Term.term_lpo takes order on terms rather than strings as argument.
(* Title: HOL/Algebra/Coset.thy
ID: $Id$
Author: Florian Kammueller, with new proofs by L C Paulson
*)
header{*Cosets and Quotient Groups*}
theory Coset imports Group Exponent begin
constdefs (structure G)
r_coset :: "[_, 'a set, 'a] \<Rightarrow> 'a set" (infixl "#>\<index>" 60)
"H #> a \<equiv> \<Union>h\<in>H. {h \<otimes> a}"
l_coset :: "[_, 'a, 'a set] \<Rightarrow> 'a set" (infixl "<#\<index>" 60)
"a <# H \<equiv> \<Union>h\<in>H. {a \<otimes> h}"
RCOSETS :: "[_, 'a set] \<Rightarrow> ('a set)set" ("rcosets\<index> _" [81] 80)
"rcosets H \<equiv> \<Union>a\<in>carrier G. {H #> a}"
set_mult :: "[_, 'a set ,'a set] \<Rightarrow> 'a set" (infixl "<#>\<index>" 60)
"H <#> K \<equiv> \<Union>h\<in>H. \<Union>k\<in>K. {h \<otimes> k}"
SET_INV :: "[_,'a set] \<Rightarrow> 'a set" ("set'_inv\<index> _" [81] 80)
"set_inv H \<equiv> \<Union>h\<in>H. {inv h}"
locale normal = subgroup + group +
assumes coset_eq: "(\<forall>x \<in> carrier G. H #> x = x <# H)"
abbreviation
normal_rel :: "['a set, ('a, 'b) monoid_scheme] \<Rightarrow> bool" (infixl "\<lhd>" 60)
"H \<lhd> G \<equiv> normal H G"
subsection {*Basic Properties of Cosets*}
lemma (in group) coset_mult_assoc:
"[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |]
==> (M #> g) #> h = M #> (g \<otimes> h)"
by (force simp add: r_coset_def m_assoc)
lemma (in group) coset_mult_one [simp]: "M \<subseteq> carrier G ==> M #> \<one> = M"
by (force simp add: r_coset_def)
lemma (in group) coset_mult_inv1:
"[| M #> (x \<otimes> (inv y)) = M; x \<in> carrier G ; y \<in> carrier G;
M \<subseteq> carrier G |] ==> M #> x = M #> y"
apply (erule subst [of concl: "%z. M #> x = z #> y"])
apply (simp add: coset_mult_assoc m_assoc)
done
lemma (in group) coset_mult_inv2:
"[| M #> x = M #> y; x \<in> carrier G; y \<in> carrier G; M \<subseteq> carrier G |]
==> M #> (x \<otimes> (inv y)) = M "
apply (simp add: coset_mult_assoc [symmetric])
apply (simp add: coset_mult_assoc)
done
lemma (in group) coset_join1:
"[| H #> x = H; x \<in> carrier G; subgroup H G |] ==> x \<in> H"
apply (erule subst)
apply (simp add: r_coset_def)
apply (blast intro: l_one subgroup.one_closed sym)
done
lemma (in group) solve_equation:
"\<lbrakk>subgroup H G; x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> \<exists>h\<in>H. y = h \<otimes> x"
apply (rule bexI [of _ "y \<otimes> (inv x)"])
apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc
subgroup.subset [THEN subsetD])
done
lemma (in group) repr_independence:
"\<lbrakk>y \<in> H #> x; x \<in> carrier G; subgroup H G\<rbrakk> \<Longrightarrow> H #> x = H #> y"
by (auto simp add: r_coset_def m_assoc [symmetric]
subgroup.subset [THEN subsetD]
subgroup.m_closed solve_equation)
lemma (in group) coset_join2:
"\<lbrakk>x \<in> carrier G; subgroup H G; x\<in>H\<rbrakk> \<Longrightarrow> H #> x = H"
--{*Alternative proof is to put @{term "x=\<one>"} in @{text repr_independence}.*}
by (force simp add: subgroup.m_closed r_coset_def solve_equation)
lemma (in group) r_coset_subset_G:
"[| H \<subseteq> carrier G; x \<in> carrier G |] ==> H #> x \<subseteq> carrier G"
by (auto simp add: r_coset_def)
lemma (in group) rcosI:
"[| h \<in> H; H \<subseteq> carrier G; x \<in> carrier G|] ==> h \<otimes> x \<in> H #> x"
by (auto simp add: r_coset_def)
lemma (in group) rcosetsI:
"\<lbrakk>H \<subseteq> carrier G; x \<in> carrier G\<rbrakk> \<Longrightarrow> H #> x \<in> rcosets H"
by (auto simp add: RCOSETS_def)
text{*Really needed?*}
lemma (in group) transpose_inv:
"[| x \<otimes> y = z; x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |]
==> (inv x) \<otimes> z = y"
by (force simp add: m_assoc [symmetric])
lemma (in group) rcos_self: "[| x \<in> carrier G; subgroup H G |] ==> x \<in> H #> x"
apply (simp add: r_coset_def)
apply (blast intro: sym l_one subgroup.subset [THEN subsetD]
subgroup.one_closed)
done
subsection {* Normal subgroups *}
lemma normal_imp_subgroup: "H \<lhd> G \<Longrightarrow> subgroup H G"
by (simp add: normal_def subgroup_def)
lemma (in group) normalI:
"subgroup H G \<Longrightarrow> (\<forall>x \<in> carrier G. H #> x = x <# H) \<Longrightarrow> H \<lhd> G";
by (simp add: normal_def normal_axioms_def prems)
lemma (in normal) inv_op_closed1:
"\<lbrakk>x \<in> carrier G; h \<in> H\<rbrakk> \<Longrightarrow> (inv x) \<otimes> h \<otimes> x \<in> H"
apply (insert coset_eq)
apply (auto simp add: l_coset_def r_coset_def)
apply (drule bspec, assumption)
apply (drule equalityD1 [THEN subsetD], blast, clarify)
apply (simp add: m_assoc)
apply (simp add: m_assoc [symmetric])
done
lemma (in normal) inv_op_closed2:
"\<lbrakk>x \<in> carrier G; h \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> h \<otimes> (inv x) \<in> H"
apply (subgoal_tac "inv (inv x) \<otimes> h \<otimes> (inv x) \<in> H")
apply (simp add: );
apply (blast intro: inv_op_closed1)
done
text{*Alternative characterization of normal subgroups*}
lemma (in group) normal_inv_iff:
"(N \<lhd> G) =
(subgroup N G & (\<forall>x \<in> carrier G. \<forall>h \<in> N. x \<otimes> h \<otimes> (inv x) \<in> N))"
(is "_ = ?rhs")
proof
assume N: "N \<lhd> G"
show ?rhs
by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)
next
assume ?rhs
hence sg: "subgroup N G"
and closed: "\<And>x. x\<in>carrier G \<Longrightarrow> \<forall>h\<in>N. x \<otimes> h \<otimes> inv x \<in> N" by auto
hence sb: "N \<subseteq> carrier G" by (simp add: subgroup.subset)
show "N \<lhd> G"
proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)
fix x
assume x: "x \<in> carrier G"
show "(\<Union>h\<in>N. {h \<otimes> x}) = (\<Union>h\<in>N. {x \<otimes> h})"
proof
show "(\<Union>h\<in>N. {h \<otimes> x}) \<subseteq> (\<Union>h\<in>N. {x \<otimes> h})"
proof clarify
fix n
assume n: "n \<in> N"
show "n \<otimes> x \<in> (\<Union>h\<in>N. {x \<otimes> h})"
proof
from closed [of "inv x"]
show "inv x \<otimes> n \<otimes> x \<in> N" by (simp add: x n)
show "n \<otimes> x \<in> {x \<otimes> (inv x \<otimes> n \<otimes> x)}"
by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])
qed
qed
next
show "(\<Union>h\<in>N. {x \<otimes> h}) \<subseteq> (\<Union>h\<in>N. {h \<otimes> x})"
proof clarify
fix n
assume n: "n \<in> N"
show "x \<otimes> n \<in> (\<Union>h\<in>N. {h \<otimes> x})"
proof
show "x \<otimes> n \<otimes> inv x \<in> N" by (simp add: x n closed)
show "x \<otimes> n \<in> {x \<otimes> n \<otimes> inv x \<otimes> x}"
by (simp add: x n m_assoc sb [THEN subsetD])
qed
qed
qed
qed
qed
subsection{*More Properties of Cosets*}
lemma (in group) lcos_m_assoc:
"[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |]
==> g <# (h <# M) = (g \<otimes> h) <# M"
by (force simp add: l_coset_def m_assoc)
lemma (in group) lcos_mult_one: "M \<subseteq> carrier G ==> \<one> <# M = M"
by (force simp add: l_coset_def)
lemma (in group) l_coset_subset_G:
"[| H \<subseteq> carrier G; x \<in> carrier G |] ==> x <# H \<subseteq> carrier G"
by (auto simp add: l_coset_def subsetD)
lemma (in group) l_coset_swap:
"\<lbrakk>y \<in> x <# H; x \<in> carrier G; subgroup H G\<rbrakk> \<Longrightarrow> x \<in> y <# H"
proof (simp add: l_coset_def)
assume "\<exists>h\<in>H. y = x \<otimes> h"
and x: "x \<in> carrier G"
and sb: "subgroup H G"
then obtain h' where h': "h' \<in> H & x \<otimes> h' = y" by blast
show "\<exists>h\<in>H. x = y \<otimes> h"
proof
show "x = y \<otimes> inv h'" using h' x sb
by (auto simp add: m_assoc subgroup.subset [THEN subsetD])
show "inv h' \<in> H" using h' sb
by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed)
qed
qed
lemma (in group) l_coset_carrier:
"[| y \<in> x <# H; x \<in> carrier G; subgroup H G |] ==> y \<in> carrier G"
by (auto simp add: l_coset_def m_assoc
subgroup.subset [THEN subsetD] subgroup.m_closed)
lemma (in group) l_repr_imp_subset:
assumes y: "y \<in> x <# H" and x: "x \<in> carrier G" and sb: "subgroup H G"
shows "y <# H \<subseteq> x <# H"
proof -
from y
obtain h' where "h' \<in> H" "x \<otimes> h' = y" by (auto simp add: l_coset_def)
thus ?thesis using x sb
by (auto simp add: l_coset_def m_assoc
subgroup.subset [THEN subsetD] subgroup.m_closed)
qed
lemma (in group) l_repr_independence:
assumes y: "y \<in> x <# H" and x: "x \<in> carrier G" and sb: "subgroup H G"
shows "x <# H = y <# H"
proof
show "x <# H \<subseteq> y <# H"
by (rule l_repr_imp_subset,
(blast intro: l_coset_swap l_coset_carrier y x sb)+)
show "y <# H \<subseteq> x <# H" by (rule l_repr_imp_subset [OF y x sb])
qed
lemma (in group) setmult_subset_G:
"\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G\<rbrakk> \<Longrightarrow> H <#> K \<subseteq> carrier G"
by (auto simp add: set_mult_def subsetD)
lemma (in group) subgroup_mult_id: "subgroup H G \<Longrightarrow> H <#> H = H"
apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def)
apply (rule_tac x = x in bexI)
apply (rule bexI [of _ "\<one>"])
apply (auto simp add: subgroup.m_closed subgroup.one_closed
r_one subgroup.subset [THEN subsetD])
done
subsubsection {* Set of inverses of an @{text r_coset}. *}
lemma (in normal) rcos_inv:
assumes x: "x \<in> carrier G"
shows "set_inv (H #> x) = H #> (inv x)"
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe)
fix h
assume "h \<in> H"
show "inv x \<otimes> inv h \<in> (\<Union>j\<in>H. {j \<otimes> inv x})"
proof
show "inv x \<otimes> inv h \<otimes> x \<in> H"
by (simp add: inv_op_closed1 prems)
show "inv x \<otimes> inv h \<in> {inv x \<otimes> inv h \<otimes> x \<otimes> inv x}"
by (simp add: prems m_assoc)
qed
next
fix h
assume "h \<in> H"
show "h \<otimes> inv x \<in> (\<Union>j\<in>H. {inv x \<otimes> inv j})"
proof
show "x \<otimes> inv h \<otimes> inv x \<in> H"
by (simp add: inv_op_closed2 prems)
show "h \<otimes> inv x \<in> {inv x \<otimes> inv (x \<otimes> inv h \<otimes> inv x)}"
by (simp add: prems m_assoc [symmetric] inv_mult_group)
qed
qed
subsubsection {*Theorems for @{text "<#>"} with @{text "#>"} or @{text "<#"}.*}
lemma (in group) setmult_rcos_assoc:
"\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk>
\<Longrightarrow> H <#> (K #> x) = (H <#> K) #> x"
by (force simp add: r_coset_def set_mult_def m_assoc)
lemma (in group) rcos_assoc_lcos:
"\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk>
\<Longrightarrow> (H #> x) <#> K = H <#> (x <# K)"
by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc)
lemma (in normal) rcos_mult_step1:
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
\<Longrightarrow> (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y"
by (simp add: setmult_rcos_assoc subset
r_coset_subset_G l_coset_subset_G rcos_assoc_lcos)
lemma (in normal) rcos_mult_step2:
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
\<Longrightarrow> (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y"
by (insert coset_eq, simp add: normal_def)
lemma (in normal) rcos_mult_step3:
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
\<Longrightarrow> (H <#> (H #> x)) #> y = H #> (x \<otimes> y)"
by (simp add: setmult_rcos_assoc coset_mult_assoc
subgroup_mult_id normal.axioms subset prems)
lemma (in normal) rcos_sum:
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
\<Longrightarrow> (H #> x) <#> (H #> y) = H #> (x \<otimes> y)"
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)
lemma (in normal) rcosets_mult_eq: "M \<in> rcosets H \<Longrightarrow> H <#> M = M"
-- {* generalizes @{text subgroup_mult_id} *}
by (auto simp add: RCOSETS_def subset
setmult_rcos_assoc subgroup_mult_id normal.axioms prems)
subsubsection{*An Equivalence Relation*}
constdefs (structure G)
r_congruent :: "[('a,'b)monoid_scheme, 'a set] \<Rightarrow> ('a*'a)set"
("rcong\<index> _")
"rcong H \<equiv> {(x,y). x \<in> carrier G & y \<in> carrier G & inv x \<otimes> y \<in> H}"
lemma (in subgroup) equiv_rcong:
includes group G
shows "equiv (carrier G) (rcong H)"
proof (intro equiv.intro)
show "refl (carrier G) (rcong H)"
by (auto simp add: r_congruent_def refl_def)
next
show "sym (rcong H)"
proof (simp add: r_congruent_def sym_def, clarify)
fix x y
assume [simp]: "x \<in> carrier G" "y \<in> carrier G"
and "inv x \<otimes> y \<in> H"
hence "inv (inv x \<otimes> y) \<in> H" by (simp add: m_inv_closed)
thus "inv y \<otimes> x \<in> H" by (simp add: inv_mult_group)
qed
next
show "trans (rcong H)"
proof (simp add: r_congruent_def trans_def, clarify)
fix x y z
assume [simp]: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
and "inv x \<otimes> y \<in> H" and "inv y \<otimes> z \<in> H"
hence "(inv x \<otimes> y) \<otimes> (inv y \<otimes> z) \<in> H" by simp
hence "inv x \<otimes> (y \<otimes> inv y) \<otimes> z \<in> H" by (simp add: m_assoc del: r_inv)
thus "inv x \<otimes> z \<in> H" by simp
qed
qed
text{*Equivalence classes of @{text rcong} correspond to left cosets.
Was there a mistake in the definitions? I'd have expected them to
correspond to right cosets.*}
(* CB: This is correct, but subtle.
We call H #> a the right coset of a relative to H. According to
Jacobson, this is what the majority of group theory literature does.
He then defines the notion of congruence relation ~ over monoids as
equivalence relation with a ~ a' & b ~ b' \<Longrightarrow> a*b ~ a'*b'.
Our notion of right congruence induced by K: rcong K appears only in
the context where K is a normal subgroup. Jacobson doesn't name it.
But in this context left and right cosets are identical.
*)
lemma (in subgroup) l_coset_eq_rcong:
includes group G
assumes a: "a \<in> carrier G"
shows "a <# H = rcong H `` {a}"
by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a )
subsubsection{*Two distinct right cosets are disjoint*}
lemma (in group) rcos_equation:
includes subgroup H G
shows
"\<lbrakk>ha \<otimes> a = h \<otimes> b; a \<in> carrier G; b \<in> carrier G;
h \<in> H; ha \<in> H; hb \<in> H\<rbrakk>
\<Longrightarrow> hb \<otimes> a \<in> (\<Union>h\<in>H. {h \<otimes> b})"
apply (rule UN_I [of "hb \<otimes> ((inv ha) \<otimes> h)"])
apply (simp add: );
apply (simp add: m_assoc transpose_inv)
done
lemma (in group) rcos_disjoint:
includes subgroup H G
shows "\<lbrakk>a \<in> rcosets H; b \<in> rcosets H; a\<noteq>b\<rbrakk> \<Longrightarrow> a \<inter> b = {}"
apply (simp add: RCOSETS_def r_coset_def)
apply (blast intro: rcos_equation prems sym)
done
subsection {*Order of a Group and Lagrange's Theorem*}
constdefs
order :: "('a, 'b) monoid_scheme \<Rightarrow> nat"
"order S \<equiv> card (carrier S)"
lemma (in group) rcos_self:
includes subgroup
shows "x \<in> carrier G \<Longrightarrow> x \<in> H #> x"
apply (simp add: r_coset_def)
apply (rule_tac x="\<one>" in bexI)
apply (auto simp add: );
done
lemma (in group) rcosets_part_G:
includes subgroup
shows "\<Union>(rcosets H) = carrier G"
apply (rule equalityI)
apply (force simp add: RCOSETS_def r_coset_def)
apply (auto simp add: RCOSETS_def intro: rcos_self prems)
done
lemma (in group) cosets_finite:
"\<lbrakk>c \<in> rcosets H; H \<subseteq> carrier G; finite (carrier G)\<rbrakk> \<Longrightarrow> finite c"
apply (auto simp add: RCOSETS_def)
apply (simp add: r_coset_subset_G [THEN finite_subset])
done
text{*The next two lemmas support the proof of @{text card_cosets_equal}.*}
lemma (in group) inj_on_f:
"\<lbrakk>H \<subseteq> carrier G; a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> inv a) (H #> a)"
apply (rule inj_onI)
apply (subgoal_tac "x \<in> carrier G & y \<in> carrier G")
prefer 2 apply (blast intro: r_coset_subset_G [THEN subsetD])
apply (simp add: subsetD)
done
lemma (in group) inj_on_g:
"\<lbrakk>H \<subseteq> carrier G; a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> a) H"
by (force simp add: inj_on_def subsetD)
lemma (in group) card_cosets_equal:
"\<lbrakk>c \<in> rcosets H; H \<subseteq> carrier G; finite(carrier G)\<rbrakk>
\<Longrightarrow> card c = card H"
apply (auto simp add: RCOSETS_def)
apply (rule card_bij_eq)
apply (rule inj_on_f, assumption+)
apply (force simp add: m_assoc subsetD r_coset_def)
apply (rule inj_on_g, assumption+)
apply (force simp add: m_assoc subsetD r_coset_def)
txt{*The sets @{term "H #> a"} and @{term "H"} are finite.*}
apply (simp add: r_coset_subset_G [THEN finite_subset])
apply (blast intro: finite_subset)
done
lemma (in group) rcosets_subset_PowG:
"subgroup H G \<Longrightarrow> rcosets H \<subseteq> Pow(carrier G)"
apply (simp add: RCOSETS_def)
apply (blast dest: r_coset_subset_G subgroup.subset)
done
theorem (in group) lagrange:
"\<lbrakk>finite(carrier G); subgroup H G\<rbrakk>
\<Longrightarrow> card(rcosets H) * card(H) = order(G)"
apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])
apply (subst mult_commute)
apply (rule card_partition)
apply (simp add: rcosets_subset_PowG [THEN finite_subset])
apply (simp add: rcosets_part_G)
apply (simp add: card_cosets_equal subgroup.subset)
apply (simp add: rcos_disjoint)
done
subsection {*Quotient Groups: Factorization of a Group*}
constdefs
FactGroup :: "[('a,'b) monoid_scheme, 'a set] \<Rightarrow> ('a set) monoid"
(infixl "Mod" 65)
--{*Actually defined for groups rather than monoids*}
"FactGroup G H \<equiv>
\<lparr>carrier = rcosets\<^bsub>G\<^esub> H, mult = set_mult G, one = H\<rparr>"
lemma (in normal) setmult_closed:
"\<lbrakk>K1 \<in> rcosets H; K2 \<in> rcosets H\<rbrakk> \<Longrightarrow> K1 <#> K2 \<in> rcosets H"
by (auto simp add: rcos_sum RCOSETS_def)
lemma (in normal) setinv_closed:
"K \<in> rcosets H \<Longrightarrow> set_inv K \<in> rcosets H"
by (auto simp add: rcos_inv RCOSETS_def)
lemma (in normal) rcosets_assoc:
"\<lbrakk>M1 \<in> rcosets H; M2 \<in> rcosets H; M3 \<in> rcosets H\<rbrakk>
\<Longrightarrow> M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)"
by (auto simp add: RCOSETS_def rcos_sum m_assoc)
lemma (in subgroup) subgroup_in_rcosets:
includes group G
shows "H \<in> rcosets H"
proof -
have "H #> \<one> = H"
by (rule coset_join2, auto)
then show ?thesis
by (auto simp add: RCOSETS_def)
qed
lemma (in normal) rcosets_inv_mult_group_eq:
"M \<in> rcosets H \<Longrightarrow> set_inv M <#> M = H"
by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal.axioms prems)
theorem (in normal) factorgroup_is_group:
"group (G Mod H)"
apply (simp add: FactGroup_def)
apply (rule groupI)
apply (simp add: setmult_closed)
apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group])
apply (simp add: restrictI setmult_closed rcosets_assoc)
apply (simp add: normal_imp_subgroup
subgroup_in_rcosets rcosets_mult_eq)
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed)
done
lemma mult_FactGroup [simp]: "X \<otimes>\<^bsub>(G Mod H)\<^esub> X' = X <#>\<^bsub>G\<^esub> X'"
by (simp add: FactGroup_def)
lemma (in normal) inv_FactGroup:
"X \<in> carrier (G Mod H) \<Longrightarrow> inv\<^bsub>G Mod H\<^esub> X = set_inv X"
apply (rule group.inv_equality [OF factorgroup_is_group])
apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)
done
text{*The coset map is a homomorphism from @{term G} to the quotient group
@{term "G Mod H"}*}
lemma (in normal) r_coset_hom_Mod:
"(\<lambda>a. H #> a) \<in> hom G (G Mod H)"
by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum)
subsection{*The First Isomorphism Theorem*}
text{*The quotient by the kernel of a homomorphism is isomorphic to the
range of that homomorphism.*}
constdefs
kernel :: "('a, 'm) monoid_scheme \<Rightarrow> ('b, 'n) monoid_scheme \<Rightarrow>
('a \<Rightarrow> 'b) \<Rightarrow> 'a set"
--{*the kernel of a homomorphism*}
"kernel G H h \<equiv> {x. x \<in> carrier G & h x = \<one>\<^bsub>H\<^esub>}";
lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"
apply (rule subgroup.intro)
apply (auto simp add: kernel_def group.intro prems)
done
text{*The kernel of a homomorphism is a normal subgroup*}
lemma (in group_hom) normal_kernel: "(kernel G H h) \<lhd> G"
apply (simp add: G.normal_inv_iff subgroup_kernel)
apply (simp add: kernel_def)
done
lemma (in group_hom) FactGroup_nonempty:
assumes X: "X \<in> carrier (G Mod kernel G H h)"
shows "X \<noteq> {}"
proof -
from X
obtain g where "g \<in> carrier G"
and "X = kernel G H h #> g"
by (auto simp add: FactGroup_def RCOSETS_def)
thus ?thesis
by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)
qed
lemma (in group_hom) FactGroup_contents_mem:
assumes X: "X \<in> carrier (G Mod (kernel G H h))"
shows "contents (h`X) \<in> carrier H"
proof -
from X
obtain g where g: "g \<in> carrier G"
and "X = kernel G H h #> g"
by (auto simp add: FactGroup_def RCOSETS_def)
hence "h ` X = {h g}" by (auto simp add: kernel_def r_coset_def image_def g)
thus ?thesis by (auto simp add: g)
qed
lemma (in group_hom) FactGroup_hom:
"(\<lambda>X. contents (h`X)) \<in> hom (G Mod (kernel G H h)) H"
apply (simp add: hom_def FactGroup_contents_mem normal.factorgroup_is_group [OF normal_kernel] group.axioms monoid.m_closed)
proof (simp add: hom_def funcsetI FactGroup_contents_mem, intro ballI)
fix X and X'
assume X: "X \<in> carrier (G Mod kernel G H h)"
and X': "X' \<in> carrier (G Mod kernel G H h)"
then
obtain g and g'
where "g \<in> carrier G" and "g' \<in> carrier G"
and "X = kernel G H h #> g" and "X' = kernel G H h #> g'"
by (auto simp add: FactGroup_def RCOSETS_def)
hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'"
and Xsub: "X \<subseteq> carrier G" and X'sub: "X' \<subseteq> carrier G"
by (force simp add: kernel_def r_coset_def image_def)+
hence "h ` (X <#> X') = {h g \<otimes>\<^bsub>H\<^esub> h g'}" using X X'
by (auto dest!: FactGroup_nonempty
simp add: set_mult_def image_eq_UN
subsetD [OF Xsub] subsetD [OF X'sub])
thus "contents (h ` (X <#> X')) = contents (h ` X) \<otimes>\<^bsub>H\<^esub> contents (h ` X')"
by (simp add: all image_eq_UN FactGroup_nonempty X X')
qed
text{*Lemma for the following injectivity result*}
lemma (in group_hom) FactGroup_subset:
"\<lbrakk>g \<in> carrier G; g' \<in> carrier G; h g = h g'\<rbrakk>
\<Longrightarrow> kernel G H h #> g \<subseteq> kernel G H h #> g'"
apply (clarsimp simp add: kernel_def r_coset_def image_def);
apply (rename_tac y)
apply (rule_tac x="y \<otimes> g \<otimes> inv g'" in exI)
apply (simp add: G.m_assoc);
done
lemma (in group_hom) FactGroup_inj_on:
"inj_on (\<lambda>X. contents (h ` X)) (carrier (G Mod kernel G H h))"
proof (simp add: inj_on_def, clarify)
fix X and X'
assume X: "X \<in> carrier (G Mod kernel G H h)"
and X': "X' \<in> carrier (G Mod kernel G H h)"
then
obtain g and g'
where gX: "g \<in> carrier G" "g' \<in> carrier G"
"X = kernel G H h #> g" "X' = kernel G H h #> g'"
by (auto simp add: FactGroup_def RCOSETS_def)
hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'"
by (force simp add: kernel_def r_coset_def image_def)+
assume "contents (h ` X) = contents (h ` X')"
hence h: "h g = h g'"
by (simp add: image_eq_UN all FactGroup_nonempty X X')
show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX)
qed
text{*If the homomorphism @{term h} is onto @{term H}, then so is the
homomorphism from the quotient group*}
lemma (in group_hom) FactGroup_onto:
assumes h: "h ` carrier G = carrier H"
shows "(\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h) = carrier H"
proof
show "(\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h) \<subseteq> carrier H"
by (auto simp add: FactGroup_contents_mem)
show "carrier H \<subseteq> (\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h)"
proof
fix y
assume y: "y \<in> carrier H"
with h obtain g where g: "g \<in> carrier G" "h g = y"
by (blast elim: equalityE);
hence "(\<Union>x\<in>kernel G H h #> g. {h x}) = {y}"
by (auto simp add: y kernel_def r_coset_def)
with g show "y \<in> (\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h)"
by (auto intro!: bexI simp add: FactGroup_def RCOSETS_def image_eq_UN)
qed
qed
text{*If @{term h} is a homomorphism from @{term G} onto @{term H}, then the
quotient group @{term "G Mod (kernel G H h)"} is isomorphic to @{term H}.*}
theorem (in group_hom) FactGroup_iso:
"h ` carrier G = carrier H
\<Longrightarrow> (\<lambda>X. contents (h`X)) \<in> (G Mod (kernel G H h)) \<cong> H"
by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def
FactGroup_onto)
end