(* Title: HOLCF/Discrete.thy
Author: Tobias Nipkow
*)
header {* Discrete cpo types *}
theory Discrete
imports Cont
begin
datatype 'a discr = Discr "'a :: type"
subsection {* Type @{typ "'a discr"} is a discrete cpo *}
instantiation discr :: (type) sq_ord
begin
definition
less_discr_def:
"(op \<sqsubseteq> :: 'a discr \<Rightarrow> 'a discr \<Rightarrow> bool) = (op =)"
instance ..
end
instance discr :: (type) discrete_cpo
by intro_classes (simp add: less_discr_def)
lemma discr_less_eq [iff]: "((x::('a::type)discr) << y) = (x = y)"
by simp
subsection {* Type @{typ "'a discr"} is a cpo *}
lemma discr_chain0:
"!!S::nat=>('a::type)discr. chain S ==> S i = S 0"
apply (unfold chain_def)
apply (induct_tac "i")
apply (rule refl)
apply (erule subst)
apply (rule sym)
apply fast
done
lemma discr_chain_range0 [simp]:
"!!S::nat=>('a::type)discr. chain(S) ==> range(S) = {S 0}"
by (fast elim: discr_chain0)
instance discr :: (finite) finite_po
proof
have "finite (Discr ` (UNIV :: 'a set))"
by (rule finite_imageI [OF finite])
also have "(Discr ` (UNIV :: 'a set)) = UNIV"
by (auto, case_tac x, auto)
finally show "finite (UNIV :: 'a discr set)" .
qed
instance discr :: (type) chfin
apply intro_classes
apply (rule_tac x=0 in exI)
apply (unfold max_in_chain_def)
apply (clarify, erule discr_chain0 [symmetric])
done
subsection {* @{term undiscr} *}
definition
undiscr :: "('a::type)discr => 'a" where
"undiscr x = (case x of Discr y => y)"
lemma undiscr_Discr [simp]: "undiscr (Discr x) = x"
by (simp add: undiscr_def)
lemma Discr_undiscr [simp]: "Discr (undiscr y) = y"
by (induct y) simp
lemma discr_chain_f_range0:
"!!S::nat=>('a::type)discr. chain(S) ==> range(%i. f(S i)) = {f(S 0)}"
by (fast dest: discr_chain0 elim: arg_cong)
lemma cont_discr [iff]: "cont (%x::('a::type)discr. f x)"
by (rule cont_discrete_cpo)
end