(* Title: HOL/IntDiv.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1999 University of Cambridge
*)
header{*The Division Operators div and mod; the Divides Relation dvd*}
theory IntDiv
imports IntArith Divides FunDef
begin
constdefs
quorem :: "(int*int) * (int*int) => bool"
--{*definition of quotient and remainder*}
[code func]: "quorem == %((a,b), (q,r)).
a = b*q + r &
(if 0 < b then 0\<le>r & r<b else b<r & r \<le> 0)"
adjust :: "[int, int*int] => int*int"
--{*for the division algorithm*}
[code func]: "adjust b == %(q,r). if 0 \<le> r-b then (2*q + 1, r-b)
else (2*q, r)"
text{*algorithm for the case @{text "a\<ge>0, b>0"}*}
function
posDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int"
where
"posDivAlg a b =
(if (a<b | b\<le>0) then (0,a)
else adjust b (posDivAlg a (2*b)))"
by auto
termination by (relation "measure (%(a,b). nat(a - b + 1))") auto
text{*algorithm for the case @{text "a<0, b>0"}*}
function
negDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int"
where
"negDivAlg a b =
(if (0\<le>a+b | b\<le>0) then (-1,a+b)
else adjust b (negDivAlg a (2*b)))"
by auto
termination by (relation "measure (%(a,b). nat(- a - b))") auto
text{*algorithm for the general case @{term "b\<noteq>0"}*}
constdefs
negateSnd :: "int*int => int*int"
[code func]: "negateSnd == %(q,r). (q,-r)"
definition
divAlg :: "int \<times> int \<Rightarrow> int \<times> int"
--{*The full division algorithm considers all possible signs for a, b
including the special case @{text "a=0, b<0"} because
@{term negDivAlg} requires @{term "a<0"}.*}
where
"divAlg = (\<lambda>(a, b). (if 0\<le>a then
if 0\<le>b then posDivAlg a b
else if a=0 then (0, 0)
else negateSnd (negDivAlg (-a) (-b))
else
if 0<b then negDivAlg a b
else negateSnd (posDivAlg (-a) (-b))))"
instance int :: Divides.div
div_def: "a div b == fst (divAlg (a, b))"
mod_def: "a mod b == snd (divAlg (a, b))" ..
lemma divAlg_mod_div:
"divAlg (p, q) = (p div q, p mod q)"
by (auto simp add: div_def mod_def)
text{*
Here is the division algorithm in ML:
\begin{verbatim}
fun posDivAlg (a,b) =
if a<b then (0,a)
else let val (q,r) = posDivAlg(a, 2*b)
in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
end
fun negDivAlg (a,b) =
if 0\<le>a+b then (~1,a+b)
else let val (q,r) = negDivAlg(a, 2*b)
in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
end;
fun negateSnd (q,r:int) = (q,~r);
fun divAlg (a,b) = if 0\<le>a then
if b>0 then posDivAlg (a,b)
else if a=0 then (0,0)
else negateSnd (negDivAlg (~a,~b))
else
if 0<b then negDivAlg (a,b)
else negateSnd (posDivAlg (~a,~b));
\end{verbatim}
*}
subsection{*Uniqueness and Monotonicity of Quotients and Remainders*}
lemma unique_quotient_lemma:
"[| b*q' + r' \<le> b*q + r; 0 \<le> r'; r' < b; r < b |]
==> q' \<le> (q::int)"
apply (subgoal_tac "r' + b * (q'-q) \<le> r")
prefer 2 apply (simp add: right_diff_distrib)
apply (subgoal_tac "0 < b * (1 + q - q') ")
apply (erule_tac [2] order_le_less_trans)
prefer 2 apply (simp add: right_diff_distrib right_distrib)
apply (subgoal_tac "b * q' < b * (1 + q) ")
prefer 2 apply (simp add: right_diff_distrib right_distrib)
apply (simp add: mult_less_cancel_left)
done
lemma unique_quotient_lemma_neg:
"[| b*q' + r' \<le> b*q + r; r \<le> 0; b < r; b < r' |]
==> q \<le> (q'::int)"
by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma,
auto)
lemma unique_quotient:
"[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); b \<noteq> 0 |]
==> q = q'"
apply (simp add: quorem_def linorder_neq_iff split: split_if_asm)
apply (blast intro: order_antisym
dest: order_eq_refl [THEN unique_quotient_lemma]
order_eq_refl [THEN unique_quotient_lemma_neg] sym)+
done
lemma unique_remainder:
"[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); b \<noteq> 0 |]
==> r = r'"
apply (subgoal_tac "q = q'")
apply (simp add: quorem_def)
apply (blast intro: unique_quotient)
done
subsection{*Correctness of @{term posDivAlg}, the Algorithm for Non-Negative Dividends*}
text{*And positive divisors*}
lemma adjust_eq [simp]:
"adjust b (q,r) =
(let diff = r-b in
if 0 \<le> diff then (2*q + 1, diff)
else (2*q, r))"
by (simp add: Let_def adjust_def)
declare posDivAlg.simps [simp del]
text{*use with a simproc to avoid repeatedly proving the premise*}
lemma posDivAlg_eqn:
"0 < b ==>
posDivAlg a b = (if a<b then (0,a) else adjust b (posDivAlg a (2*b)))"
by (rule posDivAlg.simps [THEN trans], simp)
text{*Correctness of @{term posDivAlg}: it computes quotients correctly*}
theorem posDivAlg_correct:
assumes "0 \<le> a" and "0 < b"
shows "quorem ((a, b), posDivAlg a b)"
using prems apply (induct a b rule: posDivAlg.induct)
apply auto
apply (simp add: quorem_def)
apply (subst posDivAlg_eqn, simp add: right_distrib)
apply (case_tac "a < b")
apply simp_all
apply (erule splitE)
apply (auto simp add: right_distrib Let_def)
done
subsection{*Correctness of @{term negDivAlg}, the Algorithm for Negative Dividends*}
text{*And positive divisors*}
declare negDivAlg.simps [simp del]
text{*use with a simproc to avoid repeatedly proving the premise*}
lemma negDivAlg_eqn:
"0 < b ==>
negDivAlg a b =
(if 0\<le>a+b then (-1,a+b) else adjust b (negDivAlg a (2*b)))"
by (rule negDivAlg.simps [THEN trans], simp)
(*Correctness of negDivAlg: it computes quotients correctly
It doesn't work if a=0 because the 0/b equals 0, not -1*)
lemma negDivAlg_correct:
assumes "a < 0" and "b > 0"
shows "quorem ((a, b), negDivAlg a b)"
using prems apply (induct a b rule: negDivAlg.induct)
apply (auto simp add: linorder_not_le)
apply (simp add: quorem_def)
apply (subst negDivAlg_eqn, assumption)
apply (case_tac "a + b < (0\<Colon>int)")
apply simp_all
apply (erule splitE)
apply (auto simp add: right_distrib Let_def)
done
subsection{*Existence Shown by Proving the Division Algorithm to be Correct*}
(*the case a=0*)
lemma quorem_0: "b \<noteq> 0 ==> quorem ((0,b), (0,0))"
by (auto simp add: quorem_def linorder_neq_iff)
lemma posDivAlg_0 [simp]: "posDivAlg 0 b = (0, 0)"
by (subst posDivAlg.simps, auto)
lemma negDivAlg_minus1 [simp]: "negDivAlg -1 b = (-1, b - 1)"
by (subst negDivAlg.simps, auto)
lemma negateSnd_eq [simp]: "negateSnd(q,r) = (q,-r)"
by (simp add: negateSnd_def)
lemma quorem_neg: "quorem ((-a,-b), qr) ==> quorem ((a,b), negateSnd qr)"
by (auto simp add: split_ifs quorem_def)
lemma divAlg_correct: "b \<noteq> 0 ==> quorem ((a,b), divAlg (a, b))"
by (force simp add: linorder_neq_iff quorem_0 divAlg_def quorem_neg
posDivAlg_correct negDivAlg_correct)
text{*Arbitrary definitions for division by zero. Useful to simplify
certain equations.*}
lemma DIVISION_BY_ZERO [simp]: "a div (0::int) = 0 & a mod (0::int) = a"
by (simp add: div_def mod_def divAlg_def posDivAlg.simps)
text{*Basic laws about division and remainder*}
lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)"
apply (case_tac "b = 0", simp)
apply (cut_tac a = a and b = b in divAlg_correct)
apply (auto simp add: quorem_def div_def mod_def)
done
lemma zdiv_zmod_equality: "(b * (a div b) + (a mod b)) + k = (a::int)+k"
by(simp add: zmod_zdiv_equality[symmetric])
lemma zdiv_zmod_equality2: "((a div b) * b + (a mod b)) + k = (a::int)+k"
by(simp add: mult_commute zmod_zdiv_equality[symmetric])
text {* Tool setup *}
ML_setup {*
local
structure CancelDivMod = CancelDivModFun(
struct
val div_name = @{const_name Divides.div};
val mod_name = @{const_name Divides.mod};
val mk_binop = HOLogic.mk_binop;
val mk_sum = Int_Numeral_Simprocs.mk_sum HOLogic.intT;
val dest_sum = Int_Numeral_Simprocs.dest_sum;
val div_mod_eqs =
map mk_meta_eq [@{thm zdiv_zmod_equality},
@{thm zdiv_zmod_equality2}];
val trans = trans;
val prove_eq_sums =
let
val simps = @{thm diff_int_def} :: Int_Numeral_Simprocs.add_0s @ @{thms zadd_ac}
in NatArithUtils.prove_conv all_tac (NatArithUtils.simp_all_tac simps) end;
end)
in
val cancel_zdiv_zmod_proc = NatArithUtils.prep_simproc
("cancel_zdiv_zmod", ["(m::int) + n"], K CancelDivMod.proc)
end;
Addsimprocs [cancel_zdiv_zmod_proc]
*}
lemma pos_mod_conj : "(0::int) < b ==> 0 \<le> a mod b & a mod b < b"
apply (cut_tac a = a and b = b in divAlg_correct)
apply (auto simp add: quorem_def mod_def)
done
lemmas pos_mod_sign [simp] = pos_mod_conj [THEN conjunct1, standard]
and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2, standard]
lemma neg_mod_conj : "b < (0::int) ==> a mod b \<le> 0 & b < a mod b"
apply (cut_tac a = a and b = b in divAlg_correct)
apply (auto simp add: quorem_def div_def mod_def)
done
lemmas neg_mod_sign [simp] = neg_mod_conj [THEN conjunct1, standard]
and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2, standard]
subsection{*General Properties of div and mod*}
lemma quorem_div_mod: "b \<noteq> 0 ==> quorem ((a, b), (a div b, a mod b))"
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (force simp add: quorem_def linorder_neq_iff)
done
lemma quorem_div: "[| quorem((a,b),(q,r)); b \<noteq> 0 |] ==> a div b = q"
by (simp add: quorem_div_mod [THEN unique_quotient])
lemma quorem_mod: "[| quorem((a,b),(q,r)); b \<noteq> 0 |] ==> a mod b = r"
by (simp add: quorem_div_mod [THEN unique_remainder])
lemma div_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a div b = 0"
apply (rule quorem_div)
apply (auto simp add: quorem_def)
done
lemma div_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a div b = 0"
apply (rule quorem_div)
apply (auto simp add: quorem_def)
done
lemma div_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a div b = -1"
apply (rule quorem_div)
apply (auto simp add: quorem_def)
done
(*There is no div_neg_pos_trivial because 0 div b = 0 would supersede it*)
lemma mod_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a mod b = a"
apply (rule_tac q = 0 in quorem_mod)
apply (auto simp add: quorem_def)
done
lemma mod_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a mod b = a"
apply (rule_tac q = 0 in quorem_mod)
apply (auto simp add: quorem_def)
done
lemma mod_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a mod b = a+b"
apply (rule_tac q = "-1" in quorem_mod)
apply (auto simp add: quorem_def)
done
text{*There is no @{text mod_neg_pos_trivial}.*}
(*Simpler laws such as -a div b = -(a div b) FAIL, but see just below*)
lemma zdiv_zminus_zminus [simp]: "(-a) div (-b) = a div (b::int)"
apply (case_tac "b = 0", simp)
apply (simp add: quorem_div_mod [THEN quorem_neg, simplified,
THEN quorem_div, THEN sym])
done
(*Simpler laws such as -a mod b = -(a mod b) FAIL, but see just below*)
lemma zmod_zminus_zminus [simp]: "(-a) mod (-b) = - (a mod (b::int))"
apply (case_tac "b = 0", simp)
apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_mod],
auto)
done
subsection{*Laws for div and mod with Unary Minus*}
lemma zminus1_lemma:
"quorem((a,b),(q,r))
==> quorem ((-a,b), (if r=0 then -q else -q - 1),
(if r=0 then 0 else b-r))"
by (force simp add: split_ifs quorem_def linorder_neq_iff right_diff_distrib)
lemma zdiv_zminus1_eq_if:
"b \<noteq> (0::int)
==> (-a) div b =
(if a mod b = 0 then - (a div b) else - (a div b) - 1)"
by (blast intro: quorem_div_mod [THEN zminus1_lemma, THEN quorem_div])
lemma zmod_zminus1_eq_if:
"(-a::int) mod b = (if a mod b = 0 then 0 else b - (a mod b))"
apply (case_tac "b = 0", simp)
apply (blast intro: quorem_div_mod [THEN zminus1_lemma, THEN quorem_mod])
done
lemma zdiv_zminus2: "a div (-b) = (-a::int) div b"
by (cut_tac a = "-a" in zdiv_zminus_zminus, auto)
lemma zmod_zminus2: "a mod (-b) = - ((-a::int) mod b)"
by (cut_tac a = "-a" and b = b in zmod_zminus_zminus, auto)
lemma zdiv_zminus2_eq_if:
"b \<noteq> (0::int)
==> a div (-b) =
(if a mod b = 0 then - (a div b) else - (a div b) - 1)"
by (simp add: zdiv_zminus1_eq_if zdiv_zminus2)
lemma zmod_zminus2_eq_if:
"a mod (-b::int) = (if a mod b = 0 then 0 else (a mod b) - b)"
by (simp add: zmod_zminus1_eq_if zmod_zminus2)
subsection{*Division of a Number by Itself*}
lemma self_quotient_aux1: "[| (0::int) < a; a = r + a*q; r < a |] ==> 1 \<le> q"
apply (subgoal_tac "0 < a*q")
apply (simp add: zero_less_mult_iff, arith)
done
lemma self_quotient_aux2: "[| (0::int) < a; a = r + a*q; 0 \<le> r |] ==> q \<le> 1"
apply (subgoal_tac "0 \<le> a* (1-q) ")
apply (simp add: zero_le_mult_iff)
apply (simp add: right_diff_distrib)
done
lemma self_quotient: "[| quorem((a,a),(q,r)); a \<noteq> (0::int) |] ==> q = 1"
apply (simp add: split_ifs quorem_def linorder_neq_iff)
apply (rule order_antisym, safe, simp_all)
apply (rule_tac [3] a = "-a" and r = "-r" in self_quotient_aux1)
apply (rule_tac a = "-a" and r = "-r" in self_quotient_aux2)
apply (force intro: self_quotient_aux1 self_quotient_aux2 simp add: add_commute)+
done
lemma self_remainder: "[| quorem((a,a),(q,r)); a \<noteq> (0::int) |] ==> r = 0"
apply (frule self_quotient, assumption)
apply (simp add: quorem_def)
done
lemma zdiv_self [simp]: "a \<noteq> 0 ==> a div a = (1::int)"
by (simp add: quorem_div_mod [THEN self_quotient])
(*Here we have 0 mod 0 = 0, also assumed by Knuth (who puts m mod 0 = 0) *)
lemma zmod_self [simp]: "a mod a = (0::int)"
apply (case_tac "a = 0", simp)
apply (simp add: quorem_div_mod [THEN self_remainder])
done
subsection{*Computation of Division and Remainder*}
lemma zdiv_zero [simp]: "(0::int) div b = 0"
by (simp add: div_def divAlg_def)
lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1"
by (simp add: div_def divAlg_def)
lemma zmod_zero [simp]: "(0::int) mod b = 0"
by (simp add: mod_def divAlg_def)
lemma zdiv_minus1: "(0::int) < b ==> -1 div b = -1"
by (simp add: div_def divAlg_def)
lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1"
by (simp add: mod_def divAlg_def)
text{*a positive, b positive *}
lemma div_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a div b = fst (posDivAlg a b)"
by (simp add: div_def divAlg_def)
lemma mod_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a mod b = snd (posDivAlg a b)"
by (simp add: mod_def divAlg_def)
text{*a negative, b positive *}
lemma div_neg_pos: "[| a < 0; 0 < b |] ==> a div b = fst (negDivAlg a b)"
by (simp add: div_def divAlg_def)
lemma mod_neg_pos: "[| a < 0; 0 < b |] ==> a mod b = snd (negDivAlg a b)"
by (simp add: mod_def divAlg_def)
text{*a positive, b negative *}
lemma div_pos_neg:
"[| 0 < a; b < 0 |] ==> a div b = fst (negateSnd (negDivAlg (-a) (-b)))"
by (simp add: div_def divAlg_def)
lemma mod_pos_neg:
"[| 0 < a; b < 0 |] ==> a mod b = snd (negateSnd (negDivAlg (-a) (-b)))"
by (simp add: mod_def divAlg_def)
text{*a negative, b negative *}
lemma div_neg_neg:
"[| a < 0; b \<le> 0 |] ==> a div b = fst (negateSnd (posDivAlg (-a) (-b)))"
by (simp add: div_def divAlg_def)
lemma mod_neg_neg:
"[| a < 0; b \<le> 0 |] ==> a mod b = snd (negateSnd (posDivAlg (-a) (-b)))"
by (simp add: mod_def divAlg_def)
text {*Simplify expresions in which div and mod combine numerical constants*}
lemmas div_pos_pos_number_of [simp] =
div_pos_pos [of "number_of v" "number_of w", standard]
lemmas div_neg_pos_number_of [simp] =
div_neg_pos [of "number_of v" "number_of w", standard]
lemmas div_pos_neg_number_of [simp] =
div_pos_neg [of "number_of v" "number_of w", standard]
lemmas div_neg_neg_number_of [simp] =
div_neg_neg [of "number_of v" "number_of w", standard]
lemmas mod_pos_pos_number_of [simp] =
mod_pos_pos [of "number_of v" "number_of w", standard]
lemmas mod_neg_pos_number_of [simp] =
mod_neg_pos [of "number_of v" "number_of w", standard]
lemmas mod_pos_neg_number_of [simp] =
mod_pos_neg [of "number_of v" "number_of w", standard]
lemmas mod_neg_neg_number_of [simp] =
mod_neg_neg [of "number_of v" "number_of w", standard]
lemmas posDivAlg_eqn_number_of [simp] =
posDivAlg_eqn [of "number_of v" "number_of w", standard]
lemmas negDivAlg_eqn_number_of [simp] =
negDivAlg_eqn [of "number_of v" "number_of w", standard]
text{*Special-case simplification *}
lemma zmod_1 [simp]: "a mod (1::int) = 0"
apply (cut_tac a = a and b = 1 in pos_mod_sign)
apply (cut_tac [2] a = a and b = 1 in pos_mod_bound)
apply (auto simp del:pos_mod_bound pos_mod_sign)
done
lemma zdiv_1 [simp]: "a div (1::int) = a"
by (cut_tac a = a and b = 1 in zmod_zdiv_equality, auto)
lemma zmod_minus1_right [simp]: "a mod (-1::int) = 0"
apply (cut_tac a = a and b = "-1" in neg_mod_sign)
apply (cut_tac [2] a = a and b = "-1" in neg_mod_bound)
apply (auto simp del: neg_mod_sign neg_mod_bound)
done
lemma zdiv_minus1_right [simp]: "a div (-1::int) = -a"
by (cut_tac a = a and b = "-1" in zmod_zdiv_equality, auto)
(** The last remaining special cases for constant arithmetic:
1 div z and 1 mod z **)
lemmas div_pos_pos_1_number_of [simp] =
div_pos_pos [OF int_0_less_1, of "number_of w", standard]
lemmas div_pos_neg_1_number_of [simp] =
div_pos_neg [OF int_0_less_1, of "number_of w", standard]
lemmas mod_pos_pos_1_number_of [simp] =
mod_pos_pos [OF int_0_less_1, of "number_of w", standard]
lemmas mod_pos_neg_1_number_of [simp] =
mod_pos_neg [OF int_0_less_1, of "number_of w", standard]
lemmas posDivAlg_eqn_1_number_of [simp] =
posDivAlg_eqn [of concl: 1 "number_of w", standard]
lemmas negDivAlg_eqn_1_number_of [simp] =
negDivAlg_eqn [of concl: 1 "number_of w", standard]
subsection{*Monotonicity in the First Argument (Dividend)*}
lemma zdiv_mono1: "[| a \<le> a'; 0 < (b::int) |] ==> a div b \<le> a' div b"
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
apply (rule unique_quotient_lemma)
apply (erule subst)
apply (erule subst, simp_all)
done
lemma zdiv_mono1_neg: "[| a \<le> a'; (b::int) < 0 |] ==> a' div b \<le> a div b"
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
apply (rule unique_quotient_lemma_neg)
apply (erule subst)
apply (erule subst, simp_all)
done
subsection{*Monotonicity in the Second Argument (Divisor)*}
lemma q_pos_lemma:
"[| 0 \<le> b'*q' + r'; r' < b'; 0 < b' |] ==> 0 \<le> (q'::int)"
apply (subgoal_tac "0 < b'* (q' + 1) ")
apply (simp add: zero_less_mult_iff)
apply (simp add: right_distrib)
done
lemma zdiv_mono2_lemma:
"[| b*q + r = b'*q' + r'; 0 \<le> b'*q' + r';
r' < b'; 0 \<le> r; 0 < b'; b' \<le> b |]
==> q \<le> (q'::int)"
apply (frule q_pos_lemma, assumption+)
apply (subgoal_tac "b*q < b* (q' + 1) ")
apply (simp add: mult_less_cancel_left)
apply (subgoal_tac "b*q = r' - r + b'*q'")
prefer 2 apply simp
apply (simp (no_asm_simp) add: right_distrib)
apply (subst add_commute, rule zadd_zless_mono, arith)
apply (rule mult_right_mono, auto)
done
lemma zdiv_mono2:
"[| (0::int) \<le> a; 0 < b'; b' \<le> b |] ==> a div b \<le> a div b'"
apply (subgoal_tac "b \<noteq> 0")
prefer 2 apply arith
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
apply (rule zdiv_mono2_lemma)
apply (erule subst)
apply (erule subst, simp_all)
done
lemma q_neg_lemma:
"[| b'*q' + r' < 0; 0 \<le> r'; 0 < b' |] ==> q' \<le> (0::int)"
apply (subgoal_tac "b'*q' < 0")
apply (simp add: mult_less_0_iff, arith)
done
lemma zdiv_mono2_neg_lemma:
"[| b*q + r = b'*q' + r'; b'*q' + r' < 0;
r < b; 0 \<le> r'; 0 < b'; b' \<le> b |]
==> q' \<le> (q::int)"
apply (frule q_neg_lemma, assumption+)
apply (subgoal_tac "b*q' < b* (q + 1) ")
apply (simp add: mult_less_cancel_left)
apply (simp add: right_distrib)
apply (subgoal_tac "b*q' \<le> b'*q'")
prefer 2 apply (simp add: mult_right_mono_neg, arith)
done
lemma zdiv_mono2_neg:
"[| a < (0::int); 0 < b'; b' \<le> b |] ==> a div b' \<le> a div b"
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
apply (rule zdiv_mono2_neg_lemma)
apply (erule subst)
apply (erule subst, simp_all)
done
subsection{*More Algebraic Laws for div and mod*}
text{*proving (a*b) div c = a * (b div c) + a * (b mod c) *}
lemma zmult1_lemma:
"[| quorem((b,c),(q,r)); c \<noteq> 0 |]
==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))"
by (force simp add: split_ifs quorem_def linorder_neq_iff right_distrib)
lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)"
apply (case_tac "c = 0", simp)
apply (blast intro: quorem_div_mod [THEN zmult1_lemma, THEN quorem_div])
done
lemma zmod_zmult1_eq: "(a*b) mod c = a*(b mod c) mod (c::int)"
apply (case_tac "c = 0", simp)
apply (blast intro: quorem_div_mod [THEN zmult1_lemma, THEN quorem_mod])
done
lemma zmod_zmult1_eq': "(a*b) mod (c::int) = ((a mod c) * b) mod c"
apply (rule trans)
apply (rule_tac s = "b*a mod c" in trans)
apply (rule_tac [2] zmod_zmult1_eq)
apply (simp_all add: mult_commute)
done
lemma zmod_zmult_distrib: "(a*b) mod (c::int) = ((a mod c) * (b mod c)) mod c"
apply (rule zmod_zmult1_eq' [THEN trans])
apply (rule zmod_zmult1_eq)
done
lemma zdiv_zmult_self1 [simp]: "b \<noteq> (0::int) ==> (a*b) div b = a"
by (simp add: zdiv_zmult1_eq)
lemma zdiv_zmult_self2 [simp]: "b \<noteq> (0::int) ==> (b*a) div b = a"
by (subst mult_commute, erule zdiv_zmult_self1)
lemma zmod_zmult_self1 [simp]: "(a*b) mod b = (0::int)"
by (simp add: zmod_zmult1_eq)
lemma zmod_zmult_self2 [simp]: "(b*a) mod b = (0::int)"
by (simp add: mult_commute zmod_zmult1_eq)
lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)"
proof
assume "m mod d = 0"
with zmod_zdiv_equality[of m d] show "EX q::int. m = d*q" by auto
next
assume "EX q::int. m = d*q"
thus "m mod d = 0" by auto
qed
lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1]
text{*proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) *}
lemma zadd1_lemma:
"[| quorem((a,c),(aq,ar)); quorem((b,c),(bq,br)); c \<noteq> 0 |]
==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))"
by (force simp add: split_ifs quorem_def linorder_neq_iff right_distrib)
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
lemma zdiv_zadd1_eq:
"(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)"
apply (case_tac "c = 0", simp)
apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod] quorem_div)
done
lemma zmod_zadd1_eq: "(a+b) mod (c::int) = (a mod c + b mod c) mod c"
apply (case_tac "c = 0", simp)
apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod] quorem_mod)
done
lemma mod_div_trivial [simp]: "(a mod b) div b = (0::int)"
apply (case_tac "b = 0", simp)
apply (auto simp add: linorder_neq_iff div_pos_pos_trivial div_neg_neg_trivial)
done
lemma mod_mod_trivial [simp]: "(a mod b) mod b = a mod (b::int)"
apply (case_tac "b = 0", simp)
apply (force simp add: linorder_neq_iff mod_pos_pos_trivial mod_neg_neg_trivial)
done
lemma zmod_zadd_left_eq: "(a+b) mod (c::int) = ((a mod c) + b) mod c"
apply (rule trans [symmetric])
apply (rule zmod_zadd1_eq, simp)
apply (rule zmod_zadd1_eq [symmetric])
done
lemma zmod_zadd_right_eq: "(a+b) mod (c::int) = (a + (b mod c)) mod c"
apply (rule trans [symmetric])
apply (rule zmod_zadd1_eq, simp)
apply (rule zmod_zadd1_eq [symmetric])
done
lemma zdiv_zadd_self1[simp]: "a \<noteq> (0::int) ==> (a+b) div a = b div a + 1"
by (simp add: zdiv_zadd1_eq)
lemma zdiv_zadd_self2[simp]: "a \<noteq> (0::int) ==> (b+a) div a = b div a + 1"
by (simp add: zdiv_zadd1_eq)
lemma zmod_zadd_self1[simp]: "(a+b) mod a = b mod (a::int)"
apply (case_tac "a = 0", simp)
apply (simp add: zmod_zadd1_eq)
done
lemma zmod_zadd_self2[simp]: "(b+a) mod a = b mod (a::int)"
apply (case_tac "a = 0", simp)
apply (simp add: zmod_zadd1_eq)
done
lemma zmod_zdiff1_eq: fixes a::int
shows "(a - b) mod c = (a mod c - b mod c) mod c" (is "?l = ?r")
proof -
have "?l = (c + (a mod c - b mod c)) mod c"
using zmod_zadd1_eq[of a "-b" c] by(simp add:ring_simps zmod_zminus1_eq_if)
also have "\<dots> = ?r" by simp
finally show ?thesis .
qed
subsection{*Proving @{term "a div (b*c) = (a div b) div c"} *}
(*The condition c>0 seems necessary. Consider that 7 div ~6 = ~2 but
7 div 2 div ~3 = 3 div ~3 = ~1. The subcase (a div b) mod c = 0 seems
to cause particular problems.*)
text{*first, four lemmas to bound the remainder for the cases b<0 and b>0 *}
lemma zmult2_lemma_aux1: "[| (0::int) < c; b < r; r \<le> 0 |] ==> b*c < b*(q mod c) + r"
apply (subgoal_tac "b * (c - q mod c) < r * 1")
apply (simp add: right_diff_distrib)
apply (rule order_le_less_trans)
apply (erule_tac [2] mult_strict_right_mono)
apply (rule mult_left_mono_neg)
apply (auto simp add: compare_rls add_commute [of 1]
add1_zle_eq pos_mod_bound)
done
lemma zmult2_lemma_aux2:
"[| (0::int) < c; b < r; r \<le> 0 |] ==> b * (q mod c) + r \<le> 0"
apply (subgoal_tac "b * (q mod c) \<le> 0")
apply arith
apply (simp add: mult_le_0_iff)
done
lemma zmult2_lemma_aux3: "[| (0::int) < c; 0 \<le> r; r < b |] ==> 0 \<le> b * (q mod c) + r"
apply (subgoal_tac "0 \<le> b * (q mod c) ")
apply arith
apply (simp add: zero_le_mult_iff)
done
lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \<le> r; r < b |] ==> b * (q mod c) + r < b * c"
apply (subgoal_tac "r * 1 < b * (c - q mod c) ")
apply (simp add: right_diff_distrib)
apply (rule order_less_le_trans)
apply (erule mult_strict_right_mono)
apply (rule_tac [2] mult_left_mono)
apply (auto simp add: compare_rls add_commute [of 1]
add1_zle_eq pos_mod_bound)
done
lemma zmult2_lemma: "[| quorem ((a,b), (q,r)); b \<noteq> 0; 0 < c |]
==> quorem ((a, b*c), (q div c, b*(q mod c) + r))"
by (auto simp add: mult_ac quorem_def linorder_neq_iff
zero_less_mult_iff right_distrib [symmetric]
zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4)
lemma zdiv_zmult2_eq: "(0::int) < c ==> a div (b*c) = (a div b) div c"
apply (case_tac "b = 0", simp)
apply (force simp add: quorem_div_mod [THEN zmult2_lemma, THEN quorem_div])
done
lemma zmod_zmult2_eq:
"(0::int) < c ==> a mod (b*c) = b*(a div b mod c) + a mod b"
apply (case_tac "b = 0", simp)
apply (force simp add: quorem_div_mod [THEN zmult2_lemma, THEN quorem_mod])
done
subsection{*Cancellation of Common Factors in div*}
lemma zdiv_zmult_zmult1_aux1:
"[| (0::int) < b; c \<noteq> 0 |] ==> (c*a) div (c*b) = a div b"
by (subst zdiv_zmult2_eq, auto)
lemma zdiv_zmult_zmult1_aux2:
"[| b < (0::int); c \<noteq> 0 |] ==> (c*a) div (c*b) = a div b"
apply (subgoal_tac " (c * (-a)) div (c * (-b)) = (-a) div (-b) ")
apply (rule_tac [2] zdiv_zmult_zmult1_aux1, auto)
done
lemma zdiv_zmult_zmult1: "c \<noteq> (0::int) ==> (c*a) div (c*b) = a div b"
apply (case_tac "b = 0", simp)
apply (auto simp add: linorder_neq_iff zdiv_zmult_zmult1_aux1 zdiv_zmult_zmult1_aux2)
done
lemma zdiv_zmult_zmult1_if[simp]:
"(k*m) div (k*n) = (if k = (0::int) then 0 else m div n)"
by (simp add:zdiv_zmult_zmult1)
(*
lemma zdiv_zmult_zmult2: "c \<noteq> (0::int) ==> (a*c) div (b*c) = a div b"
apply (drule zdiv_zmult_zmult1)
apply (auto simp add: mult_commute)
done
*)
subsection{*Distribution of Factors over mod*}
lemma zmod_zmult_zmult1_aux1:
"[| (0::int) < b; c \<noteq> 0 |] ==> (c*a) mod (c*b) = c * (a mod b)"
by (subst zmod_zmult2_eq, auto)
lemma zmod_zmult_zmult1_aux2:
"[| b < (0::int); c \<noteq> 0 |] ==> (c*a) mod (c*b) = c * (a mod b)"
apply (subgoal_tac " (c * (-a)) mod (c * (-b)) = c * ((-a) mod (-b))")
apply (rule_tac [2] zmod_zmult_zmult1_aux1, auto)
done
lemma zmod_zmult_zmult1: "(c*a) mod (c*b) = (c::int) * (a mod b)"
apply (case_tac "b = 0", simp)
apply (case_tac "c = 0", simp)
apply (auto simp add: linorder_neq_iff zmod_zmult_zmult1_aux1 zmod_zmult_zmult1_aux2)
done
lemma zmod_zmult_zmult2: "(a*c) mod (b*c) = (a mod b) * (c::int)"
apply (cut_tac c = c in zmod_zmult_zmult1)
apply (auto simp add: mult_commute)
done
subsection {*Splitting Rules for div and mod*}
text{*The proofs of the two lemmas below are essentially identical*}
lemma split_pos_lemma:
"0<k ==>
P(n div k :: int)(n mod k) = (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i j)"
apply (rule iffI, clarify)
apply (erule_tac P="P ?x ?y" in rev_mp)
apply (subst zmod_zadd1_eq)
apply (subst zdiv_zadd1_eq)
apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial)
txt{*converse direction*}
apply (drule_tac x = "n div k" in spec)
apply (drule_tac x = "n mod k" in spec, simp)
done
lemma split_neg_lemma:
"k<0 ==>
P(n div k :: int)(n mod k) = (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i j)"
apply (rule iffI, clarify)
apply (erule_tac P="P ?x ?y" in rev_mp)
apply (subst zmod_zadd1_eq)
apply (subst zdiv_zadd1_eq)
apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial)
txt{*converse direction*}
apply (drule_tac x = "n div k" in spec)
apply (drule_tac x = "n mod k" in spec, simp)
done
lemma split_zdiv:
"P(n div k :: int) =
((k = 0 --> P 0) &
(0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i)) &
(k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i)))"
apply (case_tac "k=0", simp)
apply (simp only: linorder_neq_iff)
apply (erule disjE)
apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"]
split_neg_lemma [of concl: "%x y. P x"])
done
lemma split_zmod:
"P(n mod k :: int) =
((k = 0 --> P n) &
(0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P j)) &
(k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P j)))"
apply (case_tac "k=0", simp)
apply (simp only: linorder_neq_iff)
apply (erule disjE)
apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"]
split_neg_lemma [of concl: "%x y. P y"])
done
(* Enable arith to deal with div 2 and mod 2: *)
declare split_zdiv [of _ _ "number_of k", simplified, standard, arith_split]
declare split_zmod [of _ _ "number_of k", simplified, standard, arith_split]
subsection{*Speeding up the Division Algorithm with Shifting*}
text{*computing div by shifting *}
lemma pos_zdiv_mult_2: "(0::int) \<le> a ==> (1 + 2*b) div (2*a) = b div a"
proof cases
assume "a=0"
thus ?thesis by simp
next
assume "a\<noteq>0" and le_a: "0\<le>a"
hence a_pos: "1 \<le> a" by arith
hence one_less_a2: "1 < 2*a" by arith
hence le_2a: "2 * (1 + b mod a) \<le> 2 * a"
by (simp add: mult_le_cancel_left add_commute [of 1] add1_zle_eq)
with a_pos have "0 \<le> b mod a" by simp
hence le_addm: "0 \<le> 1 mod (2*a) + 2*(b mod a)"
by (simp add: mod_pos_pos_trivial one_less_a2)
with le_2a
have "(1 mod (2*a) + 2*(b mod a)) div (2*a) = 0"
by (simp add: div_pos_pos_trivial le_addm mod_pos_pos_trivial one_less_a2
right_distrib)
thus ?thesis
by (subst zdiv_zadd1_eq,
simp add: zdiv_zmult_zmult1 zmod_zmult_zmult1 one_less_a2
div_pos_pos_trivial)
qed
lemma neg_zdiv_mult_2: "a \<le> (0::int) ==> (1 + 2*b) div (2*a) = (b+1) div a"
apply (subgoal_tac " (1 + 2* (-b - 1)) div (2 * (-a)) = (-b - 1) div (-a) ")
apply (rule_tac [2] pos_zdiv_mult_2)
apply (auto simp add: minus_mult_right [symmetric] right_diff_distrib)
apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))")
apply (simp only: zdiv_zminus_zminus diff_minus minus_add_distrib [symmetric],
simp)
done
(*Not clear why this must be proved separately; probably number_of causes
simplification problems*)
lemma not_0_le_lemma: "~ 0 \<le> x ==> x \<le> (0::int)"
by auto
lemma zdiv_number_of_BIT[simp]:
"number_of (v BIT b) div number_of (w BIT bit.B0) =
(if b=bit.B0 | (0::int) \<le> number_of w
then number_of v div (number_of w)
else (number_of v + (1::int)) div (number_of w))"
apply (simp only: number_of_eq numeral_simps UNIV_I split: split_if)
apply (simp add: zdiv_zmult_zmult1 pos_zdiv_mult_2 neg_zdiv_mult_2 add_ac
split: bit.split)
done
subsection{*Computing mod by Shifting (proofs resemble those for div)*}
lemma pos_zmod_mult_2:
"(0::int) \<le> a ==> (1 + 2*b) mod (2*a) = 1 + 2 * (b mod a)"
apply (case_tac "a = 0", simp)
apply (subgoal_tac "1 < a * 2")
prefer 2 apply arith
apply (subgoal_tac "2* (1 + b mod a) \<le> 2*a")
apply (rule_tac [2] mult_left_mono)
apply (auto simp add: add_commute [of 1] mult_commute add1_zle_eq
pos_mod_bound)
apply (subst zmod_zadd1_eq)
apply (simp add: zmod_zmult_zmult2 mod_pos_pos_trivial)
apply (rule mod_pos_pos_trivial)
apply (auto simp add: mod_pos_pos_trivial left_distrib)
apply (subgoal_tac "0 \<le> b mod a", arith, simp)
done
lemma neg_zmod_mult_2:
"a \<le> (0::int) ==> (1 + 2*b) mod (2*a) = 2 * ((b+1) mod a) - 1"
apply (subgoal_tac "(1 + 2* (-b - 1)) mod (2* (-a)) =
1 + 2* ((-b - 1) mod (-a))")
apply (rule_tac [2] pos_zmod_mult_2)
apply (auto simp add: minus_mult_right [symmetric] right_diff_distrib)
apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))")
prefer 2 apply simp
apply (simp only: zmod_zminus_zminus diff_minus minus_add_distrib [symmetric])
done
lemma zmod_number_of_BIT [simp]:
"number_of (v BIT b) mod number_of (w BIT bit.B0) =
(case b of
bit.B0 => 2 * (number_of v mod number_of w)
| bit.B1 => if (0::int) \<le> number_of w
then 2 * (number_of v mod number_of w) + 1
else 2 * ((number_of v + (1::int)) mod number_of w) - 1)"
apply (simp only: number_of_eq numeral_simps UNIV_I split: bit.split)
apply (simp add: zmod_zmult_zmult1 pos_zmod_mult_2
not_0_le_lemma neg_zmod_mult_2 add_ac)
done
subsection{*Quotients of Signs*}
lemma div_neg_pos_less0: "[| a < (0::int); 0 < b |] ==> a div b < 0"
apply (subgoal_tac "a div b \<le> -1", force)
apply (rule order_trans)
apply (rule_tac a' = "-1" in zdiv_mono1)
apply (auto simp add: zdiv_minus1)
done
lemma div_nonneg_neg_le0: "[| (0::int) \<le> a; b < 0 |] ==> a div b \<le> 0"
by (drule zdiv_mono1_neg, auto)
lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \<le> a div b) = (0 \<le> a)"
apply auto
apply (drule_tac [2] zdiv_mono1)
apply (auto simp add: linorder_neq_iff)
apply (simp (no_asm_use) add: linorder_not_less [symmetric])
apply (blast intro: div_neg_pos_less0)
done
lemma neg_imp_zdiv_nonneg_iff:
"b < (0::int) ==> (0 \<le> a div b) = (a \<le> (0::int))"
apply (subst zdiv_zminus_zminus [symmetric])
apply (subst pos_imp_zdiv_nonneg_iff, auto)
done
(*But not (a div b \<le> 0 iff a\<le>0); consider a=1, b=2 when a div b = 0.*)
lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)"
by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff)
(*Again the law fails for \<le>: consider a = -1, b = -2 when a div b = 0*)
lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)"
by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff)
subsection {* The Divides Relation *}
lemma zdvd_iff_zmod_eq_0: "(m dvd n) = (n mod m = (0::int))"
by (simp add: dvd_def zmod_eq_0_iff)
instance int :: dvd_mod
by default (simp add: times_class.dvd [symmetric] zdvd_iff_zmod_eq_0)
lemmas zdvd_iff_zmod_eq_0_number_of [simp] =
zdvd_iff_zmod_eq_0 [of "number_of x" "number_of y", standard]
lemma zdvd_0_right [iff]: "(m::int) dvd 0"
by (simp add: dvd_def)
lemma zdvd_0_left [iff,noatp]: "(0 dvd (m::int)) = (m = 0)"
by (simp add: dvd_def)
lemma zdvd_1_left [iff]: "1 dvd (m::int)"
by (simp add: dvd_def)
lemma zdvd_refl [simp]: "m dvd (m::int)"
by (auto simp add: dvd_def intro: zmult_1_right [symmetric])
lemma zdvd_trans: "m dvd n ==> n dvd k ==> m dvd (k::int)"
by (auto simp add: dvd_def intro: mult_assoc)
lemma zdvd_zminus_iff: "(m dvd -n) = (m dvd (n::int))"
apply (simp add: dvd_def, auto)
apply (rule_tac [!] x = "-k" in exI, auto)
done
lemma zdvd_zminus2_iff: "(-m dvd n) = (m dvd (n::int))"
apply (simp add: dvd_def, auto)
apply (rule_tac [!] x = "-k" in exI, auto)
done
lemma zdvd_abs1: "( \<bar>i::int\<bar> dvd j) = (i dvd j)"
apply (cases "i > 0", simp)
apply (simp add: dvd_def)
apply (rule iffI)
apply (erule exE)
apply (rule_tac x="- k" in exI, simp)
apply (erule exE)
apply (rule_tac x="- k" in exI, simp)
done
lemma zdvd_abs2: "( (i::int) dvd \<bar>j\<bar>) = (i dvd j)"
apply (cases "j > 0", simp)
apply (simp add: dvd_def)
apply (rule iffI)
apply (erule exE)
apply (rule_tac x="- k" in exI, simp)
apply (erule exE)
apply (rule_tac x="- k" in exI, simp)
done
lemma zdvd_anti_sym:
"0 < m ==> 0 < n ==> m dvd n ==> n dvd m ==> m = (n::int)"
apply (simp add: dvd_def, auto)
apply (simp add: mult_assoc zero_less_mult_iff zmult_eq_1_iff)
done
lemma zdvd_zadd: "k dvd m ==> k dvd n ==> k dvd (m + n :: int)"
apply (simp add: dvd_def)
apply (blast intro: right_distrib [symmetric])
done
lemma zdvd_dvd_eq: assumes anz:"a \<noteq> 0" and ab: "(a::int) dvd b" and ba:"b dvd a"
shows "\<bar>a\<bar> = \<bar>b\<bar>"
proof-
from ab obtain k where k:"b = a*k" unfolding dvd_def by blast
from ba obtain k' where k':"a = b*k'" unfolding dvd_def by blast
from k k' have "a = a*k*k'" by simp
with mult_cancel_left1[where c="a" and b="k*k'"]
have kk':"k*k' = 1" using anz by (simp add: mult_assoc)
hence "k = 1 \<and> k' = 1 \<or> k = -1 \<and> k' = -1" by (simp add: zmult_eq_1_iff)
thus ?thesis using k k' by auto
qed
lemma zdvd_zdiff: "k dvd m ==> k dvd n ==> k dvd (m - n :: int)"
apply (simp add: dvd_def)
apply (blast intro: right_diff_distrib [symmetric])
done
lemma zdvd_zdiffD: "k dvd m - n ==> k dvd n ==> k dvd (m::int)"
apply (subgoal_tac "m = n + (m - n)")
apply (erule ssubst)
apply (blast intro: zdvd_zadd, simp)
done
lemma zdvd_zmult: "k dvd (n::int) ==> k dvd m * n"
apply (simp add: dvd_def)
apply (blast intro: mult_left_commute)
done
lemma zdvd_zmult2: "k dvd (m::int) ==> k dvd m * n"
apply (subst mult_commute)
apply (erule zdvd_zmult)
done
lemma zdvd_triv_right [iff]: "(k::int) dvd m * k"
apply (rule zdvd_zmult)
apply (rule zdvd_refl)
done
lemma zdvd_triv_left [iff]: "(k::int) dvd k * m"
apply (rule zdvd_zmult2)
apply (rule zdvd_refl)
done
lemma zdvd_zmultD2: "j * k dvd n ==> j dvd (n::int)"
apply (simp add: dvd_def)
apply (simp add: mult_assoc, blast)
done
lemma zdvd_zmultD: "j * k dvd n ==> k dvd (n::int)"
apply (rule zdvd_zmultD2)
apply (subst mult_commute, assumption)
done
lemma zdvd_zmult_mono: "i dvd m ==> j dvd (n::int) ==> i * j dvd m * n"
apply (simp add: dvd_def, clarify)
apply (rule_tac x = "k * ka" in exI)
apply (simp add: mult_ac)
done
lemma zdvd_reduce: "(k dvd n + k * m) = (k dvd (n::int))"
apply (rule iffI)
apply (erule_tac [2] zdvd_zadd)
apply (subgoal_tac "n = (n + k * m) - k * m")
apply (erule ssubst)
apply (erule zdvd_zdiff, simp_all)
done
lemma zdvd_zmod: "f dvd m ==> f dvd (n::int) ==> f dvd m mod n"
apply (simp add: dvd_def)
apply (auto simp add: zmod_zmult_zmult1)
done
lemma zdvd_zmod_imp_zdvd: "k dvd m mod n ==> k dvd n ==> k dvd (m::int)"
apply (subgoal_tac "k dvd n * (m div n) + m mod n")
apply (simp add: zmod_zdiv_equality [symmetric])
apply (simp only: zdvd_zadd zdvd_zmult2)
done
lemma zdvd_not_zless: "0 < m ==> m < n ==> \<not> n dvd (m::int)"
apply (simp add: dvd_def, auto)
apply (subgoal_tac "0 < n")
prefer 2
apply (blast intro: order_less_trans)
apply (simp add: zero_less_mult_iff)
apply (subgoal_tac "n * k < n * 1")
apply (drule mult_less_cancel_left [THEN iffD1], auto)
done
lemma zmult_div_cancel: "(n::int) * (m div n) = m - (m mod n)"
using zmod_zdiv_equality[where a="m" and b="n"]
by (simp add: ring_simps)
lemma zdvd_mult_div_cancel:"(n::int) dvd m \<Longrightarrow> n * (m div n) = m"
apply (subgoal_tac "m mod n = 0")
apply (simp add: zmult_div_cancel)
apply (simp only: zdvd_iff_zmod_eq_0)
done
lemma zdvd_mult_cancel: assumes d:"k * m dvd k * n" and kz:"k \<noteq> (0::int)"
shows "m dvd n"
proof-
from d obtain h where h: "k*n = k*m * h" unfolding dvd_def by blast
{assume "n \<noteq> m*h" hence "k* n \<noteq> k* (m*h)" using kz by simp
with h have False by (simp add: mult_assoc)}
hence "n = m * h" by blast
thus ?thesis by blast
qed
lemma zdvd_zmult_cancel_disj[simp]:
"(k*m) dvd (k*n) = (k=0 | m dvd (n::int))"
by (auto simp: zdvd_zmult_mono dest: zdvd_mult_cancel)
theorem ex_nat: "(\<exists>x::nat. P x) = (\<exists>x::int. 0 <= x \<and> P (nat x))"
apply (simp split add: split_nat)
apply (rule iffI)
apply (erule exE)
apply (rule_tac x = "int x" in exI)
apply simp
apply (erule exE)
apply (rule_tac x = "nat x" in exI)
apply (erule conjE)
apply (erule_tac x = "nat x" in allE)
apply simp
done
theorem zdvd_int: "(x dvd y) = (int x dvd int y)"
apply (simp only: dvd_def ex_nat int_int_eq [symmetric] zmult_int [symmetric]
nat_0_le cong add: conj_cong)
apply (rule iffI)
apply iprover
apply (erule exE)
apply (case_tac "x=0")
apply (rule_tac x=0 in exI)
apply simp
apply (case_tac "0 \<le> k")
apply iprover
apply (simp add: linorder_not_le)
apply (drule mult_strict_left_mono_neg [OF iffD2 [OF zero_less_int_conv]])
apply assumption
apply (simp add: mult_ac)
done
lemma zdvd1_eq[simp]: "(x::int) dvd 1 = ( \<bar>x\<bar> = 1)"
proof
assume d: "x dvd 1" hence "int (nat \<bar>x\<bar>) dvd int (nat 1)" by (simp add: zdvd_abs1)
hence "nat \<bar>x\<bar> dvd 1" by (simp add: zdvd_int)
hence "nat \<bar>x\<bar> = 1" by simp
thus "\<bar>x\<bar> = 1" by (cases "x < 0", auto)
next
assume "\<bar>x\<bar>=1" thus "x dvd 1"
by(cases "x < 0",simp_all add: minus_equation_iff zdvd_iff_zmod_eq_0)
qed
lemma zdvd_mult_cancel1:
assumes mp:"m \<noteq>(0::int)" shows "(m * n dvd m) = (\<bar>n\<bar> = 1)"
proof
assume n1: "\<bar>n\<bar> = 1" thus "m * n dvd m"
by (cases "n >0", auto simp add: zdvd_zminus2_iff minus_equation_iff)
next
assume H: "m * n dvd m" hence H2: "m * n dvd m * 1" by simp
from zdvd_mult_cancel[OF H2 mp] show "\<bar>n\<bar> = 1" by (simp only: zdvd1_eq)
qed
lemma int_dvd_iff: "(int m dvd z) = (m dvd nat (abs z))"
apply (auto simp add: dvd_def nat_abs_mult_distrib)
apply (auto simp add: nat_eq_iff abs_if split add: split_if_asm)
apply (rule_tac x = "-(int k)" in exI)
apply (auto simp add: int_mult)
done
lemma dvd_int_iff: "(z dvd int m) = (nat (abs z) dvd m)"
apply (auto simp add: dvd_def abs_if int_mult)
apply (rule_tac [3] x = "nat k" in exI)
apply (rule_tac [2] x = "-(int k)" in exI)
apply (rule_tac x = "nat (-k)" in exI)
apply (cut_tac [3] k = m in int_less_0_conv)
apply (cut_tac k = m in int_less_0_conv)
apply (auto simp add: zero_le_mult_iff mult_less_0_iff
nat_mult_distrib [symmetric] nat_eq_iff2)
done
lemma nat_dvd_iff: "(nat z dvd m) = (if 0 \<le> z then (z dvd int m) else m = 0)"
apply (auto simp add: dvd_def int_mult)
apply (rule_tac x = "nat k" in exI)
apply (cut_tac k = m in int_less_0_conv)
apply (auto simp add: zero_le_mult_iff mult_less_0_iff
nat_mult_distrib [symmetric] nat_eq_iff2)
done
lemma zminus_dvd_iff [iff]: "(-z dvd w) = (z dvd (w::int))"
apply (auto simp add: dvd_def)
apply (rule_tac [!] x = "-k" in exI, auto)
done
lemma dvd_zminus_iff [iff]: "(z dvd -w) = (z dvd (w::int))"
apply (auto simp add: dvd_def)
apply (drule minus_equation_iff [THEN iffD1])
apply (rule_tac [!] x = "-k" in exI, auto)
done
lemma zdvd_imp_le: "[| z dvd n; 0 < n |] ==> z \<le> (n::int)"
apply (rule_tac z=n in int_cases)
apply (auto simp add: dvd_int_iff)
apply (rule_tac z=z in int_cases)
apply (auto simp add: dvd_imp_le)
done
subsection{*Integer Powers*}
instance int :: power ..
primrec
"p ^ 0 = 1"
"p ^ (Suc n) = (p::int) * (p ^ n)"
instance int :: recpower
proof
fix z :: int
fix n :: nat
show "z^0 = 1" by simp
show "z^(Suc n) = z * (z^n)" by simp
qed
lemma zpower_zmod: "((x::int) mod m)^y mod m = x^y mod m"
apply (induct "y", auto)
apply (rule zmod_zmult1_eq [THEN trans])
apply (simp (no_asm_simp))
apply (rule zmod_zmult_distrib [symmetric])
done
lemma zpower_zadd_distrib: "x^(y+z) = ((x^y)*(x^z)::int)"
by (rule Power.power_add)
lemma zpower_zpower: "(x^y)^z = (x^(y*z)::int)"
by (rule Power.power_mult [symmetric])
lemma zero_less_zpower_abs_iff [simp]:
"(0 < (abs x)^n) = (x \<noteq> (0::int) | n=0)"
apply (induct "n")
apply (auto simp add: zero_less_mult_iff)
done
lemma zero_le_zpower_abs [simp]: "(0::int) <= (abs x)^n"
apply (induct "n")
apply (auto simp add: zero_le_mult_iff)
done
lemma int_power: "int (m^n) = (int m) ^ n"
by (rule of_nat_power)
text{*Compatibility binding*}
lemmas zpower_int = int_power [symmetric]
lemma zdiv_int: "int (a div b) = (int a) div (int b)"
apply (subst split_div, auto)
apply (subst split_zdiv, auto)
apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in IntDiv.unique_quotient)
apply (auto simp add: IntDiv.quorem_def of_nat_mult)
done
lemma zmod_int: "int (a mod b) = (int a) mod (int b)"
apply (subst split_mod, auto)
apply (subst split_zmod, auto)
apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia
in unique_remainder)
apply (auto simp add: IntDiv.quorem_def of_nat_mult)
done
text{*Suggested by Matthias Daum*}
lemma int_power_div_base:
"\<lbrakk>0 < m; 0 < k\<rbrakk> \<Longrightarrow> k ^ m div k = (k::int) ^ (m - Suc 0)"
apply (subgoal_tac "k ^ m = k ^ ((m - 1) + 1)")
apply (erule ssubst)
apply (simp only: power_add)
apply simp_all
done
text {* by Brian Huffman *}
lemma zminus_zmod: "- ((x::int) mod m) mod m = - x mod m"
by (simp only: zmod_zminus1_eq_if mod_mod_trivial)
lemma zdiff_zmod_left: "(x mod m - y) mod m = (x - y) mod (m::int)"
by (simp only: diff_def zmod_zadd_left_eq [symmetric])
lemma zdiff_zmod_right: "(x - y mod m) mod m = (x - y) mod (m::int)"
proof -
have "(x + - (y mod m) mod m) mod m = (x + - y mod m) mod m"
by (simp only: zminus_zmod)
hence "(x + - (y mod m)) mod m = (x + - y) mod m"
by (simp only: zmod_zadd_right_eq [symmetric])
thus "(x - y mod m) mod m = (x - y) mod m"
by (simp only: diff_def)
qed
lemmas zmod_simps =
IntDiv.zmod_zadd_left_eq [symmetric]
IntDiv.zmod_zadd_right_eq [symmetric]
IntDiv.zmod_zmult1_eq [symmetric]
IntDiv.zmod_zmult1_eq' [symmetric]
IntDiv.zpower_zmod
zminus_zmod zdiff_zmod_left zdiff_zmod_right
text {* code generator setup *}
code_modulename SML
IntDiv Integer
code_modulename OCaml
IntDiv Integer
code_modulename Haskell
IntDiv Integer
end