17:45:51 +0200
changeset 52051 9362fcd0318c
parent 50161 4fc4237488ab
permissions -rw-r--r--
modernized TimeLimit.timeLimit using Event_Timer service -- based on more elementary version 11ae688e4e30;

(* Author: Tobias Nipkow *)

theory Def_Init_Sound_Big
imports Def_Init Def_Init_Big
begin

subsection "Soundness wrt Big Steps"

text{* Note the special form of the induction because one of the arguments
of the inductive predicate is not a variable but the term @{term"Some s"}: *}

theorem Sound:
  "\<lbrakk> (c,Some s) \<Rightarrow> s';  D A c A';  A \<subseteq> dom s \<rbrakk>
  \<Longrightarrow> \<exists> t. s' = Some t \<and> A' \<subseteq> dom t"
proof (induction c "Some s" s' arbitrary: s A A' rule:big_step_induct)
  case AssignNone thus ?case
    by auto (metis aval_Some option.simps(3) subset_trans)
next
  case Seq thus ?case by auto metis
next
  case IfTrue thus ?case by auto blast
next
  case IfFalse thus ?case by auto blast
next
  case IfNone thus ?case
    by auto (metis bval_Some option.simps(3) order_trans)
next
  case WhileNone thus ?case
    by auto (metis bval_Some option.simps(3) order_trans)
next
  case (WhileTrue b s c s' s'')
  from `D A (WHILE b DO c) A'` obtain A' where "D A c A'" by blast
  then obtain t' where "s' = Some t'" "A \<subseteq> dom t'"
    by (metis D_incr WhileTrue(3,7) subset_trans)
  from WhileTrue(5)[OF this(1) WhileTrue(6) this(2)] show ?case .
qed auto

corollary sound: "\<lbrakk>  D (dom s) c A';  (c,Some s) \<Rightarrow> s' \<rbrakk> \<Longrightarrow> s' \<noteq> None"
by (metis Sound not_Some_eq subset_refl)

end