(* Title: Pure/conv.ML
ID: $Id$
Author: Amine Chaieb and Makarius
Conversions: primitive equality reasoning.
*)
infix 1 then_conv;
infix 0 else_conv;
signature CONV =
sig
val no_conv: conv
val all_conv: conv
val then_conv: conv * conv -> conv
val else_conv: conv * conv -> conv
val first_conv: conv list -> conv
val every_conv: conv list -> conv
val try_conv: conv -> conv
val repeat_conv: conv -> conv
val abs_conv: (cterm * Proof.context -> conv) -> Proof.context -> conv
val combination_conv: conv -> conv -> conv
val comb_conv: conv -> conv
val arg_conv: conv -> conv
val fun_conv: conv -> conv
val arg1_conv: conv -> conv
val fun2_conv: conv -> conv
val binop_conv: conv -> conv
val forall_conv: (cterm * Proof.context -> conv) -> Proof.context -> conv
val implies_conv: conv -> conv -> conv
val implies_concl_conv: conv -> conv
val rewr_conv: thm -> conv
val params_conv: int -> (Proof.context -> conv) -> Proof.context -> conv
val prems_conv: int -> conv -> conv
val concl_conv: int -> conv -> conv
val fconv_rule: conv -> thm -> thm
val gconv_rule: conv -> int -> thm -> thm
end;
structure Conv: CONV =
struct
(* conversionals *)
fun no_conv _ = raise CTERM ("no conversion", []);
val all_conv = Thm.reflexive;
fun (cv1 then_conv cv2) ct =
let
val eq1 = cv1 ct;
val eq2 = cv2 (Thm.rhs_of eq1);
in
if Thm.is_reflexive eq1 then eq2
else if Thm.is_reflexive eq2 then eq1
else Thm.transitive eq1 eq2
end;
fun (cv1 else_conv cv2) ct =
(cv1 ct
handle THM _ => cv2 ct
| CTERM _ => cv2 ct
| TERM _ => cv2 ct
| TYPE _ => cv2 ct);
fun first_conv cvs = fold_rev (curry op else_conv) cvs no_conv;
fun every_conv cvs = fold_rev (curry op then_conv) cvs all_conv;
fun try_conv cv = cv else_conv all_conv;
fun repeat_conv cv ct = try_conv (cv then_conv repeat_conv cv) ct;
(** Pure conversions **)
(* lambda terms *)
fun abs_conv cv ctxt ct =
(case Thm.term_of ct of
Abs (x, _, _) =>
let
val ([u], ctxt') = Variable.variant_fixes ["u"] ctxt;
val (v, ct') = Thm.dest_abs (SOME u) ct;
val eq = cv (v, ctxt') ct';
in if Thm.is_reflexive eq then all_conv ct else Thm.abstract_rule x v eq end
| _ => raise CTERM ("abs_conv", [ct]));
fun combination_conv cv1 cv2 ct =
let val (ct1, ct2) = Thm.dest_comb ct
in Thm.combination (cv1 ct1) (cv2 ct2) end;
fun comb_conv cv = combination_conv cv cv;
fun arg_conv cv = combination_conv all_conv cv;
fun fun_conv cv = combination_conv cv all_conv;
val arg1_conv = fun_conv o arg_conv;
val fun2_conv = fun_conv o fun_conv;
fun binop_conv cv = combination_conv (arg_conv cv) cv;
(* primitive logic *)
fun forall_conv cv ctxt ct =
(case Thm.term_of ct of
Const ("all", _) $ Abs _ => arg_conv (abs_conv cv ctxt) ct
| _ => raise CTERM ("forall_conv", [ct]));
fun implies_conv cv1 cv2 ct =
(case Thm.term_of ct of
Const ("==>", _) $ _ $ _ => combination_conv (arg_conv cv1) cv2 ct
| _ => raise CTERM ("implies_conv", [ct]));
fun implies_concl_conv cv ct =
(case Thm.term_of ct of
Const ("==>", _) $ _ $ _ => arg_conv cv ct
| _ => raise CTERM ("implies_concl_conv", [ct]));
(* single rewrite step, cf. REWR_CONV in HOL *)
fun rewr_conv rule ct =
let
val rule1 = Thm.incr_indexes (#maxidx (Thm.rep_cterm ct) + 1) rule;
val lhs = Thm.lhs_of rule1;
val rule2 = Thm.rename_boundvars (Thm.term_of lhs) (Thm.term_of ct) rule1;
in
Drule.instantiate (Thm.match (lhs, ct)) rule2
handle Pattern.MATCH => raise CTERM ("rewr_conv", [lhs, ct])
end;
(* conversions on HHF rules *)
(*rewrite B in !!x1 ... xn. B*)
fun params_conv n cv ctxt ct =
if n <> 0 andalso Logic.is_all (Thm.term_of ct)
then arg_conv (abs_conv (params_conv (n - 1) cv o #2) ctxt) ct
else cv ctxt ct;
(*rewrite the A's in A1 ==> ... ==> An ==> B*)
fun prems_conv 0 _ ct = all_conv ct
| prems_conv n cv ct =
(case try Thm.dest_implies ct of
NONE => all_conv ct
| SOME (A, B) => Drule.imp_cong_rule (cv A) (prems_conv (n - 1) cv B));
(*rewrite B in A1 ==> ... ==> An ==> B*)
fun concl_conv 0 cv ct = cv ct
| concl_conv n cv ct =
(case try Thm.dest_implies ct of
NONE => cv ct
| SOME (A, B) => Drule.imp_cong_rule (all_conv A) (concl_conv (n - 1) cv B));
(* conversions as inference rules *)
(*forward conversion, cf. FCONV_RULE in LCF*)
fun fconv_rule cv th =
let val eq = cv (Thm.cprop_of th) in
if Thm.is_reflexive eq then th
else Thm.equal_elim eq th
end;
(*goal conversion*)
fun gconv_rule cv i th =
(case try (Thm.cprem_of th) i of
SOME ct =>
let val eq = cv ct in
if Thm.is_reflexive eq then th
else Drule.with_subgoal i (fconv_rule (arg1_conv (K eq))) th
end
| NONE => raise THM ("gconv_rule", i, [th]));
end;