(* Title: Cube/Cube.thy
Author: Tobias Nipkow
*)
header \<open>Barendregt's Lambda-Cube\<close>
theory Cube
imports Pure
begin
setup Pure_Thy.old_appl_syntax_setup
named_theorems rules "Cube inference rules"
typedecl "term"
typedecl "context"
typedecl typing
axiomatization
Abs :: "[term, term => term] => term" and
Prod :: "[term, term => term] => term" and
Trueprop :: "[context, typing] => prop" and
MT_context :: "context" and
Context :: "[typing, context] => context" and
star :: "term" ("*") and
box :: "term" ("\<box>") and
app :: "[term, term] => term" (infixl "^" 20) and
Has_type :: "[term, term] => typing"
nonterminal context' and typing'
syntax
"_Trueprop" :: "[context', typing'] => prop" ("(_/ \<turnstile> _)")
"_Trueprop1" :: "typing' => prop" ("(_)")
"" :: "id => context'" ("_")
"" :: "var => context'" ("_")
"_MT_context" :: "context'" ("")
"_Context" :: "[typing', context'] => context'" ("_ _")
"_Has_type" :: "[term, term] => typing'" ("(_:/ _)" [0, 0] 5)
"_Lam" :: "[idt, term, term] => term" ("(3\<Lambda> _:_./ _)" [0, 0, 0] 10)
"_Pi" :: "[idt, term, term] => term" ("(3\<Pi> _:_./ _)" [0, 0] 10)
"_arrow" :: "[term, term] => term" (infixr "\<rightarrow>" 10)
translations
"_Trueprop(G, t)" == "CONST Trueprop(G, t)"
("prop") "x:X" == ("prop") "\<turnstile> x:X"
"_MT_context" == "CONST MT_context"
"_Context" == "CONST Context"
"_Has_type" == "CONST Has_type"
"\<Lambda> x:A. B" == "CONST Abs(A, %x. B)"
"\<Pi> x:A. B" => "CONST Prod(A, %x. B)"
"A \<rightarrow> B" => "CONST Prod(A, %_. B)"
syntax (xsymbols)
"_Pi" :: "[idt, term, term] => term" ("(3\<Pi> _:_./ _)" [0, 0] 10)
print_translation \<open>
[(@{const_syntax Prod},
fn _ => Syntax_Trans.dependent_tr' (@{syntax_const "_Pi"}, @{syntax_const "_arrow"}))]
\<close>
axiomatization where
s_b: "*: \<box>" and
strip_s: "[| A:*; a:A ==> G \<turnstile> x:X |] ==> a:A G \<turnstile> x:X" and
strip_b: "[| A:\<box>; a:A ==> G \<turnstile> x:X |] ==> a:A G \<turnstile> x:X" and
app: "[| F:Prod(A, B); C:A |] ==> F^C: B(C)" and
pi_ss: "[| A:*; !!x. x:A ==> B(x):* |] ==> Prod(A, B):*" and
lam_ss: "[| A:*; !!x. x:A ==> f(x):B(x); !!x. x:A ==> B(x):* |]
==> Abs(A, f) : Prod(A, B)" and
beta: "Abs(A, f)^a == f(a)"
lemmas [rules] = s_b strip_s strip_b app lam_ss pi_ss
lemma imp_elim:
assumes "f:A\<rightarrow>B" and "a:A" and "f^a:B ==> PROP P"
shows "PROP P" by (rule app assms)+
lemma pi_elim:
assumes "F:Prod(A,B)" and "a:A" and "F^a:B(a) ==> PROP P"
shows "PROP P" by (rule app assms)+
locale L2 =
assumes pi_bs: "[| A:\<box>; !!x. x:A ==> B(x):* |] ==> Prod(A,B):*"
and lam_bs: "[| A:\<box>; !!x. x:A ==> f(x):B(x); !!x. x:A ==> B(x):* |]
==> Abs(A,f) : Prod(A,B)"
begin
lemmas [rules] = lam_bs pi_bs
end
locale Lomega =
assumes
pi_bb: "[| A:\<box>; !!x. x:A ==> B(x):\<box> |] ==> Prod(A,B):\<box>"
and lam_bb: "[| A:\<box>; !!x. x:A ==> f(x):B(x); !!x. x:A ==> B(x):\<box> |]
==> Abs(A,f) : Prod(A,B)"
begin
lemmas [rules] = lam_bb pi_bb
end
locale LP =
assumes pi_sb: "[| A:*; !!x. x:A ==> B(x):\<box> |] ==> Prod(A,B):\<box>"
and lam_sb: "[| A:*; !!x. x:A ==> f(x):B(x); !!x. x:A ==> B(x):\<box> |]
==> Abs(A,f) : Prod(A,B)"
begin
lemmas [rules] = lam_sb pi_sb
end
locale LP2 = LP + L2
begin
lemmas [rules] = lam_bs pi_bs lam_sb pi_sb
end
locale Lomega2 = L2 + Lomega
begin
lemmas [rules] = lam_bs pi_bs lam_bb pi_bb
end
locale LPomega = LP + Lomega
begin
lemmas [rules] = lam_bb pi_bb lam_sb pi_sb
end
locale CC = L2 + LP + Lomega
begin
lemmas [rules] = lam_bs pi_bs lam_bb pi_bb lam_sb pi_sb
end
end