optimize trivial equalities early in Nitpick -- it shouldn't be the job of the peephole optimizer
(* Title: Tools/float.ML
Author: Steven Obua, Florian Haftmann, TU Muenchen
Implementation of real numbers as mantisse-exponent pairs.
*)
signature FLOAT =
sig
type float = int * int
val zero: float
val eq: float * float -> bool
val ord: float * float -> order
val sign: float -> order
val min: float -> float -> float
val max: float -> float -> float
val add: float -> float -> float
val sub: float -> float -> float
val neg: float -> float
val mult: float -> float -> float
val positive_part: float -> float
val negative_part: float -> float
end;
structure Float : FLOAT =
struct
type float = int * int;
val zero: float = (0, 0);
fun add (a1, b1) (a2, b2) =
if b1 < b2 then
(a1 + a2 * Integer.square (b2 - b1), b1)
else
(a1 * Integer.square (b1 - b2) + a2, b2);
fun sub (a1, b1) (a2, b2) =
if b1 < b2 then
(a1 - a2 * Integer.square (b2 - b1), b1)
else
(a1 * Integer.square (b1 - b2) - a2, b2);
fun neg (a, b) = (~ a, b);
fun mult (a1, b1) (a2, b2) = (a1 * a2, b1 + b2);
fun sign (a, b) = Integer.sign a;
fun ord (r, s) = sign (sub r s);
fun eq (r, s) = ord (r, s) = EQUAL;
fun min r s = case ord (r, s) of LESS => r | _ => s;
fun max r s = case ord (r, s) of LESS => s | _ => r;
fun positive_part (a, b) = (Int.max (0, a), b);
fun negative_part (a, b) = (Int.min (0, a), b);
end;