(* Title: Tools/code/code_target.ML
ID: $Id$
Author: Florian Haftmann, TU Muenchen
Serializer from intermediate language ("Thin-gol")
to target languages (like SML or Haskell).
*)
signature CODE_TARGET =
sig
include BASIC_CODE_THINGOL;
val add_syntax_class: string -> class
-> (string * (string * string) list) option -> theory -> theory;
val add_syntax_inst: string -> string * class -> bool -> theory -> theory;
val add_syntax_tycoP: string -> string -> OuterParse.token list
-> (theory -> theory) * OuterParse.token list;
val add_syntax_constP: string -> string -> OuterParse.token list
-> (theory -> theory) * OuterParse.token list;
val add_undefined: string -> string -> string -> theory -> theory;
val add_pretty_list: string -> string -> string -> theory -> theory;
val add_pretty_list_string: string -> string -> string
-> string -> string list -> theory -> theory;
val add_pretty_char: string -> string -> string list -> theory -> theory
val add_pretty_numeral: string -> bool -> string -> string -> string -> string
-> string -> string -> theory -> theory;
val add_pretty_ml_string: string -> string -> string list -> string
-> string -> string -> theory -> theory;
val add_pretty_imperative_monad_bind: string -> string -> theory -> theory;
type serializer;
val add_serializer: string * serializer -> theory -> theory;
val get_serializer: theory -> string -> bool -> string option -> string option -> Args.T list
-> (theory -> string -> string) -> (string -> bool) -> string list option
-> CodeThingol.code -> unit;
val assert_serializer: theory -> string -> string;
val eval_verbose: bool ref;
val eval_invoke: theory -> (theory -> string -> string) -> (string -> bool)
-> (string * (unit -> 'a) option ref) -> CodeThingol.code
-> CodeThingol.iterm * CodeThingol.itype -> string list -> 'a;
val code_width: int ref;
val setup: theory -> theory;
end;
structure CodeTarget : CODE_TARGET =
struct
open BasicCodeThingol;
(** basics **)
infixr 5 @@;
infixr 5 @|;
fun x @@ y = [x, y];
fun xs @| y = xs @ [y];
val str = PrintMode.setmp [] Pretty.str;
val concat = Pretty.block o Pretty.breaks;
val brackets = Pretty.enclose "(" ")" o Pretty.breaks;
fun semicolon ps = Pretty.block [concat ps, str ";"];
(** syntax **)
datatype lrx = L | R | X;
datatype fixity =
BR
| NOBR
| INFX of (int * lrx);
val APP = INFX (~1, L);
fun eval_lrx L L = false
| eval_lrx R R = false
| eval_lrx _ _ = true;
fun eval_fxy NOBR NOBR = false
| eval_fxy BR NOBR = false
| eval_fxy NOBR BR = false
| eval_fxy (INFX (pr, lr)) (INFX (pr_ctxt, lr_ctxt)) =
pr < pr_ctxt
orelse pr = pr_ctxt
andalso eval_lrx lr lr_ctxt
orelse pr_ctxt = ~1
| eval_fxy _ (INFX _) = false
| eval_fxy (INFX _) NOBR = false
| eval_fxy _ _ = true;
fun gen_brackify _ [p] = p
| gen_brackify true (ps as _::_) = Pretty.enclose "(" ")" ps
| gen_brackify false (ps as _::_) = Pretty.block ps;
fun brackify fxy_ctxt ps =
gen_brackify (eval_fxy BR fxy_ctxt) (Pretty.breaks ps);
fun brackify_infix infx fxy_ctxt ps =
gen_brackify (eval_fxy (INFX infx) fxy_ctxt) (Pretty.breaks ps);
type class_syntax = string * (string -> string option);
type typ_syntax = int * ((fixity -> itype -> Pretty.T)
-> fixity -> itype list -> Pretty.T);
type term_syntax = int * ((CodeName.var_ctxt -> fixity -> iterm -> Pretty.T)
-> CodeName.var_ctxt -> fixity -> (iterm * itype) list -> Pretty.T);
(* user-defined syntax *)
datatype 'a mixfix =
Arg of fixity
| Pretty of Pretty.T;
fun mk_mixfix prep_arg (fixity_this, mfx) =
let
fun is_arg (Arg _) = true
| is_arg _ = false;
val i = (length o filter is_arg) mfx;
fun fillin _ [] [] =
[]
| fillin pr (Arg fxy :: mfx) (a :: args) =
(pr fxy o prep_arg) a :: fillin pr mfx args
| fillin pr (Pretty p :: mfx) args =
p :: fillin pr mfx args
| fillin _ [] _ =
error ("Inconsistent mixfix: too many arguments")
| fillin _ _ [] =
error ("Inconsistent mixfix: too less arguments");
in
(i, fn pr => fn fixity_ctxt => fn args =>
gen_brackify (eval_fxy fixity_this fixity_ctxt) (fillin pr mfx args))
end;
fun parse_infix prep_arg (x, i) s =
let
val l = case x of L => INFX (i, L) | _ => INFX (i, X);
val r = case x of R => INFX (i, R) | _ => INFX (i, X);
in
mk_mixfix prep_arg (INFX (i, x), [Arg l, (Pretty o Pretty.brk) 1, (Pretty o str) s, (Pretty o Pretty.brk) 1, Arg r])
end;
fun parse_mixfix prep_arg s =
let
val sym_any = Scan.one Symbol.is_regular;
val parse = Scan.optional ($$ "!" >> K true) false -- Scan.repeat (
($$ "(" -- $$ "_" -- $$ ")" >> K (Arg NOBR))
|| ($$ "_" >> K (Arg BR))
|| ($$ "/" |-- Scan.repeat ($$ " ") >> (Pretty o Pretty.brk o length))
|| (Scan.repeat1
( $$ "'" |-- sym_any
|| Scan.unless ($$ "_" || $$ "/" || $$ "(" |-- $$ "_" |-- $$ ")")
sym_any) >> (Pretty o str o implode)));
in case Scan.finite Symbol.stopper parse (Symbol.explode s)
of ((_, p as [_]), []) => mk_mixfix prep_arg (NOBR, p)
| ((b, p as _ :: _ :: _), []) => mk_mixfix prep_arg (if b then NOBR else BR, p)
| _ => Scan.!! (the_default ("malformed mixfix annotation: " ^ quote s) o snd) Scan.fail ()
end;
fun parse_args f args =
case Scan.read Args.stopper f args
of SOME x => x
| NONE => error "Bad serializer arguments";
(* generic serializer combinators *)
fun gen_pr_app pr_app' pr_term const_syntax labelled_name is_cons
lhs vars fxy (app as ((c, (_, tys)), ts)) =
case const_syntax c
of NONE => if lhs andalso not (is_cons c) then
error ("non-constructor on left hand side of equation: " ^ labelled_name c)
else brackify fxy (pr_app' lhs vars app)
| SOME (i, pr) =>
let
val k = if i < 0 then length tys else i;
fun pr' fxy ts = pr (pr_term lhs) vars fxy (ts ~~ curry Library.take k tys);
in if k = length ts
then pr' fxy ts
else if k < length ts
then case chop k ts of (ts1, ts2) =>
brackify fxy (pr' APP ts1 :: map (pr_term lhs vars BR) ts2)
else pr_term lhs vars fxy (CodeThingol.eta_expand app k)
end;
fun gen_pr_bind pr_bind' pr_term fxy ((v, pat), ty) vars =
let
val vs = case pat
of SOME pat => CodeThingol.fold_varnames (insert (op =)) pat []
| NONE => [];
val vars' = CodeName.intro_vars (the_list v) vars;
val vars'' = CodeName.intro_vars vs vars';
val v' = Option.map (CodeName.lookup_var vars') v;
val pat' = Option.map (pr_term true vars'' fxy) pat;
in (pr_bind' ((v', pat'), ty), vars'') end;
(* list, char, string, numeral and monad abstract syntax transformations *)
fun implode_list c_nil c_cons t =
let
fun dest_cons (IConst (c, _) `$ t1 `$ t2) =
if c = c_cons
then SOME (t1, t2)
else NONE
| dest_cons _ = NONE;
val (ts, t') = CodeThingol.unfoldr dest_cons t;
in case t'
of IConst (c, _) => if c = c_nil then SOME ts else NONE
| _ => NONE
end;
fun decode_char c_nibbles (IConst (c1, _), IConst (c2, _)) =
let
fun idx c = find_index (curry (op =) c) c_nibbles;
fun decode ~1 _ = NONE
| decode _ ~1 = NONE
| decode n m = SOME (chr (n * 16 + m));
in decode (idx c1) (idx c2) end
| decode_char _ _ = NONE;
fun implode_string c_char c_nibbles mk_char mk_string ts =
let
fun implode_char (IConst (c, _) `$ t1 `$ t2) =
if c = c_char then decode_char c_nibbles (t1, t2) else NONE
| implode_char _ = NONE;
val ts' = map implode_char ts;
in if forall is_some ts'
then (SOME o str o mk_string o implode o map_filter I) ts'
else NONE
end;
fun implode_numeral c_bit0 c_bit1 c_pls c_min c_bit =
let
fun dest_bit (IConst (c, _)) = if c = c_bit0 then SOME 0
else if c = c_bit1 then SOME 1
else NONE
| dest_bit _ = NONE;
fun dest_numeral (IConst (c, _)) = if c = c_pls then SOME 0
else if c = c_min then SOME ~1
else NONE
| dest_numeral (IConst (c, _) `$ t1 `$ t2) =
if c = c_bit then case (dest_numeral t1, dest_bit t2)
of (SOME n, SOME b) => SOME (2 * n + b)
| _ => NONE
else NONE
| dest_numeral _ = NONE;
in dest_numeral end;
fun implode_monad c_mbind c_kbind t =
let
fun dest_monad (IConst (c, _) `$ t1 `$ t2) =
if c = c_mbind
then case CodeThingol.split_abs t2
of SOME (((v, pat), ty), t') => SOME ((SOME (((SOME v, pat), ty), true), t1), t')
| NONE => NONE
else if c = c_kbind
then SOME ((NONE, t1), t2)
else NONE
| dest_monad t = case CodeThingol.split_let t
of SOME (((pat, ty), tbind), t') => SOME ((SOME (((NONE, SOME pat), ty), false), tbind), t')
| NONE => NONE;
in CodeThingol.unfoldr dest_monad t end;
(** name auxiliary **)
val first_upper = implode o nth_map 0 Symbol.to_ascii_upper o explode;
val first_lower = implode o nth_map 0 Symbol.to_ascii_lower o explode;
val dest_name =
apfst NameSpace.implode o split_last o fst o split_last o NameSpace.explode;
fun mk_modl_name_tab init_names prefix module_alias code =
let
fun nsp_map f = NameSpace.explode #> map f #> NameSpace.implode;
fun mk_alias name =
case module_alias name
of SOME name' => name'
| NONE => nsp_map (fn name => (the_single o fst)
(Name.variants [name] init_names)) name;
fun mk_prefix name =
case prefix
of SOME prefix => NameSpace.append prefix name
| NONE => name;
val tab =
Symtab.empty
|> Graph.fold ((fn name => Symtab.default (name, (mk_alias #> mk_prefix) name))
o fst o dest_name o fst)
code
in fn name => (the o Symtab.lookup tab) name end;
(** SML/OCaml serializer **)
datatype ml_def =
MLFuns of (string * (typscheme * (iterm list * iterm) list)) list
| MLDatas of (string * ((vname * sort) list * (string * itype list) list)) list
| MLClass of string * ((class * string) list * (vname * (string * itype) list))
| MLClassinst of string * ((class * (string * (vname * sort) list))
* ((class * (string * (string * dict list list))) list
* (string * const) list));
fun pr_sml allows_exception tyco_syntax const_syntax labelled_name init_syms deresolv is_cons ml_def =
let
val pr_label_classrel = translate_string (fn "." => "__" | c => c) o NameSpace.qualifier;
val pr_label_classop = NameSpace.base o NameSpace.qualifier;
fun pr_dicts fxy ds =
let
fun pr_dictvar (v, (_, 1)) = first_upper v ^ "_"
| pr_dictvar (v, (i, _)) = first_upper v ^ string_of_int (i+1) ^ "_";
fun pr_proj [] p =
p
| pr_proj [p'] p =
brackets [p', p]
| pr_proj (ps as _ :: _) p =
brackets [Pretty.enum " o" "(" ")" ps, p];
fun pr_dictc fxy (DictConst (inst, dss)) =
brackify fxy ((str o deresolv) inst :: map (pr_dicts BR) dss)
| pr_dictc fxy (DictVar (classrels, v)) =
pr_proj (map (str o deresolv) classrels) ((str o pr_dictvar) v)
in case ds
of [] => str "()"
| [d] => pr_dictc fxy d
| _ :: _ => (Pretty.list "(" ")" o map (pr_dictc NOBR)) ds
end;
fun pr_tyvars vs =
vs
|> map (fn (v, sort) => map_index (fn (i, _) => DictVar ([], (v, (i, length sort)))) sort)
|> map (pr_dicts BR);
fun pr_tycoexpr fxy (tyco, tys) =
let
val tyco' = (str o deresolv) tyco
in case map (pr_typ BR) tys
of [] => tyco'
| [p] => Pretty.block [p, Pretty.brk 1, tyco']
| (ps as _::_) => Pretty.block [Pretty.list "(" ")" ps, Pretty.brk 1, tyco']
end
and pr_typ fxy (tyco `%% tys) =
(case tyco_syntax tyco
of NONE => pr_tycoexpr fxy (tyco, tys)
| SOME (i, pr) =>
if not (i = length tys)
then error ("Number of argument mismatch in customary serialization: "
^ (string_of_int o length) tys ^ " given, "
^ string_of_int i ^ " expected")
else pr pr_typ fxy tys)
| pr_typ fxy (ITyVar v) =
str ("'" ^ v);
fun pr_term lhs vars fxy (IConst c) =
pr_app lhs vars fxy (c, [])
| pr_term lhs vars fxy (IVar v) =
str (CodeName.lookup_var vars v)
| pr_term lhs vars fxy (t as t1 `$ t2) =
(case CodeThingol.unfold_const_app t
of SOME c_ts => pr_app lhs vars fxy c_ts
| NONE =>
brackify fxy [pr_term lhs vars NOBR t1, pr_term lhs vars BR t2])
| pr_term lhs vars fxy (t as _ `|-> _) =
let
val (binds, t') = CodeThingol.unfold_abs t;
fun pr ((v, pat), ty) =
pr_bind NOBR ((SOME v, pat), ty)
#>> (fn p => concat [str "fn", p, str "=>"]);
val (ps, vars') = fold_map pr binds vars;
in brackets (ps @ [pr_term lhs vars' NOBR t']) end
| pr_term lhs vars fxy (ICase (cases as (_, t0))) = (case CodeThingol.unfold_const_app t0
of SOME (c_ts as ((c, _), _)) => if is_none (const_syntax c)
then pr_case vars fxy cases
else pr_app lhs vars fxy c_ts
| NONE => pr_case vars fxy cases)
and pr_app' lhs vars (app as ((c, (iss, tys)), ts)) =
if is_cons c then let
val k = length tys
in if k < 2 then
(str o deresolv) c :: map (pr_term lhs vars BR) ts
else if k = length ts then
[(str o deresolv) c, Pretty.enum "," "(" ")" (map (pr_term lhs vars NOBR) ts)]
else [pr_term lhs vars BR (CodeThingol.eta_expand app k)] end else
(str o deresolv) c
:: (map (pr_dicts BR) o filter_out null) iss @ map (pr_term lhs vars BR) ts
and pr_app lhs vars = gen_pr_app pr_app' pr_term const_syntax labelled_name is_cons lhs vars
and pr_bind' ((NONE, NONE), _) = str "_"
| pr_bind' ((SOME v, NONE), _) = str v
| pr_bind' ((NONE, SOME p), _) = p
| pr_bind' ((SOME v, SOME p), _) = concat [str v, str "as", p]
and pr_bind fxy = gen_pr_bind pr_bind' pr_term fxy
and pr_case vars fxy (cases as ((_, [_]), _)) =
let
val (binds, t') = CodeThingol.unfold_let (ICase cases);
fun pr ((pat, ty), t) vars =
vars
|> pr_bind NOBR ((NONE, SOME pat), ty)
|>> (fn p => semicolon [str "val", p, str "=", pr_term false vars NOBR t])
val (ps, vars') = fold_map pr binds vars;
in
Pretty.chunks [
[str ("let"), Pretty.fbrk, Pretty.chunks ps] |> Pretty.block,
[str ("in"), Pretty.fbrk, pr_term false vars' NOBR t'] |> Pretty.block,
str ("end")
]
end
| pr_case vars fxy (((td, ty), b::bs), _) =
let
fun pr delim (pat, t) =
let
val (p, vars') = pr_bind NOBR ((NONE, SOME pat), ty) vars;
in
concat [str delim, p, str "=>", pr_term false vars' NOBR t]
end;
in
(Pretty.enclose "(" ")" o single o brackify fxy) (
str "case"
:: pr_term false vars NOBR td
:: pr "of" b
:: map (pr "|") bs
)
end
| pr_case vars fxy ((_, []), _) = str "raise Fail \"empty case\""
fun pr_def (MLFuns (funns as (funn :: funns'))) =
let
val definer =
let
fun mk [] [] = "val"
| mk (_::_) _ = "fun"
| mk [] vs = if (null o filter_out (null o snd)) vs then "val" else "fun";
fun chk (_, ((vs, _), (ts, _) :: _)) NONE = SOME (mk ts vs)
| chk (_, ((vs, _), (ts, _) :: _)) (SOME defi) =
if defi = mk ts vs then SOME defi
else error ("Mixing simultaneous vals and funs not implemented: "
^ commas (map (labelled_name o fst) funns));
in the (fold chk funns NONE) end;
fun pr_funn definer (name, ((raw_vs, ty), eqs as eq :: eqs')) =
let
val vs = filter_out (null o snd) raw_vs;
val shift = if null eqs' then I else
map (Pretty.block o single o Pretty.block o single);
fun pr_eq definer (ts, t) =
let
val consts = map_filter
(fn c => if (is_some o const_syntax) c
then NONE else (SOME o NameSpace.base o deresolv) c)
((fold o CodeThingol.fold_constnames) (insert (op =)) (t :: ts) []);
val vars = init_syms
|> CodeName.intro_vars consts
|> CodeName.intro_vars ((fold o CodeThingol.fold_unbound_varnames)
(insert (op =)) ts []);
in
concat (
[str definer, (str o deresolv) name]
@ (if null ts andalso null vs
then [str ":", pr_typ NOBR ty]
else
pr_tyvars vs
@ map (pr_term true vars BR) ts)
@ [str "=", pr_term false vars NOBR t]
)
end
in
(Pretty.block o Pretty.fbreaks o shift) (
pr_eq definer eq
:: map (pr_eq "|") eqs'
)
end;
val (ps, p) = split_last (pr_funn definer funn :: map (pr_funn "and") funns');
in Pretty.chunks (ps @ [Pretty.block ([p, str ";"])]) end
| pr_def (MLDatas (datas as (data :: datas'))) =
let
fun pr_co (co, []) =
str (deresolv co)
| pr_co (co, tys) =
concat [
str (deresolv co),
str "of",
Pretty.enum " *" "" "" (map (pr_typ (INFX (2, X))) tys)
];
fun pr_data definer (tyco, (vs, [])) =
concat (
str definer
:: pr_tycoexpr NOBR (tyco, map (ITyVar o fst) vs)
:: str "="
@@ str "EMPTY__"
)
| pr_data definer (tyco, (vs, cos)) =
concat (
str definer
:: pr_tycoexpr NOBR (tyco, map (ITyVar o fst) vs)
:: str "="
:: separate (str "|") (map pr_co cos)
);
val (ps, p) = split_last (pr_data "datatype" data :: map (pr_data "and") datas');
in Pretty.chunks (ps @ [Pretty.block ([p, str ";"])]) end
| pr_def (MLClass (class, (superclasses, (v, classops)))) =
let
val w = first_upper v ^ "_";
fun pr_superclass_field (class, classrel) =
(concat o map str) [
pr_label_classrel classrel, ":", "'" ^ v, deresolv class
];
fun pr_classop_field (classop, ty) =
concat [
(str o pr_label_classop) classop, str ":", pr_typ NOBR ty
];
fun pr_classop_proj (classop, _) =
semicolon [
str "fun",
(str o deresolv) classop,
Pretty.enclose "(" ")" [str (w ^ ":'" ^ v ^ " " ^ deresolv class)],
str "=",
str ("#" ^ pr_label_classop classop),
str w
];
fun pr_superclass_proj (_, classrel) =
semicolon [
str "fun",
(str o deresolv) classrel,
Pretty.enclose "(" ")" [str (w ^ ":'" ^ v ^ " " ^ deresolv class)],
str "=",
str ("#" ^ pr_label_classrel classrel),
str w
];
in
Pretty.chunks (
concat [
str ("type '" ^ v),
(str o deresolv) class,
str "=",
Pretty.enum "," "{" "};" (
map pr_superclass_field superclasses @ map pr_classop_field classops
)
]
:: map pr_superclass_proj superclasses
@ map pr_classop_proj classops
)
end
| pr_def (MLClassinst (inst, ((class, (tyco, arity)), (superarities, classop_defs)))) =
let
fun pr_superclass (_, (classrel, dss)) =
concat [
(str o pr_label_classrel) classrel,
str "=",
pr_dicts NOBR [DictConst dss]
];
fun pr_classop (classop, c_inst) =
concat [
(str o pr_label_classop) classop,
str "=",
pr_app false init_syms NOBR (c_inst, [])
];
in
semicolon ([
str (if null arity then "val" else "fun"),
(str o deresolv) inst ] @
pr_tyvars arity @ [
str "=",
Pretty.enum "," "{" "}" (map pr_superclass superarities @ map pr_classop classop_defs),
str ":",
pr_tycoexpr NOBR (class, [tyco `%% map (ITyVar o fst) arity])
])
end;
in pr_def ml_def end;
fun pr_sml_modl name content =
Pretty.chunks ([
str ("structure " ^ name ^ " = "),
str "struct",
str ""
] @ content @ [
str "",
str ("end; (*struct " ^ name ^ "*)")
]);
fun pr_ocaml allows_exception tyco_syntax const_syntax labelled_name
init_syms deresolv is_cons ml_def =
let
fun pr_dicts fxy ds =
let
fun pr_dictvar (v, (_, 1)) = "_" ^ first_upper v
| pr_dictvar (v, (i, _)) = "_" ^ first_upper v ^ string_of_int (i+1);
fun pr_proj ps p =
fold_rev (fn p2 => fn p1 => Pretty.block [p1, str ".", str p2]) ps p
fun pr_dictc fxy (DictConst (inst, dss)) =
brackify fxy ((str o deresolv) inst :: map (pr_dicts BR) dss)
| pr_dictc fxy (DictVar (classrels, v)) =
pr_proj (map deresolv classrels) ((str o pr_dictvar) v)
in case ds
of [] => str "()"
| [d] => pr_dictc fxy d
| _ :: _ => (Pretty.list "(" ")" o map (pr_dictc NOBR)) ds
end;
fun pr_tyvars vs =
vs
|> map (fn (v, sort) => map_index (fn (i, _) => DictVar ([], (v, (i, length sort)))) sort)
|> map (pr_dicts BR);
fun pr_tycoexpr fxy (tyco, tys) =
let
val tyco' = (str o deresolv) tyco
in case map (pr_typ BR) tys
of [] => tyco'
| [p] => Pretty.block [p, Pretty.brk 1, tyco']
| (ps as _::_) => Pretty.block [Pretty.list "(" ")" ps, Pretty.brk 1, tyco']
end
and pr_typ fxy (tyco `%% tys) =
(case tyco_syntax tyco
of NONE => pr_tycoexpr fxy (tyco, tys)
| SOME (i, pr) =>
if not (i = length tys)
then error ("Number of argument mismatch in customary serialization: "
^ (string_of_int o length) tys ^ " given, "
^ string_of_int i ^ " expected")
else pr pr_typ fxy tys)
| pr_typ fxy (ITyVar v) =
str ("'" ^ v);
fun pr_term lhs vars fxy (IConst c) =
pr_app lhs vars fxy (c, [])
| pr_term lhs vars fxy (IVar v) =
str (CodeName.lookup_var vars v)
| pr_term lhs vars fxy (t as t1 `$ t2) =
(case CodeThingol.unfold_const_app t
of SOME c_ts => pr_app lhs vars fxy c_ts
| NONE =>
brackify fxy [pr_term lhs vars NOBR t1, pr_term lhs vars BR t2])
| pr_term lhs vars fxy (t as _ `|-> _) =
let
val (binds, t') = CodeThingol.unfold_abs t;
fun pr ((v, pat), ty) = pr_bind BR ((SOME v, pat), ty);
val (ps, vars') = fold_map pr binds vars;
in brackets (str "fun" :: ps @ str "->" @@ pr_term lhs vars' NOBR t') end
| pr_term lhs vars fxy (ICase (cases as (_, t0))) = (case CodeThingol.unfold_const_app t0
of SOME (c_ts as ((c, _), _)) => if is_none (const_syntax c)
then pr_case vars fxy cases
else pr_app lhs vars fxy c_ts
| NONE => pr_case vars fxy cases)
and pr_app' lhs vars (app as ((c, (iss, tys)), ts)) =
if is_cons c then
if length tys = length ts
then case ts
of [] => [(str o deresolv) c]
| [t] => [(str o deresolv) c, pr_term lhs vars BR t]
| _ => [(str o deresolv) c, Pretty.enum "," "(" ")" (map (pr_term lhs vars NOBR) ts)]
else [pr_term lhs vars BR (CodeThingol.eta_expand app (length tys))]
else (str o deresolv) c
:: ((map (pr_dicts BR) o filter_out null) iss @ map (pr_term lhs vars BR) ts)
and pr_app lhs vars = gen_pr_app pr_app' pr_term const_syntax labelled_name is_cons lhs vars
and pr_bind' ((NONE, NONE), _) = str "_"
| pr_bind' ((SOME v, NONE), _) = str v
| pr_bind' ((NONE, SOME p), _) = p
| pr_bind' ((SOME v, SOME p), _) = brackets [p, str "as", str v]
and pr_bind fxy = gen_pr_bind pr_bind' pr_term fxy
and pr_case vars fxy (cases as ((_, [_]), _)) =
let
val (binds, t') = CodeThingol.unfold_let (ICase cases);
fun pr ((pat, ty), t) vars =
vars
|> pr_bind NOBR ((NONE, SOME pat), ty)
|>> (fn p => concat [str "let", p, str "=", pr_term false vars NOBR t, str "in"])
val (ps, vars') = fold_map pr binds vars;
in Pretty.chunks (ps @| pr_term false vars' NOBR t') end
| pr_case vars fxy (((td, ty), b::bs), _) =
let
fun pr delim (pat, t) =
let
val (p, vars') = pr_bind NOBR ((NONE, SOME pat), ty) vars;
in concat [str delim, p, str "->", pr_term false vars' NOBR t] end;
in
(Pretty.enclose "(" ")" o single o brackify fxy) (
str "match"
:: pr_term false vars NOBR td
:: pr "with" b
:: map (pr "|") bs
)
end
| pr_case vars fxy ((_, []), _) = str "failwith \"empty case\"";
fun pr_def (MLFuns (funns as funn :: funns')) =
let
fun fish_parm _ (w as SOME _) = w
| fish_parm (IVar v) NONE = SOME v
| fish_parm _ NONE = NONE;
fun fillup_parm _ (_, SOME v) = v
| fillup_parm x (i, NONE) = x ^ string_of_int i;
fun fish_parms vars eqs =
let
val fished1 = fold (map2 fish_parm) eqs (replicate (length (hd eqs)) NONE);
val x = Name.variant (map_filter I fished1) "x";
val fished2 = map_index (fillup_parm x) fished1;
val (fished3, _) = Name.variants fished2 Name.context;
val vars' = CodeName.intro_vars fished3 vars;
in map (CodeName.lookup_var vars') fished3 end;
fun pr_eq (ts, t) =
let
val consts = map_filter
(fn c => if (is_some o const_syntax) c
then NONE else (SOME o NameSpace.base o deresolv) c)
((fold o CodeThingol.fold_constnames) (insert (op =)) (t :: ts) []);
val vars = init_syms
|> CodeName.intro_vars consts
|> CodeName.intro_vars ((fold o CodeThingol.fold_unbound_varnames)
(insert (op =)) ts []);
in concat [
(Pretty.block o Pretty.commas) (map (pr_term true vars NOBR) ts),
str "->",
pr_term false vars NOBR t
] end;
fun pr_eqs [(ts, t)] =
let
val consts = map_filter
(fn c => if (is_some o const_syntax) c
then NONE else (SOME o NameSpace.base o deresolv) c)
((fold o CodeThingol.fold_constnames) (insert (op =)) (t :: ts) []);
val vars = init_syms
|> CodeName.intro_vars consts
|> CodeName.intro_vars ((fold o CodeThingol.fold_unbound_varnames)
(insert (op =)) ts []);
in
concat (
map (pr_term true vars BR) ts
@ str "="
@@ pr_term false vars NOBR t
)
end
| pr_eqs (eqs as (eq as ([_], _)) :: eqs') =
Pretty.block (
str "="
:: Pretty.brk 1
:: str "function"
:: Pretty.brk 1
:: pr_eq eq
:: maps (append [Pretty.fbrk, str "|", Pretty.brk 1] o single o pr_eq) eqs'
)
| pr_eqs (eqs as eq :: eqs') =
let
val consts = map_filter
(fn c => if (is_some o const_syntax) c
then NONE else (SOME o NameSpace.base o deresolv) c)
((fold o CodeThingol.fold_constnames) (insert (op =)) (map snd eqs) []);
val vars = init_syms
|> CodeName.intro_vars consts;
val dummy_parms = (map str o fish_parms vars o map fst) eqs;
in
Pretty.block (
Pretty.breaks dummy_parms
@ Pretty.brk 1
:: str "="
:: Pretty.brk 1
:: str "match"
:: Pretty.brk 1
:: (Pretty.block o Pretty.commas) dummy_parms
:: Pretty.brk 1
:: str "with"
:: Pretty.brk 1
:: pr_eq eq
:: maps (append [Pretty.fbrk, str "|", Pretty.brk 1] o single o pr_eq) eqs'
)
end;
fun pr_funn definer (name, ((vs, ty), eqs)) =
concat (
str definer
:: (str o deresolv) name
:: pr_tyvars (filter_out (null o snd) vs)
@| pr_eqs eqs
);
val (ps, p) = split_last (pr_funn "let rec" funn :: map (pr_funn "and") funns');
in Pretty.chunks (ps @ [Pretty.block ([p, str ";;"])]) end
| pr_def (MLDatas (datas as (data :: datas'))) =
let
fun pr_co (co, []) =
str (deresolv co)
| pr_co (co, tys) =
concat [
str (deresolv co),
str "of",
Pretty.enum " *" "" "" (map (pr_typ (INFX (2, X))) tys)
];
fun pr_data definer (tyco, (vs, [])) =
concat (
str definer
:: pr_tycoexpr NOBR (tyco, map (ITyVar o fst) vs)
:: str "="
@@ str "EMPTY_"
)
| pr_data definer (tyco, (vs, cos)) =
concat (
str definer
:: pr_tycoexpr NOBR (tyco, map (ITyVar o fst) vs)
:: str "="
:: separate (str "|") (map pr_co cos)
);
val (ps, p) = split_last (pr_data "type" data :: map (pr_data "and") datas');
in Pretty.chunks (ps @ [Pretty.block ([p, str ";;"])]) end
| pr_def (MLClass (class, (superclasses, (v, classops)))) =
let
val w = "_" ^ first_upper v;
fun pr_superclass_field (class, classrel) =
(concat o map str) [
deresolv classrel, ":", "'" ^ v, deresolv class
];
fun pr_classop_field (classop, ty) =
concat [
(str o deresolv) classop, str ":", pr_typ NOBR ty
];
fun pr_classop_proj (classop, _) =
concat [
str "let",
(str o deresolv) classop,
str w,
str "=",
str (w ^ "." ^ deresolv classop ^ ";;")
];
in Pretty.chunks (
concat [
str ("type '" ^ v),
(str o deresolv) class,
str "=",
Pretty.enum ";" "{" "};;" (
map pr_superclass_field superclasses @ map pr_classop_field classops
)
]
:: map pr_classop_proj classops
) end
| pr_def (MLClassinst (inst, ((class, (tyco, arity)), (superarities, classop_defs)))) =
let
fun pr_superclass (_, (classrel, dss)) =
concat [
(str o deresolv) classrel,
str "=",
pr_dicts NOBR [DictConst dss]
];
fun pr_classop_def (classop, c_inst) =
concat [
(str o deresolv) classop,
str "=",
pr_app false init_syms NOBR (c_inst, [])
];
in
concat (
str "let"
:: (str o deresolv) inst
:: pr_tyvars arity
@ str "="
@@ (Pretty.enclose "(" ");;" o Pretty.breaks) [
Pretty.enum ";" "{" "}" (map pr_superclass superarities @ map pr_classop_def classop_defs),
str ":",
pr_tycoexpr NOBR (class, [tyco `%% map (ITyVar o fst) arity])
]
)
end;
in pr_def ml_def end;
fun pr_ocaml_modl name content =
Pretty.chunks ([
str ("module " ^ name ^ " = "),
str "struct",
str ""
] @ content @ [
str "",
str ("end;; (*struct " ^ name ^ "*)")
]);
val code_width = ref 80;
fun code_output p = Pretty.setmp_margin (!code_width) Pretty.output p ^ "\n";
fun seri_ml pr_def pr_modl module output labelled_name reserved_syms raw_module_alias module_prolog
allows_exception (_ : string -> class_syntax option) tyco_syntax const_syntax code =
let
val module_alias = if is_some module then K module else raw_module_alias;
val is_cons = CodeThingol.is_cons code;
datatype node =
Def of string * ml_def option
| Module of string * ((Name.context * Name.context) * node Graph.T);
val init_names = Name.make_context reserved_syms;
val init_module = ((init_names, init_names), Graph.empty);
fun map_node [] f = f
| map_node (m::ms) f =
Graph.default_node (m, Module (m, init_module))
#> Graph.map_node m (fn (Module (dmodlname, (nsp, nodes))) => Module (dmodlname, (nsp, map_node ms f nodes)));
fun map_nsp_yield [] f (nsp, nodes) =
let
val (x, nsp') = f nsp
in (x, (nsp', nodes)) end
| map_nsp_yield (m::ms) f (nsp, nodes) =
let
val (x, nodes') =
nodes
|> Graph.default_node (m, Module (m, init_module))
|> Graph.map_node_yield m (fn Module (dmodlname, nsp_nodes) =>
let
val (x, nsp_nodes') = map_nsp_yield ms f nsp_nodes
in (x, Module (dmodlname, nsp_nodes')) end)
in (x, (nsp, nodes')) end;
val init_syms = CodeName.make_vars reserved_syms;
val name_modl = mk_modl_name_tab init_names NONE module_alias code;
fun name_def upper name nsp =
let
val (_, base) = dest_name name;
val base' = if upper then first_upper base else base;
val ([base''], nsp') = Name.variants [base'] nsp;
in (base'', nsp') end;
fun map_nsp_fun f (nsp_fun, nsp_typ) =
let
val (x, nsp_fun') = f nsp_fun
in (x, (nsp_fun', nsp_typ)) end;
fun map_nsp_typ f (nsp_fun, nsp_typ) =
let
val (x, nsp_typ') = f nsp_typ
in (x, (nsp_fun, nsp_typ')) end;
fun mk_funs defs =
fold_map
(fn (name, CodeThingol.Fun info) =>
map_nsp_fun (name_def false name) >> (fn base => (base, (name, (apsnd o map) fst info)))
| (name, def) => error ("Function block containing illegal definition: " ^ labelled_name name)
) defs
>> (split_list #> apsnd MLFuns);
fun mk_datatype defs =
fold_map
(fn (name, CodeThingol.Datatype info) =>
map_nsp_typ (name_def false name) >> (fn base => (base, SOME (name, info)))
| (name, CodeThingol.Datatypecons _) =>
map_nsp_fun (name_def true name) >> (fn base => (base, NONE))
| (name, def) => error ("Datatype block containing illegal definition: " ^ labelled_name name)
) defs
>> (split_list #> apsnd (map_filter I
#> (fn [] => error ("Datatype block without data definition: " ^ (commas o map (labelled_name o fst)) defs)
| infos => MLDatas infos)));
fun mk_class defs =
fold_map
(fn (name, CodeThingol.Class info) =>
map_nsp_typ (name_def false name) >> (fn base => (base, SOME (name, info)))
| (name, CodeThingol.Classrel _) =>
map_nsp_fun (name_def false name) >> (fn base => (base, NONE))
| (name, CodeThingol.Classop _) =>
map_nsp_fun (name_def false name) >> (fn base => (base, NONE))
| (name, def) => error ("Class block containing illegal definition: " ^ labelled_name name)
) defs
>> (split_list #> apsnd (map_filter I
#> (fn [] => error ("Class block without class definition: " ^ (commas o map (labelled_name o fst)) defs)
| [info] => MLClass info)));
fun mk_inst [(name, CodeThingol.Classinst info)] =
map_nsp_fun (name_def false name)
>> (fn base => ([base], MLClassinst (name, (apsnd o apsnd o map) fst info)));
fun add_group mk defs nsp_nodes =
let
val names as (name :: names') = map fst defs;
val deps =
[]
|> fold (fold (insert (op =)) o Graph.imm_succs code) names
|> subtract (op =) names;
val (modls, _) = (split_list o map dest_name) names;
val modl' = (the_single o distinct (op =) o map name_modl) modls
handle Empty =>
error ("Illegal mutual dependencies: " ^ commas (map labelled_name names));
val modl_explode = NameSpace.explode modl';
fun add_dep name name'' =
let
val modl'' = (name_modl o fst o dest_name) name'';
in if modl' = modl'' then
map_node modl_explode
(Graph.add_edge (name, name''))
else let
val (common, (diff1::_, diff2::_)) = chop_prefix (op =)
(modl_explode, NameSpace.explode modl'');
in
map_node common
(fn gr => Graph.add_edge_acyclic (diff1, diff2) gr
handle Graph.CYCLES _ => error ("Dependency "
^ quote name ^ " -> " ^ quote name''
^ " would result in module dependency cycle"))
end end;
in
nsp_nodes
|> map_nsp_yield modl_explode (mk defs)
|-> (fn (base' :: bases', def') =>
apsnd (map_node modl_explode (Graph.new_node (name, (Def (base', SOME def')))
#> fold2 (fn name' => fn base' => Graph.new_node (name', (Def (base', NONE)))) names' bases')))
|> apsnd (fold (fn name => fold (add_dep name) deps) names)
|> apsnd (fold (map_node modl_explode o Graph.add_edge) (product names names))
end;
fun group_defs [(_, CodeThingol.Bot)] =
I
| group_defs ((defs as (_, CodeThingol.Fun _)::_)) =
add_group mk_funs defs
| group_defs ((defs as (_, CodeThingol.Datatypecons _)::_)) =
add_group mk_datatype defs
| group_defs ((defs as (_, CodeThingol.Datatype _)::_)) =
add_group mk_datatype defs
| group_defs ((defs as (_, CodeThingol.Class _)::_)) =
add_group mk_class defs
| group_defs ((defs as (_, CodeThingol.Classrel _)::_)) =
add_group mk_class defs
| group_defs ((defs as (_, CodeThingol.Classop _)::_)) =
add_group mk_class defs
| group_defs ((defs as [(_, CodeThingol.Classinst _)])) =
add_group mk_inst defs
| group_defs defs = error ("Illegal mutual dependencies: " ^
(commas o map (labelled_name o fst)) defs)
val (_, nodes) =
init_module
|> fold group_defs (map (AList.make (Graph.get_node code))
(rev (Graph.strong_conn code)))
fun deresolver prefix name =
let
val modl = (fst o dest_name) name;
val modl' = (NameSpace.explode o name_modl) modl;
val (_, (_, remainder)) = chop_prefix (op =) (prefix, modl');
val defname' =
nodes
|> fold (fn m => fn g => case Graph.get_node g m
of Module (_, (_, g)) => g) modl'
|> (fn g => case Graph.get_node g name of Def (defname, _) => defname);
in
NameSpace.implode (remainder @ [defname'])
end handle Graph.UNDEF _ =>
error ("Unknown definition name: " ^ labelled_name name);
fun the_prolog modlname = case module_prolog modlname
of NONE => []
| SOME p => [p, str ""];
fun pr_node prefix (Def (_, NONE)) =
NONE
| pr_node prefix (Def (_, SOME def)) =
SOME (pr_def allows_exception tyco_syntax const_syntax labelled_name init_syms
(deresolver prefix) is_cons def)
| pr_node prefix (Module (dmodlname, (_, nodes))) =
SOME (pr_modl dmodlname (the_prolog (NameSpace.implode (prefix @ [dmodlname]))
@ separate (str "") ((map_filter (pr_node (prefix @ [dmodlname]) o Graph.get_node nodes)
o rev o flat o Graph.strong_conn) nodes)));
val p = Pretty.chunks (the_prolog "" @ separate (str "") ((map_filter
(pr_node [] o Graph.get_node nodes) o rev o flat o Graph.strong_conn) nodes))
in output p end;
val eval_verbose = ref false;
fun isar_seri_sml module file =
let
val output = case file
of NONE => use_text "generated code" Output.ml_output (!eval_verbose) o code_output
| SOME "-" => PrintMode.setmp [] writeln o code_output
| SOME file => File.write (Path.explode file) o code_output;
in
parse_args (Scan.succeed ())
#> (fn () => seri_ml pr_sml pr_sml_modl module output)
end;
fun isar_seri_ocaml module file =
let
val output = case file
of NONE => error "OCaml: no internal compilation"
| SOME "-" => PrintMode.setmp [] writeln o code_output
| SOME file => File.write (Path.explode file) o code_output;
fun output_file file = File.write (Path.explode file) o code_output;
val output_diag = PrintMode.setmp [] writeln o code_output;
in
parse_args (Scan.succeed ())
#> (fn () => seri_ml pr_ocaml pr_ocaml_modl module output)
end;
(** Haskell serializer **)
local
fun pr_bind' ((NONE, NONE), _) = str "_"
| pr_bind' ((SOME v, NONE), _) = str v
| pr_bind' ((NONE, SOME p), _) = p
| pr_bind' ((SOME v, SOME p), _) = brackets [str v, str "@", p]
val pr_bind_haskell = gen_pr_bind pr_bind';
in
fun pr_haskell allows_exception class_syntax tyco_syntax const_syntax labelled_name
init_syms deresolv_here deresolv is_cons deriving_show def =
let
fun class_name class = case class_syntax class
of NONE => deresolv class
| SOME (class, _) => class;
fun classop_name class classop = case class_syntax class
of NONE => deresolv_here classop
| SOME (_, classop_syntax) => case classop_syntax classop
of NONE => (snd o dest_name) classop
| SOME classop => classop
fun pr_typparms tyvars vs =
case maps (fn (v, sort) => map (pair v) sort) vs
of [] => str ""
| xs => Pretty.block [
Pretty.enum "," "(" ")" (
map (fn (v, class) => str
(class_name class ^ " " ^ CodeName.lookup_var tyvars v)) xs
),
str " => "
];
fun pr_tycoexpr tyvars fxy (tyco, tys) =
brackify fxy (str tyco :: map (pr_typ tyvars BR) tys)
and pr_typ tyvars fxy (tycoexpr as tyco `%% tys) =
(case tyco_syntax tyco
of NONE =>
pr_tycoexpr tyvars fxy (deresolv tyco, tys)
| SOME (i, pr) =>
if not (i = length tys)
then error ("Number of argument mismatch in customary serialization: "
^ (string_of_int o length) tys ^ " given, "
^ string_of_int i ^ " expected")
else pr (pr_typ tyvars) fxy tys)
| pr_typ tyvars fxy (ITyVar v) =
(str o CodeName.lookup_var tyvars) v;
fun pr_typscheme_expr tyvars (vs, tycoexpr) =
Pretty.block (pr_typparms tyvars vs @@ pr_tycoexpr tyvars NOBR tycoexpr);
fun pr_typscheme tyvars (vs, ty) =
Pretty.block (pr_typparms tyvars vs @@ pr_typ tyvars NOBR ty);
fun pr_term lhs vars fxy (IConst c) =
pr_app lhs vars fxy (c, [])
| pr_term lhs vars fxy (t as (t1 `$ t2)) =
(case CodeThingol.unfold_const_app t
of SOME app => pr_app lhs vars fxy app
| _ =>
brackify fxy [
pr_term lhs vars NOBR t1,
pr_term lhs vars BR t2
])
| pr_term lhs vars fxy (IVar v) =
(str o CodeName.lookup_var vars) v
| pr_term lhs vars fxy (t as _ `|-> _) =
let
val (binds, t') = CodeThingol.unfold_abs t;
fun pr ((v, pat), ty) = pr_bind BR ((SOME v, pat), ty);
val (ps, vars') = fold_map pr binds vars;
in brackets (str "\\" :: ps @ str "->" @@ pr_term lhs vars' NOBR t') end
| pr_term lhs vars fxy (ICase (cases as (_, t0))) = (case CodeThingol.unfold_const_app t0
of SOME (c_ts as ((c, _), _)) => if is_none (const_syntax c)
then pr_case vars fxy cases
else pr_app lhs vars fxy c_ts
| NONE => pr_case vars fxy cases)
and pr_app' lhs vars ((c, _), ts) =
(str o deresolv) c :: map (pr_term lhs vars BR) ts
and pr_app lhs vars = gen_pr_app pr_app' pr_term const_syntax labelled_name is_cons lhs vars
and pr_bind fxy = pr_bind_haskell pr_term fxy
and pr_case vars fxy (cases as ((_, [_]), _)) =
let
val (binds, t) = CodeThingol.unfold_let (ICase cases);
fun pr ((pat, ty), t) vars =
vars
|> pr_bind BR ((NONE, SOME pat), ty)
|>> (fn p => semicolon [p, str "=", pr_term false vars NOBR t])
val (ps, vars') = fold_map pr binds vars;
in
Pretty.block_enclose (
str "let {",
concat [str "}", str "in", pr_term false vars' NOBR t]
) ps
end
| pr_case vars fxy (((td, ty), bs as _ :: _), _) =
let
fun pr (pat, t) =
let
val (p, vars') = pr_bind NOBR ((NONE, SOME pat), ty) vars;
in semicolon [p, str "->", pr_term false vars' NOBR t] end;
in
Pretty.block_enclose (
concat [str "(case", pr_term false vars NOBR td, str "of", str "{"],
str "})"
) (map pr bs)
end
| pr_case vars fxy ((_, []), _) = str "error \"empty case\"";
fun pr_def (name, CodeThingol.Fun ((vs, ty), eqs)) =
let
val tyvars = CodeName.intro_vars (map fst vs) init_syms;
fun pr_eq ((ts, t), _) =
let
val consts = map_filter
(fn c => if (is_some o const_syntax) c
then NONE else (SOME o NameSpace.base o deresolv) c)
((fold o CodeThingol.fold_constnames) (insert (op =)) (t :: ts) []);
val vars = init_syms
|> CodeName.intro_vars consts
|> CodeName.intro_vars ((fold o CodeThingol.fold_unbound_varnames)
(insert (op =)) ts []);
in
semicolon (
(str o deresolv_here) name
:: map (pr_term true vars BR) ts
@ str "="
@@ pr_term false vars NOBR t
)
end;
in
Pretty.chunks (
Pretty.block [
(str o suffix " ::" o deresolv_here) name,
Pretty.brk 1,
pr_typscheme tyvars (vs, ty),
str ";"
]
:: map pr_eq eqs
)
end
| pr_def (name, CodeThingol.Datatype (vs, [])) =
let
val tyvars = CodeName.intro_vars (map fst vs) init_syms;
in
semicolon [
str "data",
pr_typscheme_expr tyvars (vs, (deresolv_here name, map (ITyVar o fst) vs))
]
end
| pr_def (name, CodeThingol.Datatype (vs, [(co, [ty])])) =
let
val tyvars = CodeName.intro_vars (map fst vs) init_syms;
in
semicolon (
str "newtype"
:: pr_typscheme_expr tyvars (vs, (deresolv_here name, map (ITyVar o fst) vs))
:: str "="
:: (str o deresolv_here) co
:: pr_typ tyvars BR ty
:: (if deriving_show name then [str "deriving (Read, Show)"] else [])
)
end
| pr_def (name, CodeThingol.Datatype (vs, co :: cos)) =
let
val tyvars = CodeName.intro_vars (map fst vs) init_syms;
fun pr_co (co, tys) =
concat (
(str o deresolv_here) co
:: map (pr_typ tyvars BR) tys
)
in
semicolon (
str "data"
:: pr_typscheme_expr tyvars (vs, (deresolv_here name, map (ITyVar o fst) vs))
:: str "="
:: pr_co co
:: map ((fn p => Pretty.block [str "| ", p]) o pr_co) cos
@ (if deriving_show name then [str "deriving (Read, Show)"] else [])
)
end
| pr_def (name, CodeThingol.Class (superclasss, (v, classops))) =
let
val tyvars = CodeName.intro_vars [v] init_syms;
fun pr_classop (classop, ty) =
semicolon [
(str o classop_name name) classop,
str "::",
pr_typ tyvars NOBR ty
]
in
Pretty.block_enclose (
Pretty.block [
str "class ",
pr_typparms tyvars [(v, map fst superclasss)],
str (deresolv_here name ^ " " ^ CodeName.lookup_var tyvars v),
str " where {"
],
str "};"
) (map pr_classop classops)
end
| pr_def (_, CodeThingol.Classinst ((class, (tyco, vs)), (_, classop_defs))) =
let
val tyvars = CodeName.intro_vars (map fst vs) init_syms;
fun pr_instdef ((classop, c_inst), _) =
semicolon [
(str o classop_name class) classop,
str "=",
pr_app false init_syms NOBR (c_inst, [])
];
in
Pretty.block_enclose (
Pretty.block [
str "instance ",
pr_typparms tyvars vs,
str (class_name class ^ " "),
pr_typ tyvars BR (tyco `%% map (ITyVar o fst) vs),
str " where {"
],
str "};"
) (map pr_instdef classop_defs)
end;
in pr_def def end;
fun pretty_haskell_monad c_mbind c_kbind =
let
fun pretty pr vars fxy [(t, _)] =
let
val pr_bind = pr_bind_haskell (K pr);
fun pr_mbind (NONE, t) vars =
(semicolon [pr vars NOBR t], vars)
| pr_mbind (SOME (bind, true), t) vars = vars
|> pr_bind NOBR bind
|>> (fn p => semicolon [p, str "<-", pr vars NOBR t])
| pr_mbind (SOME (bind, false), t) vars = vars
|> pr_bind NOBR bind
|>> (fn p => semicolon [str "let", p, str "=", pr vars NOBR t]);
val (binds, t) = implode_monad c_mbind c_kbind t;
val (ps, vars') = fold_map pr_mbind binds vars;
fun brack p = if eval_fxy BR fxy then Pretty.block [str "(", p, str ")"] else p;
in (brack o Pretty.block_enclose (str "do {", str "}")) (ps @| pr vars' NOBR t) end;
in (1, pretty) end;
end; (*local*)
fun seri_haskell module_prefix module destination string_classes labelled_name
reserved_syms raw_module_alias module_prolog
allows_exception class_syntax tyco_syntax const_syntax code =
let
val _ = Option.map File.check destination;
val is_cons = CodeThingol.is_cons code;
val module_alias = if is_some module then K module else raw_module_alias;
val init_names = Name.make_context reserved_syms;
val name_modl = mk_modl_name_tab init_names module_prefix module_alias code;
fun add_def (name, (def, deps)) =
let
val (modl, base) = dest_name name;
fun name_def base = Name.variants [base] #>> the_single;
fun add_fun upper (nsp_fun, nsp_typ) =
let
val (base', nsp_fun') = name_def (if upper then first_upper base else base) nsp_fun
in (base', (nsp_fun', nsp_typ)) end;
fun add_typ (nsp_fun, nsp_typ) =
let
val (base', nsp_typ') = name_def (first_upper base) nsp_typ
in (base', (nsp_fun, nsp_typ')) end;
val add_name =
case def
of CodeThingol.Bot => pair base
| CodeThingol.Fun _ => add_fun false
| CodeThingol.Datatype _ => add_typ
| CodeThingol.Datatypecons _ => add_fun true
| CodeThingol.Class _ => add_typ
| CodeThingol.Classrel _ => pair base
| CodeThingol.Classop _ => add_fun false
| CodeThingol.Classinst _ => pair base;
val modlname' = name_modl modl;
fun add_def base' =
case def
of CodeThingol.Bot => I
| CodeThingol.Datatypecons _ =>
cons (name, ((NameSpace.append modlname' base', base'), NONE))
| CodeThingol.Classrel _ => I
| CodeThingol.Classop _ =>
cons (name, ((NameSpace.append modlname' base', base'), NONE))
| _ => cons (name, ((NameSpace.append modlname' base', base'), SOME def));
in
Symtab.map_default (modlname', ([], ([], (init_names, init_names))))
(apfst (fold (insert (op = : string * string -> bool)) deps))
#> `(fn code => add_name ((snd o snd o the o Symtab.lookup code) modlname'))
#-> (fn (base', names) =>
(Symtab.map_entry modlname' o apsnd) (fn (defs, _) =>
(add_def base' defs, names)))
end;
val code' =
fold add_def (AList.make (fn name => (Graph.get_node code name, Graph.imm_succs code name))
(Graph.strong_conn code |> flat)) Symtab.empty;
val init_syms = CodeName.make_vars reserved_syms;
fun deresolv name =
(fst o fst o the o AList.lookup (op =) ((fst o snd o the
o Symtab.lookup code') ((name_modl o fst o dest_name) name))) name
handle Option => error ("Unknown definition name: " ^ labelled_name name);
fun deresolv_here name =
(snd o fst o the o AList.lookup (op =) ((fst o snd o the
o Symtab.lookup code') ((name_modl o fst o dest_name) name))) name
handle Option => error ("Unknown definition name: " ^ labelled_name name);
fun deriving_show tyco =
let
fun deriv _ "fun" = false
| deriv tycos tyco = member (op =) tycos tyco orelse
case the_default CodeThingol.Bot (try (Graph.get_node code) tyco)
of CodeThingol.Bot => true
| CodeThingol.Datatype (_, cs) => forall (deriv' (tyco :: tycos))
(maps snd cs)
and deriv' tycos (tyco `%% tys) = deriv tycos tyco
andalso forall (deriv' tycos) tys
| deriv' _ (ITyVar _) = true
in deriv [] tyco end;
fun seri_def qualified = pr_haskell allows_exception class_syntax tyco_syntax
const_syntax labelled_name init_syms
deresolv_here (if qualified then deresolv else deresolv_here) is_cons
(if string_classes then deriving_show else K false);
fun write_module (SOME destination) modlname =
let
val filename = case modlname
of "" => Path.explode "Main.hs"
| _ => (Path.ext "hs" o Path.explode o implode o separate "/" o NameSpace.explode) modlname;
val pathname = Path.append destination filename;
val _ = File.mkdir (Path.dir pathname);
in File.write pathname end
| write_module NONE _ = PrintMode.setmp [] writeln;
fun seri_module (modlname', (imports, (defs, _))) =
let
val imports' =
imports
|> map (name_modl o fst o dest_name)
|> distinct (op =)
|> remove (op =) modlname';
val qualified =
imports @ map fst defs
|> map_filter (try deresolv)
|> map NameSpace.base
|> has_duplicates (op =);
val mk_import = str o (if qualified
then prefix "import qualified "
else prefix "import ") o suffix ";";
in
Pretty.chunks (
str ("module " ^ modlname' ^ " where {")
:: str ""
:: map mk_import imports'
@ str ""
:: separate (str "") ((case module_prolog modlname'
of SOME prolog => [prolog]
| NONE => [])
@ map_filter
(fn (name, (_, SOME def)) => SOME (seri_def qualified (name, def))
| (_, (_, NONE)) => NONE) defs)
@ str ""
@@ str "}"
)
|> code_output
|> write_module destination modlname'
end;
in Symtab.fold (fn modl => fn () => seri_module modl) code' () end;
fun isar_seri_haskell module file =
let
val destination = case file
of NONE => error ("Haskell: no internal compilation")
| SOME "-" => NONE
| SOME file => SOME (Path.explode file)
in
parse_args (Scan.option (Args.$$$ "root" -- Args.colon |-- Args.name)
-- Scan.optional (Args.$$$ "string_classes" >> K true) false
>> (fn (module_prefix, string_classes) =>
seri_haskell module_prefix module destination string_classes))
end;
(** diagnosis serializer **)
fun seri_diagnosis labelled_name _ _ _ _ _ _ _ code =
let
val init_names = CodeName.make_vars [];
fun pr_fun "fun" = SOME (2, fn pr_typ => fn fxy => fn [ty1, ty2] =>
brackify_infix (1, R) fxy [
pr_typ (INFX (1, X)) ty1,
str "->",
pr_typ (INFX (1, R)) ty2
])
| pr_fun _ = NONE
val pr = pr_haskell (K true) (K NONE) pr_fun (K NONE) labelled_name init_names I I (K false) (K false);
in
[]
|> Graph.fold (fn (name, (def, _)) => case try pr (name, def) of SOME p => cons p | NONE => I) code
|> Pretty.chunks2
|> code_output
|> PrintMode.setmp [] writeln
end;
(** theory data **)
datatype syntax_expr = SyntaxExpr of {
class: (string * (string -> string option)) Symtab.table,
inst: unit Symtab.table,
tyco: typ_syntax Symtab.table,
const: term_syntax Symtab.table
};
fun mk_syntax_expr ((class, inst), (tyco, const)) =
SyntaxExpr { class = class, inst = inst, tyco = tyco, const = const };
fun map_syntax_expr f (SyntaxExpr { class, inst, tyco, const }) =
mk_syntax_expr (f ((class, inst), (tyco, const)));
fun merge_syntax_expr (SyntaxExpr { class = class1, inst = inst1, tyco = tyco1, const = const1 },
SyntaxExpr { class = class2, inst = inst2, tyco = tyco2, const = const2 }) =
mk_syntax_expr (
(Symtab.join (K snd) (class1, class2),
Symtab.join (K snd) (inst1, inst2)),
(Symtab.join (K snd) (tyco1, tyco2),
Symtab.join (K snd) (const1, const2))
);
datatype syntax_modl = SyntaxModl of {
alias: string Symtab.table,
prolog: Pretty.T Symtab.table
};
fun mk_syntax_modl (alias, prolog) =
SyntaxModl { alias = alias, prolog = prolog };
fun map_syntax_modl f (SyntaxModl { alias, prolog }) =
mk_syntax_modl (f (alias, prolog));
fun merge_syntax_modl (SyntaxModl { alias = alias1, prolog = prolog1 },
SyntaxModl { alias = alias2, prolog = prolog2 }) =
mk_syntax_modl (
Symtab.join (K snd) (alias1, alias2),
Symtab.join (K snd) (prolog1, prolog2)
);
type serializer =
string option
-> string option
-> Args.T list
-> (string -> string)
-> string list
-> (string -> string option)
-> (string -> Pretty.T option)
-> (string -> bool)
-> (string -> class_syntax option)
-> (string -> typ_syntax option)
-> (string -> term_syntax option)
-> CodeThingol.code -> unit;
datatype target = Target of {
serial: serial,
serializer: serializer,
syntax_expr: syntax_expr,
syntax_modl: syntax_modl,
reserved: string list
};
fun mk_target (serial, ((serializer, reserved), (syntax_expr, syntax_modl))) =
Target { serial = serial, reserved = reserved, serializer = serializer, syntax_expr = syntax_expr, syntax_modl = syntax_modl };
fun map_target f ( Target { serial, serializer, reserved, syntax_expr, syntax_modl } ) =
mk_target (f (serial, ((serializer, reserved), (syntax_expr, syntax_modl))));
fun merge_target target (Target { serial = serial1, serializer = serializer, reserved = reserved1,
syntax_expr = syntax_expr1, syntax_modl = syntax_modl1 },
Target { serial = serial2, serializer = _, reserved = reserved2,
syntax_expr = syntax_expr2, syntax_modl = syntax_modl2 }) =
if serial1 = serial2 then
mk_target (serial1, ((serializer, merge (op =) (reserved1, reserved2)),
(merge_syntax_expr (syntax_expr1, syntax_expr2),
merge_syntax_modl (syntax_modl1, syntax_modl2))
))
else
error ("Incompatible serializers: " ^ quote target);
structure CodeTargetData = TheoryDataFun
(
type T = target Symtab.table;
val empty = Symtab.empty;
val copy = I;
val extend = I;
fun merge _ = Symtab.join merge_target;
);
fun the_serializer (Target { serializer, ... }) = serializer;
fun the_reserved (Target { reserved, ... }) = reserved;
fun the_syntax_expr (Target { syntax_expr = SyntaxExpr x, ... }) = x;
fun the_syntax_modl (Target { syntax_modl = SyntaxModl x, ... }) = x;
fun assert_serializer thy target =
case Symtab.lookup (CodeTargetData.get thy) target
of SOME data => target
| NONE => error ("Unknown code target language: " ^ quote target);
fun add_serializer (target, seri) thy =
let
val _ = case Symtab.lookup (CodeTargetData.get thy) target
of SOME _ => warning ("overwriting existing serializer " ^ quote target)
| NONE => ();
in
thy
|> (CodeTargetData.map oo Symtab.map_default)
(target, mk_target (serial (), ((seri, []),
(mk_syntax_expr ((Symtab.empty, Symtab.empty), (Symtab.empty, Symtab.empty)),
mk_syntax_modl (Symtab.empty, Symtab.empty)))))
(map_target (fn (serial, ((_, keywords), syntax)) => (serial, ((seri, keywords), syntax))))
end;
fun map_seri_data target f thy =
let
val _ = assert_serializer thy target;
in
thy
|> (CodeTargetData.map o Symtab.map_entry target o map_target) f
end;
val target_SML = "SML";
val target_OCaml = "OCaml";
val target_Haskell = "Haskell";
val target_diag = "diag";
fun get_serializer thy target permissive module file args
labelled_name allows_exception = fn cs =>
let
val data = case Symtab.lookup (CodeTargetData.get thy) target
of SOME data => data
| NONE => error ("Unknown code target language: " ^ quote target);
val seri = the_serializer data;
val reserved = the_reserved data;
val { alias, prolog } = the_syntax_modl data;
val { class, inst, tyco, const } = the_syntax_expr data;
val project = if target = target_diag then I
else CodeThingol.project_code permissive
(Symtab.keys class @ Symtab.keys inst @ Symtab.keys tyco @ Symtab.keys const) cs;
fun check_empty_funs code = case CodeThingol.empty_funs code
of [] => code
| names => error ("No defining equations for " ^ commas (map (labelled_name thy) names));
in
project
#> check_empty_funs
#> seri module file args (labelled_name thy) reserved (Symtab.lookup alias) (Symtab.lookup prolog)
allows_exception (Symtab.lookup class) (Symtab.lookup tyco) (Symtab.lookup const)
end;
fun eval_invoke thy labelled_name allows_exception (ref_name, reff) code (t, ty) args =
let
val _ = if CodeThingol.contains_dictvar t then
error "Term to be evaluated constains free dictionaries" else ();
val val_name = "Isabelle_Eval.EVAL.EVAL";
val val_name' = "Isabelle_Eval.EVAL";
val val_name'_args = space_implode " " (val_name' :: map (enclose "(" ")") args);
val seri = get_serializer thy "SML" false (SOME "Isabelle_Eval") NONE []
labelled_name allows_exception;
fun eval code = (
reff := NONE;
seri (SOME [val_name]) code;
use_text "generated code for evaluation" Output.ml_output (!eval_verbose)
("val _ = (" ^ ref_name ^ " := SOME (fn () => " ^ val_name'_args ^ "))");
case !reff
of NONE => error ("Could not retrieve value of ML reference " ^ quote ref_name
^ " (reference probably has been shadowed)")
| SOME f => f ()
);
in
code
|> CodeThingol.add_eval_def (val_name, (t, ty))
|> eval
end;
(** optional pretty serialization **)
local
val pretty : (string * {
pretty_char: string -> string,
pretty_string: string -> string,
pretty_numeral: bool -> int -> string,
pretty_list: Pretty.T list -> Pretty.T,
infix_cons: int * string
}) list = [
("SML", { pretty_char = prefix "#" o quote o ML_Syntax.print_char,
pretty_string = ML_Syntax.print_string,
pretty_numeral = fn unbounded => fn k =>
if unbounded then "(" ^ string_of_int k ^ " : IntInf.int)"
else string_of_int k,
pretty_list = Pretty.enum "," "[" "]",
infix_cons = (7, "::")}),
("OCaml", { pretty_char = fn c => enclose "'" "'"
(let val i = ord c
in if i < 32 orelse i = 39 orelse i = 92
then prefix "\\" (string_of_int i)
else c
end),
pretty_string = ML_Syntax.print_string,
pretty_numeral = fn unbounded => fn k => if k >= 0 then
if unbounded then
"(Big_int.big_int_of_int " ^ string_of_int k ^ ")"
else string_of_int k
else
if unbounded then
"(Big_int.big_int_of_int " ^ (enclose "(" ")" o prefix "-"
o string_of_int o op ~) k ^ ")"
else (enclose "(" ")" o prefix "-" o string_of_int o op ~) k,
pretty_list = Pretty.enum ";" "[" "]",
infix_cons = (6, "::")}),
("Haskell", { pretty_char = fn c => enclose "'" "'"
(let val i = ord c
in if i < 32 orelse i = 39 orelse i = 92
then Library.prefix "\\" (string_of_int i)
else c
end),
pretty_string = ML_Syntax.print_string,
pretty_numeral = fn unbounded => fn k => if k >= 0 then string_of_int k
else enclose "(" ")" (signed_string_of_int k),
pretty_list = Pretty.enum "," "[" "]",
infix_cons = (5, ":")})
];
in
fun pr_pretty target = case AList.lookup (op =) pretty target
of SOME x => x
| NONE => error ("Unknown code target language: " ^ quote target);
fun default_list (target_fxy, target_cons) pr fxy t1 t2 =
brackify_infix (target_fxy, R) fxy [
pr (INFX (target_fxy, X)) t1,
str target_cons,
pr (INFX (target_fxy, R)) t2
];
fun pretty_list c_nil c_cons target =
let
val pretty_ops = pr_pretty target;
val mk_list = #pretty_list pretty_ops;
fun pretty pr vars fxy [(t1, _), (t2, _)] =
case Option.map (cons t1) (implode_list c_nil c_cons t2)
of SOME ts => mk_list (map (pr vars NOBR) ts)
| NONE => default_list (#infix_cons pretty_ops) (pr vars) fxy t1 t2;
in (2, pretty) end;
fun pretty_list_string c_nil c_cons c_char c_nibbles target =
let
val pretty_ops = pr_pretty target;
val mk_list = #pretty_list pretty_ops;
val mk_char = #pretty_char pretty_ops;
val mk_string = #pretty_string pretty_ops;
fun pretty pr vars fxy [(t1, _), (t2, _)] =
case Option.map (cons t1) (implode_list c_nil c_cons t2)
of SOME ts => case implode_string c_char c_nibbles mk_char mk_string ts
of SOME p => p
| NONE => mk_list (map (pr vars NOBR) ts)
| NONE => default_list (#infix_cons pretty_ops) (pr vars) fxy t1 t2;
in (2, pretty) end;
fun pretty_char c_char c_nibbles target =
let
val mk_char = #pretty_char (pr_pretty target);
fun pretty _ _ _ [(t1, _), (t2, _)] =
case decode_char c_nibbles (t1, t2)
of SOME c => (str o mk_char) c
| NONE => error "Illegal character expression";
in (2, pretty) end;
fun pretty_numeral unbounded c_bit0 c_bit1 c_pls c_min c_bit target =
let
val mk_numeral = #pretty_numeral (pr_pretty target);
fun pretty _ _ _ [(t, _)] =
case implode_numeral c_bit0 c_bit1 c_pls c_min c_bit t
of SOME k => (str o mk_numeral unbounded) k
| NONE => error "Illegal numeral expression";
in (1, pretty) end;
fun pretty_ml_string c_char c_nibbles c_nil c_cons target =
let
val pretty_ops = pr_pretty target;
val mk_char = #pretty_char pretty_ops;
val mk_string = #pretty_string pretty_ops;
fun pretty pr vars fxy [(t, _)] =
case implode_list c_nil c_cons t
of SOME ts => (case implode_string c_char c_nibbles mk_char mk_string ts
of SOME p => p
| NONE => error "Illegal ml_string expression")
| NONE => error "Illegal ml_string expression";
in (1, pretty) end;
fun pretty_imperative_monad_bind bind' =
let
fun dest_abs ((v, ty) `|-> t, _) = ((v, ty), t)
| dest_abs (t, ty) =
let
val vs = CodeThingol.fold_varnames cons t [];
val v = Name.variant vs "x";
val ty' = (hd o fst o CodeThingol.unfold_fun) ty;
in ((v, ty'), t `$ IVar v) end;
fun tr_bind [(t1, _), (t2, ty2)] =
let
val ((v, ty), t) = dest_abs (t2, ty2);
in ICase (((t1, ty), [(IVar v, tr_bind' t)]), IVar "") end
and tr_bind' (t as _ `$ _) = (case CodeThingol.unfold_app t
of (IConst (c, (_, ty1 :: ty2 :: _)), [x1, x2]) => if c = bind'
then tr_bind [(x1, ty1), (x2, ty2)]
else t
| _ => t)
| tr_bind' t = t;
fun pretty pr vars fxy ts = pr vars fxy (tr_bind ts);
in (2, pretty) end;
end; (*local*)
(** ML and Isar interface **)
local
fun map_syntax_exprs target =
map_seri_data target o apsnd o apsnd o apfst o map_syntax_expr;
fun map_syntax_modls target =
map_seri_data target o apsnd o apsnd o apsnd o map_syntax_modl;
fun map_reserveds target =
map_seri_data target o apsnd o apfst o apsnd;
fun gen_add_syntax_class prep_class prep_const target raw_class raw_syn thy =
let
val cls = prep_class thy raw_class;
val class = CodeName.class thy cls;
fun mk_classop c = case AxClass.class_of_param thy c
of SOME class' => if cls = class' then CodeName.const thy c
else error ("Not a class operation for class " ^ quote class ^ ": " ^ quote c)
| NONE => error ("Not a class operation: " ^ quote c);
fun mk_syntax_ops raw_ops = AList.lookup (op =)
((map o apfst) (mk_classop o prep_const thy) raw_ops);
in case raw_syn
of SOME (syntax, raw_ops) =>
thy
|> (map_syntax_exprs target o apfst o apfst)
(Symtab.update (class, (syntax, mk_syntax_ops raw_ops)))
| NONE =>
thy
|> (map_syntax_exprs target o apfst o apfst)
(Symtab.delete_safe class)
end;
fun gen_add_syntax_inst prep_class prep_tyco target (raw_tyco, raw_class) add_del thy =
let
val inst = CodeName.instance thy (prep_class thy raw_class, prep_tyco thy raw_tyco);
in if add_del then
thy
|> (map_syntax_exprs target o apfst o apsnd)
(Symtab.update (inst, ()))
else
thy
|> (map_syntax_exprs target o apfst o apsnd)
(Symtab.delete_safe inst)
end;
fun gen_add_syntax_tyco prep_tyco target raw_tyco raw_syn thy =
let
val tyco = prep_tyco thy raw_tyco;
val tyco' = if tyco = "fun" then "fun" else CodeName.tyco thy tyco;
fun check_args (syntax as (n, _)) = if n <> Sign.arity_number thy tyco
then error ("Number of arguments mismatch in syntax for type constructor " ^ quote tyco)
else syntax
in case raw_syn
of SOME syntax =>
thy
|> (map_syntax_exprs target o apsnd o apfst)
(Symtab.update (tyco', check_args syntax))
| NONE =>
thy
|> (map_syntax_exprs target o apsnd o apfst)
(Symtab.delete_safe tyco')
end;
fun gen_add_syntax_const prep_const target raw_c raw_syn thy =
let
val c = prep_const thy raw_c;
val c' = CodeName.const thy c;
fun check_args (syntax as (n, _)) = if n > CodeUnit.no_args thy c
then error ("Too many arguments in syntax for constant " ^ quote c)
else syntax;
in case raw_syn
of SOME syntax =>
thy
|> (map_syntax_exprs target o apsnd o apsnd)
(Symtab.update (c', check_args syntax))
| NONE =>
thy
|> (map_syntax_exprs target o apsnd o apsnd)
(Symtab.delete_safe c')
end;
fun cert_class thy class =
let
val _ = AxClass.get_definition thy class;
in class end;
fun read_class thy raw_class =
let
val class = Sign.intern_class thy raw_class;
val _ = AxClass.get_definition thy class;
in class end;
fun cert_tyco thy tyco =
let
val _ = if Sign.declared_tyname thy tyco then ()
else error ("No such type constructor: " ^ quote tyco);
in tyco end;
fun read_tyco thy raw_tyco =
let
val tyco = Sign.intern_type thy raw_tyco;
val _ = if Sign.declared_tyname thy tyco then ()
else error ("No such type constructor: " ^ quote raw_tyco);
in tyco end;
fun no_bindings x = (Option.map o apsnd)
(fn pretty => fn pr => fn vars => pretty (pr vars)) x;
fun gen_add_haskell_monad prep_const c_run c_mbind c_kbind thy =
let
val c_run' = prep_const thy c_run;
val c_mbind' = prep_const thy c_mbind;
val c_mbind'' = CodeName.const thy c_mbind';
val c_kbind' = prep_const thy c_kbind;
val c_kbind'' = CodeName.const thy c_kbind';
val pr = pretty_haskell_monad c_mbind'' c_kbind''
in
thy
|> gen_add_syntax_const (K I) target_Haskell c_run' (SOME pr)
|> gen_add_syntax_const (K I) target_Haskell c_mbind'
(no_bindings (SOME (parse_infix fst (L, 1) ">>=")))
|> gen_add_syntax_const (K I) target_Haskell c_kbind'
(no_bindings (SOME (parse_infix fst (L, 1) ">>")))
end;
fun add_reserved target =
let
fun add sym syms = if member (op =) syms sym
then error ("Reserved symbol " ^ quote sym ^ " already declared")
else insert (op =) sym syms
in map_reserveds target o add end;
fun add_modl_alias target =
map_syntax_modls target o apfst o Symtab.update o apsnd CodeName.check_modulename;
fun add_modl_prolog target =
map_syntax_modls target o apsnd o
(fn (modl, NONE) => Symtab.delete modl | (modl, SOME prolog) =>
Symtab.update (modl, Pretty.str prolog));
fun zip_list (x::xs) f g =
f
#-> (fn y =>
fold_map (fn x => g |-- f >> pair x) xs
#-> (fn xys => pair ((x, y) :: xys)));
structure P = OuterParse
and K = OuterKeyword
fun parse_multi_syntax parse_thing parse_syntax =
P.and_list1 parse_thing
#-> (fn things => Scan.repeat1 (P.$$$ "(" |-- P.name --
(zip_list things parse_syntax (P.$$$ "and")) --| P.$$$ ")"));
val (infixK, infixlK, infixrK) = ("infix", "infixl", "infixr");
fun parse_syntax prep_arg xs =
Scan.option ((
((P.$$$ infixK >> K X)
|| (P.$$$ infixlK >> K L)
|| (P.$$$ infixrK >> K R))
-- P.nat >> parse_infix prep_arg
|| Scan.succeed (parse_mixfix prep_arg))
-- P.string
>> (fn (parse, s) => parse s)) xs;
val (code_classK, code_instanceK, code_typeK, code_constK, code_monadK,
code_reservedK, code_modulenameK, code_moduleprologK) =
("code_class", "code_instance", "code_type", "code_const", "code_monad",
"code_reserved", "code_modulename", "code_moduleprolog");
in
val parse_syntax = parse_syntax;
val add_syntax_class = gen_add_syntax_class cert_class (K I);
val add_syntax_inst = gen_add_syntax_inst cert_class cert_tyco;
val add_syntax_tyco = gen_add_syntax_tyco cert_tyco;
val add_syntax_const = gen_add_syntax_const (K I);
val add_syntax_class_cmd = gen_add_syntax_class read_class CodeUnit.read_const;
val add_syntax_inst_cmd = gen_add_syntax_inst read_class read_tyco;
val add_syntax_tyco_cmd = gen_add_syntax_tyco read_tyco;
val add_syntax_const_cmd = gen_add_syntax_const CodeUnit.read_const;
fun add_syntax_tycoP target tyco = parse_syntax I >> add_syntax_tyco_cmd target tyco;
fun add_syntax_constP target c = parse_syntax fst >> (add_syntax_const_cmd target c o no_bindings);
fun add_undefined target undef target_undefined thy =
let
fun pr _ _ _ _ = str target_undefined;
in
thy
|> add_syntax_const target undef (SOME (~1, pr))
end;
fun add_pretty_list target nill cons thy =
let
val nil' = CodeName.const thy nill;
val cons' = CodeName.const thy cons;
val pr = pretty_list nil' cons' target;
in
thy
|> add_syntax_const target cons (SOME pr)
end;
fun add_pretty_list_string target nill cons charr nibbles thy =
let
val nil' = CodeName.const thy nill;
val cons' = CodeName.const thy cons;
val charr' = CodeName.const thy charr;
val nibbles' = map (CodeName.const thy) nibbles;
val pr = pretty_list_string nil' cons' charr' nibbles' target;
in
thy
|> add_syntax_const target cons (SOME pr)
end;
fun add_pretty_char target charr nibbles thy =
let
val charr' = CodeName.const thy charr;
val nibbles' = map (CodeName.const thy) nibbles;
val pr = pretty_char charr' nibbles' target;
in
thy
|> add_syntax_const target charr (SOME pr)
end;
fun add_pretty_numeral target unbounded number_of b0 b1 pls min bit thy =
let
val b0' = CodeName.const thy b0;
val b1' = CodeName.const thy b1;
val pls' = CodeName.const thy pls;
val min' = CodeName.const thy min;
val bit' = CodeName.const thy bit;
val pr = pretty_numeral unbounded b0' b1' pls' min' bit' target;
in
thy
|> add_syntax_const target number_of (SOME pr)
end;
fun add_pretty_ml_string target charr nibbles nill cons str thy =
let
val charr' = CodeName.const thy charr;
val nibbles' = map (CodeName.const thy) nibbles;
val nil' = CodeName.const thy nill;
val cons' = CodeName.const thy cons;
val pr = pretty_ml_string charr' nibbles' nil' cons' target;
in
thy
|> add_syntax_const target str (SOME pr)
end;
fun add_pretty_imperative_monad_bind target bind thy =
add_syntax_const target bind (SOME (pretty_imperative_monad_bind
(CodeName.const thy bind))) thy;
val add_haskell_monad = gen_add_haskell_monad CodeUnit.read_const;
val code_classP =
OuterSyntax.command code_classK "define code syntax for class" K.thy_decl (
parse_multi_syntax P.xname
(Scan.option (P.string -- Scan.optional (P.$$$ "where" |-- Scan.repeat1
(P.term --| (P.$$$ "\\<equiv>" || P.$$$ "==") -- P.string)) []))
>> (Toplevel.theory oo fold) (fn (target, syns) =>
fold (fn (raw_class, syn) => add_syntax_class_cmd target raw_class syn) syns)
);
val code_instanceP =
OuterSyntax.command code_instanceK "define code syntax for instance" K.thy_decl (
parse_multi_syntax (P.xname --| P.$$$ "::" -- P.xname)
((P.minus >> K true) || Scan.succeed false)
>> (Toplevel.theory oo fold) (fn (target, syns) =>
fold (fn (raw_inst, add_del) => add_syntax_inst_cmd target raw_inst add_del) syns)
);
val code_typeP =
OuterSyntax.command code_typeK "define code syntax for type constructor" K.thy_decl (
parse_multi_syntax P.xname (parse_syntax I)
>> (Toplevel.theory oo fold) (fn (target, syns) =>
fold (fn (raw_tyco, syn) => add_syntax_tyco_cmd target raw_tyco syn) syns)
);
val code_constP =
OuterSyntax.command code_constK "define code syntax for constant" K.thy_decl (
parse_multi_syntax P.term (parse_syntax fst)
>> (Toplevel.theory oo fold) (fn (target, syns) =>
fold (fn (raw_const, syn) => add_syntax_const_cmd target raw_const (no_bindings syn)) syns)
);
val code_monadP =
OuterSyntax.command code_monadK "define code syntax for Haskell monads" K.thy_decl (
P.term -- P.term -- P.term
>> (fn ((raw_run, raw_mbind), raw_kbind) => Toplevel.theory
(add_haskell_monad raw_run raw_mbind raw_kbind))
);
val code_reservedP =
OuterSyntax.command code_reservedK "declare words as reserved for target language" K.thy_decl (
P.name -- Scan.repeat1 P.name
>> (fn (target, reserveds) => (Toplevel.theory o fold (add_reserved target)) reserveds)
)
val code_modulenameP =
OuterSyntax.command code_modulenameK "alias module to other name" K.thy_decl (
P.name -- Scan.repeat1 (P.name -- P.name)
>> (fn (target, modlnames) => (Toplevel.theory o fold (add_modl_alias target)) modlnames)
)
val code_moduleprologP =
OuterSyntax.command code_moduleprologK "add prolog to module" K.thy_decl (
P.name -- Scan.repeat1 (P.name -- (P.text >> (fn "-" => NONE | s => SOME s)))
>> (fn (target, prologs) => (Toplevel.theory o fold (add_modl_prolog target)) prologs)
)
val _ = OuterSyntax.add_keywords [infixK, infixlK, infixrK];
val _ = OuterSyntax.add_parsers [code_classP, code_instanceP, code_typeP, code_constP,
code_reservedP, code_modulenameP, code_moduleprologP, code_monadP];
(*including serializer defaults*)
val setup =
add_serializer (target_SML, isar_seri_sml)
#> add_serializer (target_OCaml, isar_seri_ocaml)
#> add_serializer (target_Haskell, isar_seri_haskell)
#> add_serializer (target_diag, fn _ => fn _ => fn _ => seri_diagnosis)
#> add_syntax_tyco "SML" "fun" (SOME (2, fn pr_typ => fn fxy => fn [ty1, ty2] =>
(gen_brackify (case fxy of NOBR => false | _ => eval_fxy (INFX (1, R)) fxy) o Pretty.breaks) [
pr_typ (INFX (1, X)) ty1,
str "->",
pr_typ (INFX (1, R)) ty2
]))
#> add_syntax_tyco "OCaml" "fun" (SOME (2, fn pr_typ => fn fxy => fn [ty1, ty2] =>
(gen_brackify (case fxy of NOBR => false | _ => eval_fxy (INFX (1, R)) fxy) o Pretty.breaks) [
pr_typ (INFX (1, X)) ty1,
str "->",
pr_typ (INFX (1, R)) ty2
]))
#> add_syntax_tyco "Haskell" "fun" (SOME (2, fn pr_typ => fn fxy => fn [ty1, ty2] =>
brackify_infix (1, R) fxy [
pr_typ (INFX (1, X)) ty1,
str "->",
pr_typ (INFX (1, R)) ty2
]))
#> fold (add_reserved "SML") ML_Syntax.reserved_names
#> fold (add_reserved "SML")
["o" (*dictionary projections use it already*), "Fail", "div", "mod" (*standard infixes*)]
#> fold (add_reserved "OCaml") [
"and", "as", "assert", "begin", "class",
"constraint", "do", "done", "downto", "else", "end", "exception",
"external", "false", "for", "fun", "function", "functor", "if",
"in", "include", "inherit", "initializer", "lazy", "let", "match", "method",
"module", "mutable", "new", "object", "of", "open", "or", "private", "rec",
"sig", "struct", "then", "to", "true", "try", "type", "val",
"virtual", "when", "while", "with"
]
#> fold (add_reserved "OCaml") ["failwith", "mod"]
#> fold (add_reserved "Haskell") [
"hiding", "deriving", "where", "case", "of", "infix", "infixl", "infixr",
"import", "default", "forall", "let", "in", "class", "qualified", "data",
"newtype", "instance", "if", "then", "else", "type", "as", "do", "module"
]
#> fold (add_reserved "Haskell") [
"Prelude", "Main", "Bool", "Maybe", "Either", "Ordering", "Char", "String", "Int",
"Integer", "Float", "Double", "Rational", "IO", "Eq", "Ord", "Enum", "Bounded",
"Num", "Real", "Integral", "Fractional", "Floating", "RealFloat", "Monad", "Functor",
"AlreadyExists", "ArithException", "ArrayException", "AssertionFailed", "AsyncException",
"BlockedOnDeadMVar", "Deadlock", "Denormal", "DivideByZero", "DotNetException", "DynException",
"Dynamic", "EOF", "EQ", "EmptyRec", "ErrorCall", "ExitException", "ExitFailure",
"ExitSuccess", "False", "GT", "HeapOverflow",
"IOError", "IOException", "IllegalOperation",
"IndexOutOfBounds", "Just", "Key", "LT", "Left", "LossOfPrecision", "NoMethodError",
"NoSuchThing", "NonTermination", "Nothing", "Obj", "OtherError", "Overflow",
"PatternMatchFail", "PermissionDenied", "ProtocolError", "RecConError", "RecSelError",
"RecUpdError", "ResourceBusy", "ResourceExhausted", "Right", "StackOverflow",
"ThreadKilled", "True", "TyCon", "TypeRep", "UndefinedElement", "Underflow",
"UnsupportedOperation", "UserError", "abs", "absReal", "acos", "acosh", "all",
"and", "any", "appendFile", "asTypeOf", "asciiTab", "asin", "asinh", "atan",
"atan2", "atanh", "basicIORun", "blockIO", "boundedEnumFrom", "boundedEnumFromThen",
"boundedEnumFromThenTo", "boundedEnumFromTo", "boundedPred", "boundedSucc", "break",
"catch", "catchException", "ceiling", "compare", "concat", "concatMap", "const",
"cos", "cosh", "curry", "cycle", "decodeFloat", "denominator", "div", "divMod",
"doubleToRatio", "doubleToRational", "drop", "dropWhile", "either", "elem",
"emptyRec", "encodeFloat", "enumFrom", "enumFromThen", "enumFromThenTo",
"enumFromTo", "error", "even", "exp", "exponent", "fail", "filter", "flip",
"floatDigits", "floatProperFraction", "floatRadix", "floatRange", "floatToRational",
"floor", "fmap", "foldl", "foldl'", "foldl1", "foldr", "foldr1", "fromDouble",
"fromEnum", "fromEnum_0", "fromInt", "fromInteger", "fromIntegral", "fromObj",
"fromRational", "fst", "gcd", "getChar", "getContents", "getLine", "head",
"id", "inRange", "index", "init", "intToRatio", "interact", "ioError", "isAlpha",
"isAlphaNum", "isDenormalized", "isDigit", "isHexDigit", "isIEEE", "isInfinite",
"isLower", "isNaN", "isNegativeZero", "isOctDigit", "isSpace", "isUpper", "iterate", "iterate'",
"last", "lcm", "length", "lex", "lexDigits", "lexLitChar", "lexmatch", "lines", "log",
"logBase", "lookup", "loop", "map", "mapM", "mapM_", "max", "maxBound", "maximum",
"maybe", "min", "minBound", "minimum", "mod", "negate", "nonnull", "not", "notElem",
"null", "numerator", "numericEnumFrom", "numericEnumFromThen", "numericEnumFromThenTo",
"numericEnumFromTo", "odd", "or", "otherwise", "pi", "pred",
"print", "product", "properFraction", "protectEsc", "putChar", "putStr", "putStrLn",
"quot", "quotRem", "range", "rangeSize", "rationalToDouble", "rationalToFloat",
"rationalToRealFloat", "read", "readDec", "readField", "readFieldName", "readFile",
"readFloat", "readHex", "readIO", "readInt", "readList", "readLitChar", "readLn",
"readOct", "readParen", "readSigned", "reads", "readsPrec", "realFloatToRational",
"realToFrac", "recip", "reduce", "rem", "repeat", "replicate", "return", "reverse",
"round", "scaleFloat", "scanl", "scanl1", "scanr", "scanr1", "seq", "sequence",
"sequence_", "show", "showChar", "showException", "showField", "showList",
"showLitChar", "showParen", "showString", "shows", "showsPrec", "significand",
"signum", "signumReal", "sin", "sinh", "snd", "span", "splitAt", "sqrt", "subtract",
"succ", "sum", "tail", "take", "takeWhile", "takeWhile1", "tan", "tanh", "threadToIOResult",
"throw", "toEnum", "toInt", "toInteger", "toObj", "toRational", "truncate", "uncurry",
"undefined", "unlines", "unsafeCoerce", "unsafeIndex", "unsafeRangeSize", "until", "unwords",
"unzip", "unzip3", "userError", "words", "writeFile", "zip", "zip3", "zipWith", "zipWith3"
] (*due to weird handling of ':', we can't do anything else than to import *all* prelude symbols*);
end; (*local*)
end; (*struct*)