src/HOL/RelPow.ML
author clasohm
Thu, 22 Feb 1996 12:20:34 +0100
changeset 1516 96286c4e32de
parent 1515 4ed79ebab64d
child 1552 6f71b5d46700
permissions -rw-r--r--
removed mk_prop; added capply; simplified dest_abs

(*  Title:      HOL/RelPow.ML
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1996  TU Muenchen
*)

open RelPow;

val [rel_pow_0, rel_pow_Suc] = nat_recs rel_pow_def;
Addsimps [rel_pow_0];

goal RelPow.thy "(x,x) : R^0";
by(Simp_tac 1);
qed "rel_pow_0_I";

goal RelPow.thy "!!R. [| (x,y) : R^n; (y,z):R |] ==> (x,z):R^(Suc n)";
by(simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
by(fast_tac comp_cs 1);
qed "rel_pow_Suc_I";

goal RelPow.thy "!z. (x,y) : R --> (y,z):R^n -->  (x,z):R^(Suc n)";
by(nat_ind_tac "n" 1);
by(simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
by(fast_tac comp_cs 1);
by(asm_full_simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
by(fast_tac comp_cs 1);
qed_spec_mp "rel_pow_Suc_I2";

goal RelPow.thy "!!R. [| (x,y) : R^0; x=y ==> P |] ==> P";
by(Asm_full_simp_tac 1);
qed "rel_pow_0_E";

val [major,minor] = goal RelPow.thy
  "[| (x,z) : R^(Suc n);  !!y. [| (x,y) : R^n; (y,z) : R |] ==> P |] ==> P";
by(cut_facts_tac [major] 1);
by(asm_full_simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
by(fast_tac (comp_cs addIs [minor]) 1);
qed "rel_pow_Suc_E";

val [p1,p2,p3] = goal RelPow.thy
    "[| (x,z) : R^n;  [| n=0; x = z |] ==> P;        \
\       !!y m. [| n = Suc m; (x,y) : R^m; (y,z) : R |] ==> P  \
\    |] ==> P";
by(res_inst_tac [("n","n")] natE 1);
by(cut_facts_tac [p1] 1);
by(asm_full_simp_tac (!simpset addsimps [p2]) 1);
by(cut_facts_tac [p1] 1);
by(Asm_full_simp_tac 1);
be rel_pow_Suc_E 1;
by(REPEAT(ares_tac [p3] 1));
qed "rel_pow_E";

goal RelPow.thy "!x z. (x,z):R^(Suc n) --> (? y. (x,y):R & (y,z):R^n)";
by(nat_ind_tac "n" 1);
by(fast_tac (HOL_cs addIs [rel_pow_0_I] addEs [rel_pow_0_E,rel_pow_Suc_E]) 1);
by(fast_tac (HOL_cs addIs [rel_pow_Suc_I] addEs[rel_pow_0_E,rel_pow_Suc_E]) 1);
qed_spec_mp "rel_pow_Suc_D2";

val [p1,p2,p3] = goal RelPow.thy
    "[| (x,z) : R^n;  [| n=0; x = z |] ==> P;        \
\       !!y m. [| n = Suc m; (x,y) : R; (y,z) : R^m |] ==> P  \
\    |] ==> P";
by(res_inst_tac [("n","n")] natE 1);
by(cut_facts_tac [p1] 1);
by(asm_full_simp_tac (!simpset addsimps [p2]) 1);
by(cut_facts_tac [p1] 1);
by(Asm_full_simp_tac 1);
bd rel_pow_Suc_D2 1;
be exE 1;
be p3 1;
be conjunct1 1;
be conjunct2 1;
qed "rel_pow_E2";

goal RelPow.thy "!!p. p:R^* ==> p : (UN n. R^n)";
by(split_all_tac 1);
be rtrancl_induct 1;
by(ALLGOALS (fast_tac (rel_cs addIs [rel_pow_0_I,rel_pow_Suc_I])));
qed "rtrancl_imp_UN_rel_pow";

goal RelPow.thy "!y. (x,y):R^n --> (x,y):R^*";
by(nat_ind_tac "n" 1);
by(fast_tac (HOL_cs addIs [rtrancl_refl] addEs [rel_pow_0_E]) 1);
by(fast_tac (trancl_cs addEs [rel_pow_Suc_E,rtrancl_into_rtrancl]) 1);
val lemma = result() RS spec RS mp;

goal RelPow.thy "!!p. p:R^n ==> p:R^*";
by(split_all_tac 1);
be lemma 1;
qed "rel_pow_imp_rtrancl";

goal RelPow.thy "R^* = (UN n. R^n)";
by(fast_tac (eq_cs addIs [rtrancl_imp_UN_rel_pow,rel_pow_imp_rtrancl]) 1);
qed "rtrancl_is_UN_rel_pow";