(* Title: Pure/Isar/attrib.ML
Author: Markus Wenzel, TU Muenchen
Symbolic representation of attributes -- with name and syntax.
*)
signature ATTRIB =
sig
type src = Args.src
type binding = binding * src list
val empty_binding: binding
val print_attributes: theory -> unit
val intern: theory -> xstring -> string
val intern_src: theory -> src -> src
val pretty_attribs: Proof.context -> src list -> Pretty.T list
val defined: theory -> string -> bool
val attribute: theory -> src -> attribute
val attribute_i: theory -> src -> attribute
val eval_thms: Proof.context -> (Facts.ref * src list) list -> thm list
val map_specs: ('a -> 'att) ->
(('c * 'a list) * 'b) list -> (('c * 'att list) * 'b) list
val map_facts: ('a -> 'att) ->
(('c * 'a list) * ('d * 'a list) list) list ->
(('c * 'att list) * ('d * 'att list) list) list
val map_facts_refs: ('a -> 'att) -> ('b -> 'fact) ->
(('c * 'a list) * ('b * 'a list) list) list ->
(('c * 'att list) * ('fact * 'att list) list) list
val crude_closure: Proof.context -> src -> src
val setup: Binding.binding -> attribute context_parser -> string -> theory -> theory
val attribute_setup: bstring * Position.T -> Symbol_Pos.text * Position.T -> string ->
theory -> theory
val add_del: attribute -> attribute -> attribute context_parser
val thm_sel: Facts.interval list parser
val thm: thm context_parser
val thms: thm list context_parser
val multi_thm: thm list context_parser
val print_configs: Proof.context -> unit
val internal: (morphism -> attribute) -> src
val register_config: Config.value Config.T -> theory -> theory
val config_bool: bstring -> bool -> bool Config.T * (theory -> theory)
val config_int: bstring -> int -> int Config.T * (theory -> theory)
val config_string: bstring -> string -> string Config.T * (theory -> theory)
val config_bool_global: bstring -> bool -> bool Config.T * (theory -> theory)
val config_int_global: bstring -> int -> int Config.T * (theory -> theory)
val config_string_global: bstring -> string -> string Config.T * (theory -> theory)
end;
structure Attrib: ATTRIB =
struct
structure T = OuterLex;
structure P = OuterParse;
(* source and bindings *)
type src = Args.src;
type binding = binding * src list;
val empty_binding: binding = (Binding.empty, []);
(** named attributes **)
(* theory data *)
structure Attributes = Theory_Data
(
type T = ((src -> attribute) * string) Name_Space.table;
val empty : T = Name_Space.empty_table "attribute";
val extend = I;
fun merge data : T = Name_Space.merge_tables data;
);
fun print_attributes thy =
let
val attribs = Attributes.get thy;
fun prt_attr (name, (_, comment)) = Pretty.block
[Pretty.str (name ^ ":"), Pretty.brk 2, Pretty.str comment];
in
[Pretty.big_list "attributes:" (map prt_attr (Name_Space.extern_table attribs))]
|> Pretty.chunks |> Pretty.writeln
end;
fun add_attribute name att comment thy = thy
|> Attributes.map (#2 o Name_Space.define true (Sign.naming_of thy) (name, (att, comment)));
(* name space *)
val intern = Name_Space.intern o #1 o Attributes.get;
val intern_src = Args.map_name o intern;
val extern = Name_Space.extern o #1 o Attributes.get o ProofContext.theory_of;
(* pretty printing *)
fun pretty_attribs _ [] = []
| pretty_attribs ctxt srcs =
[Pretty.enclose "[" "]"
(Pretty.commas (map (Args.pretty_src ctxt o Args.map_name (extern ctxt)) srcs))];
(* get attributes *)
val defined = Symtab.defined o #2 o Attributes.get;
fun attribute_i thy =
let
val attrs = #2 (Attributes.get thy);
fun attr src =
let val ((name, _), pos) = Args.dest_src src in
(case Symtab.lookup attrs name of
NONE => error ("Unknown attribute: " ^ quote name ^ Position.str_of pos)
| SOME (att, _) => (Position.report (Markup.attribute name) pos; att src))
end;
in attr end;
fun attribute thy = attribute_i thy o intern_src thy;
fun eval_thms ctxt args = ProofContext.note_thmss ""
[(Thm.empty_binding, args |> map (fn (a, atts) =>
(ProofContext.get_fact ctxt a, map (attribute (ProofContext.theory_of ctxt)) atts)))] ctxt
|> fst |> maps snd;
(* attributed declarations *)
fun map_specs f = map (apfst (apsnd (map f)));
fun map_facts f = map (apfst (apsnd (map f)) o apsnd (map (apsnd (map f))));
fun map_facts_refs f g = map_facts f #> map (apsnd (map (apfst g)));
(* crude_closure *)
(*Produce closure without knowing facts in advance! The following
works reasonably well for attribute parsers that do not peek at the
thm structure.*)
fun crude_closure ctxt src =
(try (fn () => attribute_i (ProofContext.theory_of ctxt) src
(Context.Proof ctxt, Drule.asm_rl)) ();
Args.closure src);
(* attribute setup *)
fun syntax scan = Args.syntax "attribute" scan;
fun setup name scan =
add_attribute name
(fn src => fn (ctxt, th) => let val (a, ctxt') = syntax scan src ctxt in a (ctxt', th) end);
fun attribute_setup name (txt, pos) cmt =
Context.theory_map (ML_Context.expression pos
"val (name, scan, comment): binding * attribute context_parser * string"
"Context.map_theory (Attrib.setup name scan comment)"
("(" ^ ML_Syntax.make_binding name ^ ", " ^ txt ^ ", " ^ ML_Syntax.print_string cmt ^ ")"));
(* add/del syntax *)
fun add_del add del = Scan.lift (Args.add >> K add || Args.del >> K del || Scan.succeed add);
(** parsing attributed theorems **)
val thm_sel = P.$$$ "(" |-- P.list1
(P.nat --| P.minus -- P.nat >> Facts.FromTo ||
P.nat --| P.minus >> Facts.From ||
P.nat >> Facts.Single) --| P.$$$ ")";
local
val fact_name = Args.internal_fact >> K "<fact>" || Args.name;
fun gen_thm pick = Scan.depend (fn context =>
let
val thy = Context.theory_of context;
val get = Context.cases (PureThy.get_fact context) ProofContext.get_fact context;
val get_fact = get o Facts.Fact;
fun get_named pos name = get (Facts.Named ((name, pos), NONE));
in
P.$$$ "[" |-- Args.attribs (intern thy) --| P.$$$ "]" >> (fn srcs =>
let
val atts = map (attribute_i thy) srcs;
val (context', th') = Library.apply atts (context, Drule.dummy_thm);
in (context', pick "" [th']) end)
||
(Scan.ahead Args.alt_name -- Args.named_fact get_fact
>> (fn (s, fact) => ("", Facts.Fact s, fact)) ||
Scan.ahead (P.position fact_name) :|-- (fn (name, pos) =>
Args.named_fact (get_named pos) -- Scan.option thm_sel
>> (fn (fact, sel) => (name, Facts.Named ((name, pos), sel), fact))))
-- Args.opt_attribs (intern thy) >> (fn ((name, thmref, fact), srcs) =>
let
val ths = Facts.select thmref fact;
val atts = map (attribute_i thy) srcs;
val (context', ths') = Library.foldl_map (Library.apply atts) (context, ths);
in (context', pick name ths') end)
end);
in
val thm = gen_thm Facts.the_single;
val multi_thm = gen_thm (K I);
val thms = Scan.repeat multi_thm >> flat;
end;
(** basic attributes **)
(* internal *)
fun internal att = Args.src (("Pure.attribute", [T.mk_attribute att]), Position.none);
(* rule composition *)
val COMP_att =
Scan.lift (Scan.optional (Args.bracks P.nat) 1) -- thm
>> (fn (i, B) => Thm.rule_attribute (fn _ => fn A => Drule.compose_single (A, i, B)));
val THEN_att =
Scan.lift (Scan.optional (Args.bracks P.nat) 1) -- thm
>> (fn (i, B) => Thm.rule_attribute (fn _ => fn A => A RSN (i, B)));
val OF_att =
thms >> (fn Bs => Thm.rule_attribute (fn _ => fn A => Bs MRS A));
(* rename_abs *)
fun rename_abs x = (Scan.repeat (Args.maybe Args.name) >> (apsnd o Drule.rename_bvars')) x;
(* unfold / fold definitions *)
fun unfolded_syntax rule =
thms >> (fn ths => Thm.rule_attribute (fn context => rule (Context.proof_of context) ths));
val unfolded = unfolded_syntax Local_Defs.unfold;
val folded = unfolded_syntax Local_Defs.fold;
(* rule format *)
val rule_format = Args.mode "no_asm"
>> (fn true => Object_Logic.rule_format_no_asm | false => Object_Logic.rule_format);
val elim_format = Thm.rule_attribute (K Tactic.make_elim);
(* misc rules *)
val no_vars = Thm.rule_attribute (fn context => fn th =>
let
val ctxt = Variable.set_body false (Context.proof_of context);
val ((_, [th']), _) = Variable.import true [th] ctxt;
in th' end);
val eta_long =
Thm.rule_attribute (K (Conv.fconv_rule Drule.eta_long_conversion));
val rotated = Scan.optional P.int 1 >> (fn n => Thm.rule_attribute (K (rotate_prems n)));
(* theory setup *)
val _ = Context.>> (Context.map_theory
(setup (Binding.name "attribute") (Scan.lift Args.internal_attribute >> Morphism.form)
"internal attribute" #>
setup (Binding.name "tagged") (Scan.lift (Args.name -- Args.name) >> Thm.tag) "tagged theorem" #>
setup (Binding.name "untagged") (Scan.lift Args.name >> Thm.untag) "untagged theorem" #>
setup (Binding.name "kind") (Scan.lift Args.name >> Thm.kind) "theorem kind" #>
setup (Binding.name "COMP") COMP_att "direct composition with rules (no lifting)" #>
setup (Binding.name "THEN") THEN_att "resolution with rule" #>
setup (Binding.name "OF") OF_att "rule applied to facts" #>
setup (Binding.name "rename_abs") (Scan.lift rename_abs)
"rename bound variables in abstractions" #>
setup (Binding.name "unfolded") unfolded "unfolded definitions" #>
setup (Binding.name "folded") folded "folded definitions" #>
setup (Binding.name "consumes") (Scan.lift (Scan.optional P.nat 1) >> Rule_Cases.consumes)
"number of consumed facts" #>
setup (Binding.name "constraints") (Scan.lift P.nat >> Rule_Cases.constraints)
"number of equality constraints" #>
setup (Binding.name "case_names") (Scan.lift (Scan.repeat1 Args.name) >> Rule_Cases.case_names)
"named rule cases" #>
setup (Binding.name "case_conclusion")
(Scan.lift (Args.name -- Scan.repeat Args.name) >> Rule_Cases.case_conclusion)
"named conclusion of rule cases" #>
setup (Binding.name "params")
(Scan.lift (P.and_list1 (Scan.repeat Args.name)) >> Rule_Cases.params)
"named rule parameters" #>
setup (Binding.name "standard") (Scan.succeed (Thm.rule_attribute (K Drule.export_without_context)))
"result put into standard form (legacy)" #>
setup (Binding.name "rule_format") rule_format "result put into canonical rule format" #>
setup (Binding.name "elim_format") (Scan.succeed elim_format)
"destruct rule turned into elimination rule format" #>
setup (Binding.name "no_vars") (Scan.succeed no_vars) "frozen schematic vars" #>
setup (Binding.name "eta_long") (Scan.succeed eta_long)
"put theorem into eta long beta normal form" #>
setup (Binding.name "atomize") (Scan.succeed Object_Logic.declare_atomize)
"declaration of atomize rule" #>
setup (Binding.name "rulify") (Scan.succeed Object_Logic.declare_rulify)
"declaration of rulify rule" #>
setup (Binding.name "rotated") (Scan.lift rotated) "rotated theorem premises" #>
setup (Binding.name "defn") (add_del Local_Defs.defn_add Local_Defs.defn_del)
"declaration of definitional transformations" #>
setup (Binding.name "abs_def") (Scan.succeed (Thm.rule_attribute (K Drule.abs_def)))
"abstract over free variables of a definition"));
(** configuration options **)
(* naming *)
structure Configs = Theory_Data
(
type T = Config.value Config.T Symtab.table;
val empty = Symtab.empty;
val extend = I;
fun merge data = Symtab.merge (K true) data;
);
fun print_configs ctxt =
let
val thy = ProofContext.theory_of ctxt;
fun prt (name, config) =
let val value = Config.get ctxt config in
Pretty.block [Pretty.str (name ^ ": " ^ Config.print_type value ^ " ="), Pretty.brk 1,
Pretty.str (Config.print_value value)]
end;
val configs = Name_Space.extern_table (#1 (Attributes.get thy), Configs.get thy);
in Pretty.writeln (Pretty.big_list "configuration options" (map prt configs)) end;
(* concrete syntax *)
local
val equals = P.$$$ "=";
fun scan_value (Config.Bool _) =
equals -- Args.$$$ "false" >> K (Config.Bool false) ||
equals -- Args.$$$ "true" >> K (Config.Bool true) ||
Scan.succeed (Config.Bool true)
| scan_value (Config.Int _) = equals |-- P.int >> Config.Int
| scan_value (Config.String _) = equals |-- Args.name >> Config.String;
fun scan_config thy config =
let val config_type = Config.get_thy thy config
in scan_value config_type >> (K o Thm.declaration_attribute o K o Config.put_generic config) end;
in
fun register_config config thy =
let
val bname = Config.name_of config;
val name = Sign.full_bname thy bname;
in
thy
|> setup (Binding.name bname) (Scan.lift (scan_config thy config) >> Morphism.form)
"configuration option"
|> Configs.map (Symtab.update (name, config))
end;
fun declare_config make coerce global name default =
let
val config_value = Config.declare global name (make default);
val config = coerce config_value;
in (config, register_config config_value) end;
val config_bool = declare_config Config.Bool Config.bool false;
val config_int = declare_config Config.Int Config.int false;
val config_string = declare_config Config.String Config.string false;
val config_bool_global = declare_config Config.Bool Config.bool true;
val config_int_global = declare_config Config.Int Config.int true;
val config_string_global = declare_config Config.String Config.string true;
end;
(* theory setup *)
val _ = Context.>> (Context.map_theory
(register_config Unify.trace_bound_value #>
register_config Unify.search_bound_value #>
register_config Unify.trace_simp_value #>
register_config Unify.trace_types_value #>
register_config MetaSimplifier.simp_depth_limit_value));
end;