(* $Id$ *)
(* The oracle for Presburger arithmetic based on the verified Code *)
(* in HOL/ex/Reflected_Presburger.thy *)
structure ReflectedCooper =
struct
open Generated;
(* pseudo reification : term -> intterm *)
fun i_of_term vs t =
case t of
Free(xn,xT) => (case AList.lookup (op =) vs t of
NONE => error "Variable not found in the list!!"
| SOME n => Var n)
| Const("HOL.zero",iT) => Cst 0
| Const("HOL.one",iT) => Cst 1
| Bound i => Var (nat (IntInf.fromInt i))
| Const("HOL.uminus",_)$t' => Neg (i_of_term vs t')
| Const ("HOL.plus",_)$t1$t2 => Add (i_of_term vs t1,i_of_term vs t2)
| Const ("HOL.minus",_)$t1$t2 => Sub (i_of_term vs t1,i_of_term vs t2)
| Const ("HOL.times",_)$t1$t2 => Mult (i_of_term vs t1,i_of_term vs t2)
| Const ("Numeral.number_of",_)$t' => Cst (HOLogic.dest_numeral t')
| _ => error "i_of_term: unknown term";
(* pseudo reification : term -> QF *)
fun qf_of_term vs t =
case t of
Const("True",_) => T
| Const("False",_) => F
| Const("Orderings.less",_)$t1$t2 => Lt (i_of_term vs t1,i_of_term vs t2)
| Const("Orderings.less_eq",_)$t1$t2 => Le (i_of_term vs t1,i_of_term vs t2)
| Const ("Divides.dvd",_)$t1$t2 =>
Divides(i_of_term vs t1,i_of_term vs t2)
| Const("op =",eqT)$t1$t2 =>
if (domain_type eqT = HOLogic.intT)
then let val i1 = i_of_term vs t1
val i2 = i_of_term vs t2
in Eq (i1,i2)
end
else Equ(qf_of_term vs t1,qf_of_term vs t2)
| Const("op &",_)$t1$t2 => And(qf_of_term vs t1,qf_of_term vs t2)
| Const("op |",_)$t1$t2 => Or(qf_of_term vs t1,qf_of_term vs t2)
| Const("op -->",_)$t1$t2 => Imp(qf_of_term vs t1,qf_of_term vs t2)
| Const("Not",_)$t' => NOT(qf_of_term vs t')
| Const("Ex",_)$Abs(xn,xT,p) =>
QEx(qf_of_term (map (fn(v,n) => (v,n + 1)) vs) p)
| Const("All",_)$Abs(xn,xT,p) =>
QAll(qf_of_term (map (fn(v,n) => (v,n + 1)) vs) p)
| _ => error "qf_of_term : unknown term!";
(*
fun parse s = term_of (read_cterm (sign_of Main.thy) (s,HOLogic.boolT));
val t = parse "ALL (i::int) (j::int). i < 8* j --> (i - 1 = j + 3 + 2*j) & (j <= -i + k ) | 4 = i | 5 dvd i";
*)
fun zip [] [] = []
| zip (x::xs) (y::ys) = (x,y)::(zip xs ys);
fun start_vs t =
let val fs = term_frees t
in zip fs (map (nat o IntInf.fromInt) (0 upto (length fs - 1)))
end ;
(* transform intterm and QF back to terms *)
val iT = HOLogic.intT;
val bT = HOLogic.boolT;
fun myassoc2 l v =
case l of
[] => NONE
| (x,v')::xs => if v = v' then SOME x
else myassoc2 xs v;
fun term_of_i vs t =
case t of
Cst i => CooperDec.mk_number i
| Var n => valOf (myassoc2 vs n)
| Neg t' => Const("HOL.uminus",iT --> iT)$(term_of_i vs t')
| Add(t1,t2) => Const("HOL.plus",[iT,iT] ---> iT)$
(term_of_i vs t1)$(term_of_i vs t2)
| Sub(t1,t2) => Const("HOL.minus",[iT,iT] ---> iT)$
(term_of_i vs t1)$(term_of_i vs t2)
| Mult(t1,t2) => Const("HOL.times",[iT,iT] ---> iT)$
(term_of_i vs t1)$(term_of_i vs t2);
fun term_of_qf vs t =
case t of
T => HOLogic.true_const
| F => HOLogic.false_const
| Lt(t1,t2) => Const("Orderings.less",[iT,iT] ---> bT)$
(term_of_i vs t1)$(term_of_i vs t2)
| Le(t1,t2) => Const("Orderings.less_eq",[iT,iT] ---> bT)$
(term_of_i vs t1)$(term_of_i vs t2)
| Gt(t1,t2) => Const("Orderings.less",[iT,iT] ---> bT)$
(term_of_i vs t2)$(term_of_i vs t1)
| Ge(t1,t2) => Const("Orderings.less_eq",[iT,iT] ---> bT)$
(term_of_i vs t2)$(term_of_i vs t1)
| Eq(t1,t2) => Const("op =",[iT,iT] ---> bT)$
(term_of_i vs t1)$(term_of_i vs t2)
| Divides(t1,t2) => Const("Divides.dvd",[iT,iT] ---> bT)$
(term_of_i vs t1)$(term_of_i vs t2)
| NOT t' => HOLogic.Not$(term_of_qf vs t')
| And(t1,t2) => HOLogic.conj$(term_of_qf vs t1)$(term_of_qf vs t2)
| Or(t1,t2) => HOLogic.disj$(term_of_qf vs t1)$(term_of_qf vs t2)
| Imp(t1,t2) => HOLogic.imp$(term_of_qf vs t1)$(term_of_qf vs t2)
| Equ(t1,t2) => (HOLogic.eq_const bT)$(term_of_qf vs t1)$
(term_of_qf vs t2)
| _ => error "If this is raised, Isabelle/HOL or generate_code is inconsistent!";
(* The oracle *)
fun presburger_oracle thy t =
let val vs = start_vs t
val result = lift_un (term_of_qf vs) (pa (qf_of_term vs t))
in
case result of
None => raise CooperDec.COOPER
| Some t' => HOLogic.mk_Trueprop (HOLogic.mk_eq(t,t'))
end ;
end;