(* Title: HOL/RelPow.ML
ID: $Id$
Author: Tobias Nipkow
Copyright 1996 TU Muenchen
*)
open RelPow;
val [rel_pow_0, rel_pow_Suc] = nat_recs rel_pow_def;
Addsimps [rel_pow_0];
goal RelPow.thy "(x,x) : R^0";
by(Simp_tac 1);
qed "rel_pow_0_I";
goal RelPow.thy "!!R. [| (x,y) : R^n; (y,z):R |] ==> (x,z):R^(Suc n)";
by(simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
by(fast_tac comp_cs 1);
qed "rel_pow_Suc_I";
goal RelPow.thy "!z. (x,y) : R --> (y,z):R^n --> (x,z):R^(Suc n)";
by(nat_ind_tac "n" 1);
by(simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
by(fast_tac comp_cs 1);
by(asm_full_simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
by(fast_tac comp_cs 1);
qed_spec_mp "rel_pow_Suc_I2";
goal RelPow.thy "!!R. [| (x,y) : R^0; x=y ==> P |] ==> P";
by(Asm_full_simp_tac 1);
qed "rel_pow_0_E";
val [major,minor] = goal RelPow.thy
"[| (x,z) : R^(Suc n); !!y. [| (x,y) : R^n; (y,z) : R |] ==> P |] ==> P";
by(cut_facts_tac [major] 1);
by(asm_full_simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
by(fast_tac (comp_cs addIs [minor]) 1);
qed "rel_pow_Suc_E";
val [p1,p2,p3] = goal RelPow.thy
"[| (x,z) : R^n; [| n=0; x = z |] ==> P; \
\ !!y m. [| n = Suc m; (x,y) : R^m; (y,z) : R |] ==> P \
\ |] ==> P";
by(res_inst_tac [("n","n")] natE 1);
by(cut_facts_tac [p1] 1);
by(asm_full_simp_tac (!simpset addsimps [p2]) 1);
by(cut_facts_tac [p1] 1);
by(Asm_full_simp_tac 1);
be rel_pow_Suc_E 1;
by(REPEAT(ares_tac [p3] 1));
qed "rel_pow_E";
goal RelPow.thy "!x z. (x,z):R^(Suc n) --> (? y. (x,y):R & (y,z):R^n)";
by(nat_ind_tac "n" 1);
by(fast_tac (HOL_cs addIs [rel_pow_0_I] addEs [rel_pow_0_E,rel_pow_Suc_E]) 1);
by(fast_tac (HOL_cs addIs [rel_pow_Suc_I] addEs[rel_pow_0_E,rel_pow_Suc_E]) 1);
qed_spec_mp "rel_pow_Suc_D2";
val [p1,p2,p3] = goal RelPow.thy
"[| (x,z) : R^n; [| n=0; x = z |] ==> P; \
\ !!y m. [| n = Suc m; (x,y) : R; (y,z) : R^m |] ==> P \
\ |] ==> P";
by(res_inst_tac [("n","n")] natE 1);
by(cut_facts_tac [p1] 1);
by(asm_full_simp_tac (!simpset addsimps [p2]) 1);
by(cut_facts_tac [p1] 1);
by(Asm_full_simp_tac 1);
bd rel_pow_Suc_D2 1;
be exE 1;
be p3 1;
be conjunct1 1;
be conjunct2 1;
qed "rel_pow_E2";
goal RelPow.thy "!!p. p:R^* ==> p : (UN n. R^n)";
by(split_all_tac 1);
be rtrancl_induct 1;
by(ALLGOALS (fast_tac (rel_cs addIs [rel_pow_0_I,rel_pow_Suc_I])));
qed "rtrancl_imp_UN_rel_pow";
goal RelPow.thy "!y. (x,y):R^n --> (x,y):R^*";
by(nat_ind_tac "n" 1);
by(fast_tac (HOL_cs addIs [rtrancl_refl] addEs [rel_pow_0_E]) 1);
by(fast_tac (trancl_cs addEs [rel_pow_Suc_E,rtrancl_into_rtrancl]) 1);
val lemma = result() RS spec RS mp;
goal RelPow.thy "!!p. p:R^n ==> p:R^*";
by(split_all_tac 1);
be lemma 1;
qed "rel_pow_imp_rtrancl";
goal RelPow.thy "R^* = (UN n. R^n)";
by(fast_tac (eq_cs addIs [rtrancl_imp_UN_rel_pow,rel_pow_imp_rtrancl]) 1);
qed "rtrancl_is_UN_rel_pow";