(* Title: Provers/split_paired_all.ML
ID: $Id$
Author: Markus Wenzel, TU Muenchen
Derived rule for turning meta-level surjective pairing into split rule:
p == (fst p, snd p)
--------------------------------------
!!a b. PROP (a, b) == !! x. PROP P x
*)
signature SPLIT_PAIRED_ALL =
sig
val rule_params: string -> string -> thm -> thm
val rule: thm -> thm
end;
structure SplitPairedAll: SPLIT_PAIRED_ALL =
struct
fun all x T t = Term.all T $ Abs (x, T, t);
infixr ==>;
val op ==> = Logic.mk_implies;
fun rule_params a b raw_surj_pair =
let
val ct = Thm.cterm_of (Thm.sign_of_thm raw_surj_pair);
val surj_pair = Drule.unvarify (standard raw_surj_pair);
val used = Term.add_term_names (#prop (Thm.rep_thm surj_pair), []);
val (p, con $ _ $ _) = Logic.dest_equals (#prop (rep_thm surj_pair));
val pT as Type (_, [aT, bT]) = fastype_of p;
val P = Free (variant used "P", pT --> propT);
(*"!!a b. PROP (a, b)"*)
val all_a_b = all a aT (all b bT (P $ (con $ Bound 1 $ Bound 0)));
(*"!!x. PROP P x"*)
val all_x = all "x" pT (P $ Bound 0);
(*lemma "P p == P (fst p, snd p)"*)
val lem1 = Thm.combination (Thm.reflexive (ct P)) surj_pair;
(*lemma "(!!a b. PROP P (a,b)) ==> PROP P p"*)
val lem2 = prove_goalw_cterm [lem1] (ct (all_a_b ==> P $ p))
(fn prems => [resolve_tac prems 1]);
(*lemma "(!!a b. PROP P (a,b)) ==> !!x. PROP P x"*)
val lem3 = prove_goalw_cterm [] (ct (all_a_b ==> all_x))
(fn prems => [rtac lem2 1, resolve_tac prems 1]);
(*lemma "(!!x. PROP P x) ==> !!a b. PROP P (a,b)"*)
val lem4 = prove_goalw_cterm [] (ct (all_x ==> all_a_b))
(fn prems => [resolve_tac prems 1]);
in standard (Thm.equal_intr lem4 lem3) end;
val rule = rule_params "a" "b";
end;