(* Title: Pure/Isar/code.ML
Author: Florian Haftmann, TU Muenchen
Abstract executable ingredients of theory. Management of data
dependent on executable ingredients as synchronized cache; purged
on any change of underlying executable ingredients.
*)
signature CODE =
sig
(*constants*)
val check_const: theory -> term -> string
val read_bare_const: theory -> string -> string * typ
val read_const: theory -> string -> string
val string_of_const: theory -> string -> string
val cert_signature: theory -> typ -> typ
val read_signature: theory -> string -> typ
val const_typ: theory -> string -> typ
val subst_signatures: theory -> term -> term
val args_number: theory -> string -> int
(*constructor sets*)
val constrset_of_consts: theory -> (string * typ) list
-> string * ((string * sort) list * (string * typ list) list)
(*code equations*)
val mk_eqn: theory -> thm * bool -> thm * bool
val mk_eqn_warning: theory -> thm -> (thm * bool) option
val mk_eqn_liberal: theory -> thm -> (thm * bool) option
val assert_eqn: theory -> thm * bool -> thm * bool
val assert_eqns_const: theory -> string
-> (thm * bool) list -> (thm * bool) list
val const_typ_eqn: theory -> thm -> string * typ
val typscheme_eqn: theory -> thm -> (string * sort) list * typ
val typscheme_eqns: theory -> string -> thm list -> (string * sort) list * typ
val standard_typscheme: theory -> thm list -> thm list
(*executable code*)
val add_type: string -> theory -> theory
val add_type_cmd: string -> theory -> theory
val add_signature: string * typ -> theory -> theory
val add_signature_cmd: string * string -> theory -> theory
val add_datatype: (string * typ) list -> theory -> theory
val add_datatype_cmd: string list -> theory -> theory
val type_interpretation:
(string * ((string * sort) list * (string * typ list) list)
-> theory -> theory) -> theory -> theory
val add_eqn: thm -> theory -> theory
val add_nbe_eqn: thm -> theory -> theory
val add_default_eqn: thm -> theory -> theory
val add_default_eqn_attribute: attribute
val add_default_eqn_attrib: Attrib.src
val del_eqn: thm -> theory -> theory
val del_eqns: string -> theory -> theory
val add_case: thm -> theory -> theory
val add_undefined: string -> theory -> theory
val get_datatype: theory -> string -> ((string * sort) list * (string * typ list) list)
val get_datatype_of_constr: theory -> string -> string option
val these_eqns: theory -> string -> (thm * bool) list
val all_eqns: theory -> (thm * bool) list
val get_case_scheme: theory -> string -> (int * (int * string list)) option
val undefineds: theory -> string list
val print_codesetup: theory -> unit
(*infrastructure*)
val set_code_target_attr: (string -> thm -> theory -> theory) -> theory -> theory
val purge_data: theory -> theory
end;
signature CODE_DATA_ARGS =
sig
type T
val empty: T
end;
signature CODE_DATA =
sig
type T
val change: theory -> (T -> T) -> T
val change_yield: theory -> (T -> 'a * T) -> 'a * T
end;
signature PRIVATE_CODE =
sig
include CODE
val declare_data: Object.T -> serial
val change_data: serial * ('a -> Object.T) * (Object.T -> 'a)
-> theory -> ('a -> 'a) -> 'a
val change_yield_data: serial * ('a -> Object.T) * (Object.T -> 'a)
-> theory -> ('a -> 'b * 'a) -> 'b * 'a
end;
structure Code : PRIVATE_CODE =
struct
(** auxiliary **)
(* printing *)
fun string_of_typ thy = setmp_CRITICAL show_sorts true (Syntax.string_of_typ_global thy);
fun string_of_const thy c = case AxClass.inst_of_param thy c
of SOME (c, tyco) => Sign.extern_const thy c ^ " " ^ enclose "[" "]" (Sign.extern_type thy tyco)
| NONE => Sign.extern_const thy c;
(* constants *)
fun typ_equiv tys = Type.raw_instance tys andalso Type.raw_instance (swap tys);
fun check_bare_const thy t = case try dest_Const t
of SOME c_ty => c_ty
| NONE => error ("Not a constant: " ^ Syntax.string_of_term_global thy t);
fun check_const thy = AxClass.unoverload_const thy o check_bare_const thy;
fun read_bare_const thy = check_bare_const thy o Syntax.read_term_global thy;
fun read_const thy = AxClass.unoverload_const thy o read_bare_const thy;
(** data store **)
(* code equations *)
type eqns = bool * (thm * bool) list;
(*default flag, theorems with proper flag *)
fun add_drop_redundant thy (thm, proper) thms =
let
val args_of = snd o strip_comb o map_types Type.strip_sorts
o fst o Logic.dest_equals o Thm.plain_prop_of;
val args = args_of thm;
val incr_idx = Logic.incr_indexes ([], Thm.maxidx_of thm + 1);
fun matches_args args' = length args <= length args' andalso
Pattern.matchess thy (args, (map incr_idx o take (length args)) args');
fun drop (thm', proper') = if (proper orelse not proper')
andalso matches_args (args_of thm') then
(warning ("Code generator: dropping redundant code equation\n" ^
Display.string_of_thm_global thy thm'); true)
else false;
in (thm, proper) :: filter_out drop thms end;
fun add_thm thy _ thm (false, thms) = (false, add_drop_redundant thy thm thms)
| add_thm thy true thm (true, thms) = (true, thms @ [thm])
| add_thm thy false thm (true, thms) = (false, [thm]);
fun del_thm thm = apsnd (remove (eq_fst Thm.eq_thm_prop) (thm, true));
(* executable code data *)
datatype spec = Spec of {
history_concluded: bool,
signatures: int Symtab.table * typ Symtab.table,
eqns: ((bool * eqns) * (serial * eqns) list) Symtab.table
(*with explicit history*),
dtyps: ((serial * ((string * sort) list * (string * typ list) list)) list) Symtab.table
(*with explicit history*),
cases: (int * (int * string list)) Symtab.table * unit Symtab.table
};
fun make_spec (history_concluded, ((signatures, eqns), (dtyps, cases))) =
Spec { history_concluded = history_concluded,
signatures = signatures, eqns = eqns, dtyps = dtyps, cases = cases };
fun map_spec f (Spec { history_concluded = history_concluded, signatures = signatures,
eqns = eqns, dtyps = dtyps, cases = cases }) =
make_spec (f (history_concluded, ((signatures, eqns), (dtyps, cases))));
fun merge_spec (Spec { history_concluded = _, signatures = (tycos1, sigs1), eqns = eqns1,
dtyps = dtyps1, cases = (cases1, undefs1) },
Spec { history_concluded = _, signatures = (tycos2, sigs2), eqns = eqns2,
dtyps = dtyps2, cases = (cases2, undefs2) }) =
let
val signatures = (Symtab.merge (op =) (tycos1, tycos2),
Symtab.merge typ_equiv (sigs1, sigs2));
fun merge_eqns ((_, history1), (_, history2)) =
let
val raw_history = AList.merge (op = : serial * serial -> bool)
(K true) (history1, history2)
val filtered_history = filter_out (fst o snd) raw_history
val history = if null filtered_history
then raw_history else filtered_history;
in ((false, (snd o hd) history), history) end;
val eqns = Symtab.join (K merge_eqns) (eqns1, eqns2);
val dtyps = Symtab.join (K (AList.merge (op =) (K true))) (dtyps1, dtyps2);
val cases = (Symtab.merge (K true) (cases1, cases2),
Symtab.merge (K true) (undefs1, undefs2));
in make_spec (false, ((signatures, eqns), (dtyps, cases))) end;
fun history_concluded (Spec { history_concluded, ... }) = history_concluded;
fun the_signatures (Spec { signatures, ... }) = signatures;
fun the_eqns (Spec { eqns, ... }) = eqns;
fun the_dtyps (Spec { dtyps, ... }) = dtyps;
fun the_cases (Spec { cases, ... }) = cases;
val map_history_concluded = map_spec o apfst;
val map_signatures = map_spec o apsnd o apfst o apfst;
val map_eqns = map_spec o apsnd o apfst o apsnd;
val map_dtyps = map_spec o apsnd o apsnd o apfst;
val map_cases = map_spec o apsnd o apsnd o apsnd;
(* data slots dependent on executable code *)
(*private copy avoids potential conflict of table exceptions*)
structure Datatab = Table(type key = int val ord = int_ord);
local
type kind = { empty: Object.T };
val kinds = Unsynchronized.ref (Datatab.empty: kind Datatab.table);
fun invoke f k = case Datatab.lookup (! kinds) k
of SOME kind => f kind
| NONE => sys_error "Invalid code data identifier";
in
fun declare_data empty =
let
val k = serial ();
val kind = { empty = empty };
val _ = CRITICAL (fn () => Unsynchronized.change kinds (Datatab.update (k, kind)));
in k end;
fun invoke_init k = invoke (fn kind => #empty kind) k;
end; (*local*)
(* theory store *)
local
type data = Object.T Datatab.table;
fun empty_dataref () = Synchronized.var "code data" (NONE : (data * theory_ref) option);
structure Code_Data = Theory_Data
(
type T = spec * (data * theory_ref) option Synchronized.var;
val empty = (make_spec (false, (((Symtab.empty, Symtab.empty), Symtab.empty),
(Symtab.empty, (Symtab.empty, Symtab.empty)))), empty_dataref ());
val extend = I
fun merge ((spec1, _), (spec2, _)) =
(merge_spec (spec1, spec2), empty_dataref ());
);
in
(* access to executable code *)
val the_exec = fst o Code_Data.get;
fun map_exec_purge f = Code_Data.map (fn (exec, _) => (f exec, empty_dataref ()));
val purge_data = (Code_Data.map o apsnd) (fn _ => empty_dataref ());
fun change_eqns delete c f = (map_exec_purge o map_eqns
o (if delete then Symtab.map_entry c else Symtab.map_default (c, ((false, (true, [])), [])))
o apfst) (fn (_, eqns) => (true, f eqns));
(* tackling equation history *)
fun continue_history thy = if (history_concluded o the_exec) thy
then thy
|> (Code_Data.map o apfst o map_history_concluded) (K false)
|> SOME
else NONE;
fun conclude_history thy = if (history_concluded o the_exec) thy
then NONE
else thy
|> (Code_Data.map o apfst)
((map_eqns o Symtab.map) (fn ((changed, current), history) =>
((false, current),
if changed then (serial (), current) :: history else history))
#> map_history_concluded (K true))
|> SOME;
val _ = Context.>> (Context.map_theory (Theory.at_begin continue_history #> Theory.at_end conclude_history));
(* access to data dependent on abstract executable code *)
fun change_yield_data (kind, mk, dest) theory f =
let
val dataref = (snd o Code_Data.get) theory;
val (datatab, thy_ref) = case Synchronized.value dataref
of SOME (datatab, thy_ref) => if Theory.eq_thy (theory, Theory.deref thy_ref)
then (datatab, thy_ref)
else (Datatab.empty, Theory.check_thy theory)
| NONE => (Datatab.empty, Theory.check_thy theory)
val data = case Datatab.lookup datatab kind
of SOME data => data
| NONE => invoke_init kind;
val result as (x, data') = f (dest data);
val _ = Synchronized.change dataref
((K o SOME) (Datatab.update (kind, mk data') datatab, thy_ref));
in result end;
fun change_data ops theory f = change_yield_data ops theory (f #> pair ()) |> snd;
end; (*local*)
(** foundation **)
(* constants *)
fun arity_number thy tyco = case Symtab.lookup ((fst o the_signatures o the_exec) thy) tyco
of SOME n => n
| NONE => Sign.arity_number thy tyco;
fun build_tsig thy =
let
val (tycos, _) = (the_signatures o the_exec) thy;
val decls = (#types o Type.rep_tsig o Sign.tsig_of) thy
|> snd
|> Symtab.fold (fn (tyco, n) =>
Symtab.update (tyco, Type.LogicalType n)) tycos;
in
Type.empty_tsig
|> Symtab.fold (fn (tyco, Type.LogicalType n) => Type.add_type Name_Space.default_naming
(Binding.qualified_name tyco, n) | _ => I) decls
end;
fun cert_signature thy = Logic.varifyT o Type.cert_typ (build_tsig thy) o Type.no_tvars;
fun read_signature thy = cert_signature thy o Type.strip_sorts
o Syntax.parse_typ (ProofContext.init thy);
fun expand_signature thy = Type.cert_typ_mode Type.mode_syntax (Sign.tsig_of thy);
fun lookup_typ thy = Symtab.lookup ((snd o the_signatures o the_exec) thy);
fun const_typ thy c = case lookup_typ thy c
of SOME ty => ty
| NONE => (Type.strip_sorts o Sign.the_const_type thy) c;
fun subst_signature thy c ty =
let
fun mk_subst (Type (tyco, tys1)) (ty2 as Type (tyco2, tys2)) =
fold2 mk_subst tys1 tys2
| mk_subst ty (TVar (v, sort)) = Vartab.update (v, ([], ty))
in case lookup_typ thy c
of SOME ty' => Envir.subst_type (mk_subst ty (expand_signature thy ty') Vartab.empty) ty'
| NONE => ty
end;
fun subst_signatures thy = map_aterms (fn Const (c, ty) => Const (c, subst_signature thy c ty) | t => t);
fun args_number thy = length o fst o strip_type o const_typ thy;
(* datatypes *)
fun constrset_of_consts thy cs =
let
val _ = map (fn (c, _) => if (is_some o AxClass.class_of_param thy) c
then error ("Is a class parameter: " ^ string_of_const thy c) else ()) cs;
fun no_constr s (c, ty) = error ("Not a datatype constructor:\n" ^ string_of_const thy c
^ " :: " ^ string_of_typ thy ty ^ "\n" ^ enclose "(" ")" s);
fun last_typ c_ty ty =
let
val tfrees = Term.add_tfreesT ty [];
val (tyco, vs) = ((apsnd o map) (dest_TFree) o dest_Type o snd o strip_type) ty
handle TYPE _ => no_constr "bad type" c_ty
val _ = if has_duplicates (eq_fst (op =)) vs
then no_constr "duplicate type variables in datatype" c_ty else ();
val _ = if length tfrees <> length vs
then no_constr "type variables missing in datatype" c_ty else ();
in (tyco, vs) end;
fun ty_sorts (c, raw_ty) =
let
val ty = subst_signature thy c raw_ty;
val ty_decl = (Logic.unvarifyT o const_typ thy) c;
val (tyco, _) = last_typ (c, ty) ty_decl;
val (_, vs) = last_typ (c, ty) ty;
in ((tyco, map snd vs), (c, (map fst vs, ty))) end;
fun add ((tyco', sorts'), c) ((tyco, sorts), cs) =
let
val _ = if (tyco' : string) <> tyco
then error "Different type constructors in constructor set"
else ();
val sorts'' = map2 (curry (Sorts.inter_sort (Sign.classes_of thy))) sorts' sorts
in ((tyco, sorts), c :: cs) end;
fun inst vs' (c, (vs, ty)) =
let
val the_v = the o AList.lookup (op =) (vs ~~ vs');
val ty' = map_atyps (fn TFree (v, _) => TFree (the_v v)) ty;
in (c, (fst o strip_type) ty') end;
val c' :: cs' = map ty_sorts cs;
val ((tyco, sorts), cs'') = fold add cs' (apsnd single c');
val vs = Name.names Name.context Name.aT sorts;
val cs''' = map (inst vs) cs'';
in (tyco, (vs, rev cs''')) end;
fun get_datatype thy tyco =
case these (Symtab.lookup ((the_dtyps o the_exec) thy) tyco)
of (_, spec) :: _ => spec
| [] => arity_number thy tyco
|> Name.invents Name.context Name.aT
|> map (rpair [])
|> rpair [];
fun get_datatype_of_constr thy c =
case (snd o strip_type o const_typ thy) c
of Type (tyco, _) => if member (op =) ((map fst o snd o get_datatype thy) tyco) c
then SOME tyco else NONE
| _ => NONE;
fun is_constr thy = is_some o get_datatype_of_constr thy;
(* code equations *)
exception BAD_THM of string;
fun bad_thm msg = raise BAD_THM msg;
fun error_thm f thm = f thm handle BAD_THM msg => error msg;
fun warning_thm f thm = SOME (f thm) handle BAD_THM msg => (warning msg; NONE)
fun try_thm f thm = SOME (f thm) handle BAD_THM _ => NONE;
fun is_linear thm =
let val (_, args) = (strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of) thm
in not (has_duplicates (op =) ((fold o fold_aterms)
(fn Var (v, _) => cons v | _ => I) args [])) end;
fun gen_assert_eqn thy is_constr_pat (thm, proper) =
let
val (lhs, rhs) = (Logic.dest_equals o Thm.plain_prop_of) thm
handle TERM _ => bad_thm ("Not an equation: " ^ Display.string_of_thm_global thy thm)
| THM _ => bad_thm ("Not an equation: " ^ Display.string_of_thm_global thy thm);
fun vars_of t = fold_aterms (fn Var (v, _) => insert (op =) v
| Free _ => bad_thm ("Illegal free variable in equation\n"
^ Display.string_of_thm_global thy thm)
| _ => I) t [];
fun tvars_of t = fold_term_types (fn _ =>
fold_atyps (fn TVar (v, _) => insert (op =) v
| TFree _ => bad_thm
("Illegal free type variable in equation\n" ^ Display.string_of_thm_global thy thm))) t [];
val lhs_vs = vars_of lhs;
val rhs_vs = vars_of rhs;
val lhs_tvs = tvars_of lhs;
val rhs_tvs = tvars_of rhs;
val _ = if null (subtract (op =) lhs_vs rhs_vs)
then ()
else bad_thm ("Free variables on right hand side of equation\n"
^ Display.string_of_thm_global thy thm);
val _ = if null (subtract (op =) lhs_tvs rhs_tvs)
then ()
else bad_thm ("Free type variables on right hand side of equation\n"
^ Display.string_of_thm_global thy thm)
val (head, args) = (strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of) thm;
val (c, ty) = case head
of Const (c_ty as (_, ty)) => (AxClass.unoverload_const thy c_ty, ty)
| _ => bad_thm ("Equation not headed by constant\n" ^ Display.string_of_thm_global thy thm);
fun check _ (Abs _) = bad_thm
("Abstraction on left hand side of equation\n"
^ Display.string_of_thm_global thy thm)
| check 0 (Var _) = ()
| check _ (Var _) = bad_thm
("Variable with application on left hand side of equation\n"
^ Display.string_of_thm_global thy thm)
| check n (t1 $ t2) = (check (n+1) t1; check 0 t2)
| check n (Const (c_ty as (_, ty))) =
let
val c' = AxClass.unoverload_const thy c_ty
in if n = (length o fst o strip_type o subst_signature thy c') ty
then if not proper orelse is_constr_pat c'
then ()
else bad_thm (quote c ^ " is not a constructor, on left hand side of equation\n"
^ Display.string_of_thm_global thy thm)
else bad_thm
("Partially applied constant " ^ quote c ^ " on left hand side of equation\n"
^ Display.string_of_thm_global thy thm)
end;
val _ = map (check 0) args;
val _ = if not proper orelse is_linear thm then ()
else bad_thm ("Duplicate variables on left hand side of equation\n"
^ Display.string_of_thm_global thy thm);
val _ = if (is_none o AxClass.class_of_param thy) c
then ()
else bad_thm ("Overloaded constant as head in equation\n"
^ Display.string_of_thm_global thy thm)
val _ = if not (is_constr thy c)
then ()
else bad_thm ("Constructor as head in equation\n"
^ Display.string_of_thm_global thy thm)
val ty_decl = Sign.the_const_type thy c;
val _ = if Sign.typ_equiv thy (Type.strip_sorts ty_decl, Type.strip_sorts ty)
then () else bad_thm ("Type\n" ^ string_of_typ thy ty
^ "\nof equation\n"
^ Display.string_of_thm_global thy thm
^ "\nis incompatible with declared function type\n"
^ string_of_typ thy ty_decl)
in (thm, proper) end;
fun assert_eqn thy = error_thm (gen_assert_eqn thy (is_constr thy));
fun meta_rewrite thy = LocalDefs.meta_rewrite_rule (ProofContext.init thy);
fun mk_eqn thy = error_thm (gen_assert_eqn thy (K true)) o
apfst (meta_rewrite thy);
fun mk_eqn_warning thy = Option.map (fn (thm, _) => (thm, is_linear thm))
o warning_thm (gen_assert_eqn thy (K true)) o rpair false o meta_rewrite thy;
fun mk_eqn_liberal thy = Option.map (fn (thm, _) => (thm, is_linear thm))
o try_thm (gen_assert_eqn thy (K true)) o rpair false o meta_rewrite thy;
val head_eqn = dest_Const o fst o strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of;
fun const_typ_eqn thy thm =
let
val (c, ty) = head_eqn thm;
val c' = AxClass.unoverload_const thy (c, ty);
(*permissive wrt. to overloaded constants!*)
in (c', ty) end;
fun const_eqn thy = fst o const_typ_eqn thy;
fun raw_typscheme thy (c, ty) =
(map dest_TFree (Sign.const_typargs thy (c, ty)), Type.strip_sorts ty);
fun typscheme thy (c, ty) = raw_typscheme thy (c, subst_signature thy c ty);
fun typscheme_eqn thy = typscheme thy o apsnd Logic.unvarifyT o const_typ_eqn thy;
fun typscheme_eqns thy c [] =
let
val raw_ty = const_typ thy c;
val tvars = Term.add_tvar_namesT raw_ty [];
val tvars' = case AxClass.class_of_param thy c
of SOME class => [TFree (Name.aT, [class])]
| NONE => Name.invent_list [] Name.aT (length tvars)
|> map (fn v => TFree (v, []));
val ty = typ_subst_TVars (tvars ~~ tvars') raw_ty;
in raw_typscheme thy (c, ty) end
| typscheme_eqns thy c (thm :: _) = typscheme_eqn thy thm;
fun assert_eqns_const thy c eqns =
let
fun cert (eqn as (thm, _)) = if c = const_eqn thy thm
then eqn else error ("Wrong head of code equation,\nexpected constant "
^ string_of_const thy c ^ "\n" ^ Display.string_of_thm_global thy thm)
in map (cert o assert_eqn thy) eqns end;
fun standard_typscheme thy thms =
let
fun tvars_of T = rev (Term.add_tvarsT T []);
val vss = map (tvars_of o snd o head_eqn) thms;
fun inter_sorts vs =
fold (curry (Sorts.inter_sort (Sign.classes_of thy)) o snd) vs [];
val sorts = map_transpose inter_sorts vss;
val vts = Name.names Name.context Name.aT sorts
|> map (fn (v, sort) => TVar ((v, 0), sort));
in map2 (fn vs => Thm.certify_instantiate (vs ~~ vts, [])) vss thms end;
fun these_eqns thy c =
Symtab.lookup ((the_eqns o the_exec) thy) c
|> Option.map (snd o snd o fst)
|> these
|> (map o apfst) (Thm.transfer thy)
|> burrow_fst (standard_typscheme thy);
fun all_eqns thy =
Symtab.dest ((the_eqns o the_exec) thy)
|> maps (snd o snd o fst o snd);
(* cases *)
fun case_certificate thm =
let
val ((head, raw_case_expr), cases) = (apfst Logic.dest_equals
o apsnd Logic.dest_conjunctions o Logic.dest_implies o Thm.plain_prop_of) thm;
val _ = case head of Free _ => true
| Var _ => true
| _ => raise TERM ("case_cert", []);
val ([(case_var, _)], case_expr) = Term.strip_abs_eta 1 raw_case_expr;
val (Const (case_const, _), raw_params) = strip_comb case_expr;
val n = find_index (fn Free (v, _) => v = case_var | _ => false) raw_params;
val _ = if n = ~1 then raise TERM ("case_cert", []) else ();
val params = map (fst o dest_Var) (nth_drop n raw_params);
fun dest_case t =
let
val (head' $ t_co, rhs) = Logic.dest_equals t;
val _ = if head' = head then () else raise TERM ("case_cert", []);
val (Const (co, _), args) = strip_comb t_co;
val (Var (param, _), args') = strip_comb rhs;
val _ = if args' = args then () else raise TERM ("case_cert", []);
in (param, co) end;
fun analyze_cases cases =
let
val co_list = fold (AList.update (op =) o dest_case) cases [];
in map (the o AList.lookup (op =) co_list) params end;
fun analyze_let t =
let
val (head' $ arg, Var (param', _) $ arg') = Logic.dest_equals t;
val _ = if head' = head then () else raise TERM ("case_cert", []);
val _ = if arg' = arg then () else raise TERM ("case_cert", []);
val _ = if [param'] = params then () else raise TERM ("case_cert", []);
in [] end;
fun analyze (cases as [let_case]) =
(analyze_cases cases handle Bind => analyze_let let_case)
| analyze cases = analyze_cases cases;
in (case_const, (n, analyze cases)) end;
fun case_cert thm = case_certificate thm
handle Bind => error "bad case certificate"
| TERM _ => error "bad case certificate";
fun get_case_scheme thy = Symtab.lookup ((fst o the_cases o the_exec) thy);
val undefineds = Symtab.keys o snd o the_cases o the_exec;
(* diagnostic *)
fun print_codesetup thy =
let
val ctxt = ProofContext.init thy;
val exec = the_exec thy;
fun pretty_eqns (s, (_, eqns)) =
(Pretty.block o Pretty.fbreaks) (
Pretty.str s :: map (Display.pretty_thm ctxt o fst) eqns
);
fun pretty_dtyp (s, []) =
Pretty.str s
| pretty_dtyp (s, cos) =
(Pretty.block o Pretty.breaks) (
Pretty.str s
:: Pretty.str "="
:: separate (Pretty.str "|") (map (fn (c, []) => Pretty.str (string_of_const thy c)
| (c, tys) =>
(Pretty.block o Pretty.breaks)
(Pretty.str (string_of_const thy c)
:: Pretty.str "of"
:: map (Pretty.quote o Syntax.pretty_typ_global thy) tys)) cos)
);
val eqns = the_eqns exec
|> Symtab.dest
|> (map o apfst) (string_of_const thy)
|> (map o apsnd) (snd o fst)
|> sort (string_ord o pairself fst);
val dtyps = the_dtyps exec
|> Symtab.dest
|> map (fn (dtco, (_, (vs, cos)) :: _) =>
(string_of_typ thy (Type (dtco, map TFree vs)), cos))
|> sort (string_ord o pairself fst)
in
(Pretty.writeln o Pretty.chunks) [
Pretty.block (
Pretty.str "code equations:"
:: Pretty.fbrk
:: (Pretty.fbreaks o map pretty_eqns) eqns
),
Pretty.block (
Pretty.str "datatypes:"
:: Pretty.fbrk
:: (Pretty.fbreaks o map pretty_dtyp) dtyps
)
]
end;
(** declaring executable ingredients **)
(* constant signatures *)
fun add_type tyco thy =
case Symtab.lookup ((snd o #types o Type.rep_tsig o Sign.tsig_of) thy) tyco
of SOME (Type.Abbreviation (vs, _, _)) =>
(map_exec_purge o map_signatures o apfst)
(Symtab.update (tyco, length vs)) thy
| _ => error ("No such type abbreviation: " ^ quote tyco);
fun add_type_cmd s thy = add_type (Sign.intern_type thy s) thy;
fun gen_add_signature prep_const prep_signature (raw_c, raw_ty) thy =
let
val c = prep_const thy raw_c;
val ty = prep_signature thy raw_ty;
val ty' = expand_signature thy ty;
val ty'' = Sign.the_const_type thy c;
val _ = if typ_equiv (ty', ty'') then () else
error ("Illegal constant signature: " ^ Syntax.string_of_typ_global thy ty);
in
thy
|> (map_exec_purge o map_signatures o apsnd) (Symtab.update (c, ty))
end;
val add_signature = gen_add_signature (K I) cert_signature;
val add_signature_cmd = gen_add_signature read_const read_signature;
(* code equations *)
fun gen_add_eqn default (thm, proper) thy =
let
val thm' = Thm.close_derivation thm;
val c = const_eqn thy thm';
in change_eqns false c (add_thm thy default (thm', proper)) thy end;
fun add_eqn thm thy =
gen_add_eqn false (mk_eqn thy (thm, true)) thy;
fun add_warning_eqn thm thy =
case mk_eqn_warning thy thm
of SOME eqn => gen_add_eqn false eqn thy
| NONE => thy;
fun add_default_eqn thm thy =
case mk_eqn_liberal thy thm
of SOME eqn => gen_add_eqn true eqn thy
| NONE => thy;
fun add_nbe_eqn thm thy =
gen_add_eqn false (mk_eqn thy (thm, false)) thy;
val add_default_eqn_attribute = Thm.declaration_attribute
(fn thm => Context.mapping (add_default_eqn thm) I);
val add_default_eqn_attrib = Attrib.internal (K add_default_eqn_attribute);
fun del_eqn thm thy = case mk_eqn_liberal thy thm
of SOME (thm, _) => change_eqns true (const_eqn thy thm) (del_thm thm) thy
| NONE => thy;
fun del_eqns c = change_eqns true c (K (false, []));
(* cases *)
fun add_case thm thy =
let
val (c, (k, case_pats)) = case_cert thm;
val _ = case filter_out (is_constr thy) case_pats
of [] => ()
| cs => error ("Non-constructor(s) in case certificate: " ^ commas (map quote cs));
val entry = (1 + Int.max (1, length case_pats), (k, case_pats))
in (map_exec_purge o map_cases o apfst) (Symtab.update (c, entry)) thy end;
fun add_undefined c thy =
(map_exec_purge o map_cases o apsnd) (Symtab.update (c, ())) thy;
(* datatypes *)
structure Type_Interpretation =
Interpretation(type T = string * serial val eq = eq_snd (op =) : T * T -> bool);
fun add_datatype raw_cs thy =
let
val cs = map (fn c_ty as (_, ty) => (AxClass.unoverload_const thy c_ty, ty)) raw_cs;
val (tyco, vs_cos) = constrset_of_consts thy cs;
val old_cs = (map fst o snd o get_datatype thy) tyco;
fun drop_outdated_cases cases = fold Symtab.delete_safe
(Symtab.fold (fn (c, (_, (_, cos))) =>
if exists (member (op =) old_cs) cos
then insert (op =) c else I) cases []) cases;
in
thy
|> fold (del_eqns o fst) cs
|> map_exec_purge
((map_dtyps o Symtab.map_default (tyco, [])) (cons (serial (), vs_cos))
#> (map_cases o apfst) drop_outdated_cases)
|> Type_Interpretation.data (tyco, serial ())
end;
fun type_interpretation f = Type_Interpretation.interpretation
(fn (tyco, _) => fn thy => f (tyco, get_datatype thy tyco) thy);
fun add_datatype_cmd raw_cs thy =
let
val cs = map (read_bare_const thy) raw_cs;
in add_datatype cs thy end;
(* c.f. src/HOL/Tools/recfun_codegen.ML *)
structure Code_Target_Attr = Theory_Data
(
type T = (string -> thm -> theory -> theory) option;
val empty = NONE;
val extend = I;
fun merge (f1, f2) = if is_some f1 then f1 else f2;
);
fun set_code_target_attr f = Code_Target_Attr.map (K (SOME f));
fun code_target_attr prefix thm thy =
let
val attr = the_default ((K o K) I) (Code_Target_Attr.get thy);
in thy |> add_warning_eqn thm |> attr prefix thm end;
(* setup *)
val _ = Context.>> (Context.map_theory
(let
fun mk_attribute f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I);
val code_attribute_parser =
Args.del |-- Scan.succeed (mk_attribute del_eqn)
|| Args.$$$ "nbe" |-- Scan.succeed (mk_attribute add_nbe_eqn)
|| (Args.$$$ "target" |-- Args.colon |-- Args.name >>
(mk_attribute o code_target_attr))
|| Scan.succeed (mk_attribute add_warning_eqn);
in
Type_Interpretation.init
#> Attrib.setup (Binding.name "code") (Scan.lift code_attribute_parser)
"declare theorems for code generation"
end));
end; (*struct*)
(** type-safe interfaces for data dependent on executable code **)
functor Code_Data(Data: CODE_DATA_ARGS): CODE_DATA =
struct
type T = Data.T;
exception Data of T;
fun dest (Data x) = x
val kind = Code.declare_data (Data Data.empty);
val data_op = (kind, Data, dest);
val change = Code.change_data data_op;
fun change_yield thy = Code.change_yield_data data_op thy;
end;
structure Code : CODE = struct open Code; end;