Simplified version of Jia's filter. Now all constants are pooled, rather than
relevance being compared against separate clauses. Rejects are no longer noted,
and units cannot be added at the end.
(*  Title:      HOL/Auth/Message
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1996  University of Cambridge
Datatypes of agents and messages;
Inductive relations "parts", "analz" and "synth"
*)
header{*Theory of Agents and Messages for Security Protocols*}
theory Message imports Main begin
(*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*)
lemma [simp] : "A \<union> (B \<union> A) = B \<union> A"
by blast
types 
  key = nat
consts
  all_symmetric :: bool        --{*true if all keys are symmetric*}
  invKey        :: "key=>key"  --{*inverse of a symmetric key*}
specification (invKey)
  invKey [simp]: "invKey (invKey K) = K"
  invKey_symmetric: "all_symmetric --> invKey = id"
    by (rule exI [of _ id], auto)
text{*The inverse of a symmetric key is itself; that of a public key
      is the private key and vice versa*}
constdefs
  symKeys :: "key set"
  "symKeys == {K. invKey K = K}"
datatype  --{*We allow any number of friendly agents*}
  agent = Server | Friend nat | Spy
datatype
     msg = Agent  agent	    --{*Agent names*}
         | Number nat       --{*Ordinary integers, timestamps, ...*}
         | Nonce  nat       --{*Unguessable nonces*}
         | Key    key       --{*Crypto keys*}
	 | Hash   msg       --{*Hashing*}
	 | MPair  msg msg   --{*Compound messages*}
	 | Crypt  key msg   --{*Encryption, public- or shared-key*}
text{*Concrete syntax: messages appear as {|A,B,NA|}, etc...*}
syntax
  "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2{|_,/ _|})")
syntax (xsymbols)
  "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2\<lbrace>_,/ _\<rbrace>)")
translations
  "{|x, y, z|}"   == "{|x, {|y, z|}|}"
  "{|x, y|}"      == "MPair x y"
constdefs
  HPair :: "[msg,msg] => msg"                       ("(4Hash[_] /_)" [0, 1000])
    --{*Message Y paired with a MAC computed with the help of X*}
    "Hash[X] Y == {| Hash{|X,Y|}, Y|}"
  keysFor :: "msg set => key set"
    --{*Keys useful to decrypt elements of a message set*}
  "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
subsubsection{*Inductive Definition of All Parts" of a Message*}
consts  parts   :: "msg set => msg set"
inductive "parts H"
  intros 
    Inj [intro]:               "X \<in> H ==> X \<in> parts H"
    Fst:         "{|X,Y|}   \<in> parts H ==> X \<in> parts H"
    Snd:         "{|X,Y|}   \<in> parts H ==> Y \<in> parts H"
    Body:        "Crypt K X \<in> parts H ==> X \<in> parts H"
text{*Monotonicity*}
lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)"
apply auto
apply (erule parts.induct) 
apply (blast dest: parts.Fst parts.Snd parts.Body)+
done
text{*Equations hold because constructors are injective.*}
lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)"
by auto
lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)"
by auto
lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)"
by auto
subsubsection{*Inverse of keys *}
lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')"
apply safe
apply (drule_tac f = invKey in arg_cong, simp)
done
subsection{*keysFor operator*}
lemma keysFor_empty [simp]: "keysFor {} = {}"
by (unfold keysFor_def, blast)
lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'"
by (unfold keysFor_def, blast)
lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))"
by (unfold keysFor_def, blast)
text{*Monotonicity*}
lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)"
by (unfold keysFor_def, blast)
lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y|} H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_Crypt [simp]: 
    "keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"
by (unfold keysFor_def, auto)
lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
by (unfold keysFor_def, auto)
lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H"
by (unfold keysFor_def, blast)
subsection{*Inductive relation "parts"*}
lemma MPair_parts:
     "[| {|X,Y|} \<in> parts H;        
         [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P"
by (blast dest: parts.Fst parts.Snd) 
declare MPair_parts [elim!]  parts.Body [dest!]
text{*NB These two rules are UNSAFE in the formal sense, as they discard the
     compound message.  They work well on THIS FILE.  
  @{text MPair_parts} is left as SAFE because it speeds up proofs.
  The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*}
lemma parts_increasing: "H \<subseteq> parts(H)"
by blast
lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD, standard]
lemma parts_empty [simp]: "parts{} = {}"
apply safe
apply (erule parts.induct, blast+)
done
lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
by simp
text{*WARNING: loops if H = {Y}, therefore must not be repeated!*}
lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
by (erule parts.induct, blast+)
subsubsection{*Unions *}
lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)"
by (intro Un_least parts_mono Un_upper1 Un_upper2)
lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)"
apply (rule subsetI)
apply (erule parts.induct, blast+)
done
lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)"
by (intro equalityI parts_Un_subset1 parts_Un_subset2)
lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H"
apply (subst insert_is_Un [of _ H])
apply (simp only: parts_Un)
done
text{*TWO inserts to avoid looping.  This rewrite is better than nothing.
  Not suitable for Addsimps: its behaviour can be strange.*}
lemma parts_insert2:
     "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
apply (simp add: Un_assoc)
apply (simp add: parts_insert [symmetric])
done
lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)"
by (intro UN_least parts_mono UN_upper)
lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))"
apply (rule subsetI)
apply (erule parts.induct, blast+)
done
lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))"
by (intro equalityI parts_UN_subset1 parts_UN_subset2)
text{*Added to simplify arguments to parts, analz and synth.
  NOTE: the UN versions are no longer used!*}
text{*This allows @{text blast} to simplify occurrences of 
  @{term "parts(G\<union>H)"} in the assumption.*}
lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] 
declare in_parts_UnE [elim!]
lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)"
by (blast intro: parts_mono [THEN [2] rev_subsetD])
subsubsection{*Idempotence and transitivity *}
lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H"
by (erule parts.induct, blast+)
lemma parts_idem [simp]: "parts (parts H) = parts H"
by blast
lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)"
apply (rule iffI)
apply (iprover intro: subset_trans parts_increasing)  
apply (frule parts_mono, simp) 
done
lemma parts_trans: "[| X\<in> parts G;  G \<subseteq> parts H |] ==> X\<in> parts H"
by (drule parts_mono, blast)
text{*Cut*}
lemma parts_cut:
     "[| Y\<in> parts (insert X G);  X\<in> parts H |] ==> Y\<in> parts (G \<union> H)" 
by (blast intro: parts_trans) 
lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H"
by (force dest!: parts_cut intro: parts_insertI)
subsubsection{*Rewrite rules for pulling out atomic messages *}
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset]
lemma parts_insert_Agent [simp]:
     "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"
apply (rule parts_insert_eq_I) 
apply (erule parts.induct, auto) 
done
lemma parts_insert_Nonce [simp]:
     "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"
apply (rule parts_insert_eq_I) 
apply (erule parts.induct, auto) 
done
lemma parts_insert_Number [simp]:
     "parts (insert (Number N) H) = insert (Number N) (parts H)"
apply (rule parts_insert_eq_I) 
apply (erule parts.induct, auto) 
done
lemma parts_insert_Key [simp]:
     "parts (insert (Key K) H) = insert (Key K) (parts H)"
apply (rule parts_insert_eq_I) 
apply (erule parts.induct, auto) 
done
lemma parts_insert_Hash [simp]:
     "parts (insert (Hash X) H) = insert (Hash X) (parts H)"
apply (rule parts_insert_eq_I) 
apply (erule parts.induct, auto) 
done
lemma parts_insert_Crypt [simp]:
     "parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))"
apply (rule equalityI)
apply (rule subsetI)
apply (erule parts.induct, auto)
apply (blast intro: parts.Body)
done
lemma parts_insert_MPair [simp]:
     "parts (insert {|X,Y|} H) =  
          insert {|X,Y|} (parts (insert X (insert Y H)))"
apply (rule equalityI)
apply (rule subsetI)
apply (erule parts.induct, auto)
apply (blast intro: parts.Fst parts.Snd)+
done
lemma parts_image_Key [simp]: "parts (Key`N) = Key`N"
apply auto
apply (erule parts.induct, auto)
done
text{*In any message, there is an upper bound N on its greatest nonce.*}
lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
apply (induct_tac "msg")
apply (simp_all (no_asm_simp) add: exI parts_insert2)
 txt{*MPair case: blast works out the necessary sum itself!*}
 prefer 2 apply (blast elim!: add_leE)
txt{*Nonce case*}
apply (rule_tac x = "N + Suc nat" in exI, auto) 
done
subsection{*Inductive relation "analz"*}
text{*Inductive definition of "analz" -- what can be broken down from a set of
    messages, including keys.  A form of downward closure.  Pairs can
    be taken apart; messages decrypted with known keys.  *}
consts  analz   :: "msg set => msg set"
inductive "analz H"
  intros 
    Inj [intro,simp] :    "X \<in> H ==> X \<in> analz H"
    Fst:     "{|X,Y|} \<in> analz H ==> X \<in> analz H"
    Snd:     "{|X,Y|} \<in> analz H ==> Y \<in> analz H"
    Decrypt [dest]: 
             "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H"
text{*Monotonicity; Lemma 1 of Lowe's paper*}
lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)"
apply auto
apply (erule analz.induct) 
apply (auto dest: analz.Fst analz.Snd) 
done
text{*Making it safe speeds up proofs*}
lemma MPair_analz [elim!]:
     "[| {|X,Y|} \<in> analz H;        
             [| X \<in> analz H; Y \<in> analz H |] ==> P   
          |] ==> P"
by (blast dest: analz.Fst analz.Snd)
lemma analz_increasing: "H \<subseteq> analz(H)"
by blast
lemma analz_subset_parts: "analz H \<subseteq> parts H"
apply (rule subsetI)
apply (erule analz.induct, blast+)
done
lemmas analz_into_parts = analz_subset_parts [THEN subsetD, standard]
lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD, standard]
lemma parts_analz [simp]: "parts (analz H) = parts H"
apply (rule equalityI)
apply (rule analz_subset_parts [THEN parts_mono, THEN subset_trans], simp)
apply (blast intro: analz_increasing [THEN parts_mono, THEN subsetD])
done
lemma analz_parts [simp]: "analz (parts H) = parts H"
apply auto
apply (erule analz.induct, auto)
done
lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD, standard]
subsubsection{*General equational properties *}
lemma analz_empty [simp]: "analz{} = {}"
apply safe
apply (erule analz.induct, blast+)
done
text{*Converse fails: we can analz more from the union than from the 
  separate parts, as a key in one might decrypt a message in the other*}
lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)"
by (intro Un_least analz_mono Un_upper1 Un_upper2)
lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)"
by (blast intro: analz_mono [THEN [2] rev_subsetD])
subsubsection{*Rewrite rules for pulling out atomic messages *}
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert]
lemma analz_insert_Agent [simp]:
     "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"
apply (rule analz_insert_eq_I) 
apply (erule analz.induct, auto) 
done
lemma analz_insert_Nonce [simp]:
     "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"
apply (rule analz_insert_eq_I) 
apply (erule analz.induct, auto) 
done
lemma analz_insert_Number [simp]:
     "analz (insert (Number N) H) = insert (Number N) (analz H)"
apply (rule analz_insert_eq_I) 
apply (erule analz.induct, auto) 
done
lemma analz_insert_Hash [simp]:
     "analz (insert (Hash X) H) = insert (Hash X) (analz H)"
apply (rule analz_insert_eq_I) 
apply (erule analz.induct, auto) 
done
text{*Can only pull out Keys if they are not needed to decrypt the rest*}
lemma analz_insert_Key [simp]: 
    "K \<notin> keysFor (analz H) ==>   
          analz (insert (Key K) H) = insert (Key K) (analz H)"
apply (unfold keysFor_def)
apply (rule analz_insert_eq_I) 
apply (erule analz.induct, auto) 
done
lemma analz_insert_MPair [simp]:
     "analz (insert {|X,Y|} H) =  
          insert {|X,Y|} (analz (insert X (insert Y H)))"
apply (rule equalityI)
apply (rule subsetI)
apply (erule analz.induct, auto)
apply (erule analz.induct)
apply (blast intro: analz.Fst analz.Snd)+
done
text{*Can pull out enCrypted message if the Key is not known*}
lemma analz_insert_Crypt:
     "Key (invKey K) \<notin> analz H 
      ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"
apply (rule analz_insert_eq_I) 
apply (erule analz.induct, auto) 
done
lemma lemma1: "Key (invKey K) \<in> analz H ==>   
               analz (insert (Crypt K X) H) \<subseteq>  
               insert (Crypt K X) (analz (insert X H))"
apply (rule subsetI)
apply (erule_tac xa = x in analz.induct, auto)
done
lemma lemma2: "Key (invKey K) \<in> analz H ==>   
               insert (Crypt K X) (analz (insert X H)) \<subseteq>  
               analz (insert (Crypt K X) H)"
apply auto
apply (erule_tac xa = x in analz.induct, auto)
apply (blast intro: analz_insertI analz.Decrypt)
done
lemma analz_insert_Decrypt:
     "Key (invKey K) \<in> analz H ==>   
               analz (insert (Crypt K X) H) =  
               insert (Crypt K X) (analz (insert X H))"
by (intro equalityI lemma1 lemma2)
text{*Case analysis: either the message is secure, or it is not! Effective,
but can cause subgoals to blow up! Use with @{text "split_if"}; apparently
@{text "split_tac"} does not cope with patterns such as @{term"analz (insert
(Crypt K X) H)"} *} 
lemma analz_Crypt_if [simp]:
     "analz (insert (Crypt K X) H) =                 
          (if (Key (invKey K) \<in> analz H)                 
           then insert (Crypt K X) (analz (insert X H))  
           else insert (Crypt K X) (analz H))"
by (simp add: analz_insert_Crypt analz_insert_Decrypt)
text{*This rule supposes "for the sake of argument" that we have the key.*}
lemma analz_insert_Crypt_subset:
     "analz (insert (Crypt K X) H) \<subseteq>   
           insert (Crypt K X) (analz (insert X H))"
apply (rule subsetI)
apply (erule analz.induct, auto)
done
lemma analz_image_Key [simp]: "analz (Key`N) = Key`N"
apply auto
apply (erule analz.induct, auto)
done
subsubsection{*Idempotence and transitivity *}
lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H"
by (erule analz.induct, blast+)
lemma analz_idem [simp]: "analz (analz H) = analz H"
by blast
lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)"
apply (rule iffI)
apply (iprover intro: subset_trans analz_increasing)  
apply (frule analz_mono, simp) 
done
lemma analz_trans: "[| X\<in> analz G;  G \<subseteq> analz H |] ==> X\<in> analz H"
by (drule analz_mono, blast)
text{*Cut; Lemma 2 of Lowe*}
lemma analz_cut: "[| Y\<in> analz (insert X H);  X\<in> analz H |] ==> Y\<in> analz H"
by (erule analz_trans, blast)
(*Cut can be proved easily by induction on
   "Y: analz (insert X H) ==> X: analz H --> Y: analz H"
*)
text{*This rewrite rule helps in the simplification of messages that involve
  the forwarding of unknown components (X).  Without it, removing occurrences
  of X can be very complicated. *}
lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H"
by (blast intro: analz_cut analz_insertI)
text{*A congruence rule for "analz" *}
lemma analz_subset_cong:
     "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] 
      ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')"
apply simp
apply (iprover intro: conjI subset_trans analz_mono Un_upper1 Un_upper2) 
done
lemma analz_cong:
     "[| analz G = analz G'; analz H = analz H' |] 
      ==> analz (G \<union> H) = analz (G' \<union> H')"
by (intro equalityI analz_subset_cong, simp_all) 
lemma analz_insert_cong:
     "analz H = analz H' ==> analz(insert X H) = analz(insert X H')"
by (force simp only: insert_def intro!: analz_cong)
text{*If there are no pairs or encryptions then analz does nothing*}
lemma analz_trivial:
     "[| \<forall>X Y. {|X,Y|} \<notin> H;  \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"
apply safe
apply (erule analz.induct, blast+)
done
text{*These two are obsolete (with a single Spy) but cost little to prove...*}
lemma analz_UN_analz_lemma:
     "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)"
apply (erule analz.induct)
apply (blast intro: analz_mono [THEN [2] rev_subsetD])+
done
lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)"
by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD])
subsection{*Inductive relation "synth"*}
text{*Inductive definition of "synth" -- what can be built up from a set of
    messages.  A form of upward closure.  Pairs can be built, messages
    encrypted with known keys.  Agent names are public domain.
    Numbers can be guessed, but Nonces cannot be.  *}
consts  synth   :: "msg set => msg set"
inductive "synth H"
  intros 
    Inj    [intro]:   "X \<in> H ==> X \<in> synth H"
    Agent  [intro]:   "Agent agt \<in> synth H"
    Number [intro]:   "Number n  \<in> synth H"
    Hash   [intro]:   "X \<in> synth H ==> Hash X \<in> synth H"
    MPair  [intro]:   "[|X \<in> synth H;  Y \<in> synth H|] ==> {|X,Y|} \<in> synth H"
    Crypt  [intro]:   "[|X \<in> synth H;  Key(K) \<in> H|] ==> Crypt K X \<in> synth H"
text{*Monotonicity*}
lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)"
  by (auto, erule synth.induct, auto)  
text{*NO @{text Agent_synth}, as any Agent name can be synthesized.  
  The same holds for @{term Number}*}
inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H"
inductive_cases Key_synth   [elim!]: "Key K \<in> synth H"
inductive_cases Hash_synth  [elim!]: "Hash X \<in> synth H"
inductive_cases MPair_synth [elim!]: "{|X,Y|} \<in> synth H"
inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H"
lemma synth_increasing: "H \<subseteq> synth(H)"
by blast
subsubsection{*Unions *}
text{*Converse fails: we can synth more from the union than from the 
  separate parts, building a compound message using elements of each.*}
lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)"
by (intro Un_least synth_mono Un_upper1 Un_upper2)
lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)"
by (blast intro: synth_mono [THEN [2] rev_subsetD])
subsubsection{*Idempotence and transitivity *}
lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H"
by (erule synth.induct, blast+)
lemma synth_idem: "synth (synth H) = synth H"
by blast
lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)"
apply (rule iffI)
apply (iprover intro: subset_trans synth_increasing)  
apply (frule synth_mono, simp add: synth_idem) 
done
lemma synth_trans: "[| X\<in> synth G;  G \<subseteq> synth H |] ==> X\<in> synth H"
by (drule synth_mono, blast)
text{*Cut; Lemma 2 of Lowe*}
lemma synth_cut: "[| Y\<in> synth (insert X H);  X\<in> synth H |] ==> Y\<in> synth H"
by (erule synth_trans, blast)
lemma Agent_synth [simp]: "Agent A \<in> synth H"
by blast
lemma Number_synth [simp]: "Number n \<in> synth H"
by blast
lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)"
by blast
lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)"
by blast
lemma Crypt_synth_eq [simp]:
     "Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)"
by blast
lemma keysFor_synth [simp]: 
    "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
by (unfold keysFor_def, blast)
subsubsection{*Combinations of parts, analz and synth *}
lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H"
apply (rule equalityI)
apply (rule subsetI)
apply (erule parts.induct)
apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD] 
                    parts.Fst parts.Snd parts.Body)+
done
lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)"
apply (intro equalityI analz_subset_cong)+
apply simp_all
done
lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G"
apply (rule equalityI)
apply (rule subsetI)
apply (erule analz.induct)
prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD])
apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+
done
lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H"
apply (cut_tac H = "{}" in analz_synth_Un)
apply (simp (no_asm_use))
done
subsubsection{*For reasoning about the Fake rule in traces *}
lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H"
by (rule subset_trans [OF parts_mono parts_Un_subset2], blast)
text{*More specifically for Fake.  Very occasionally we could do with a version
  of the form  @{term"parts{X} \<subseteq> synth (analz H) \<union> parts H"} *}
lemma Fake_parts_insert:
     "X \<in> synth (analz H) ==>  
      parts (insert X H) \<subseteq> synth (analz H) \<union> parts H"
apply (drule parts_insert_subset_Un)
apply (simp (no_asm_use))
apply blast
done
lemma Fake_parts_insert_in_Un:
     "[|Z \<in> parts (insert X H);  X: synth (analz H)|] 
      ==> Z \<in>  synth (analz H) \<union> parts H";
by (blast dest: Fake_parts_insert  [THEN subsetD, dest])
text{*@{term H} is sometimes @{term"Key ` KK \<union> spies evs"}, so can't put 
  @{term "G=H"}.*}
lemma Fake_analz_insert:
     "X\<in> synth (analz G) ==>  
      analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"
apply (rule subsetI)
apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H) ")
prefer 2 apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD])
apply (simp (no_asm_use))
apply blast
done
lemma analz_conj_parts [simp]:
     "(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)"
by (blast intro: analz_subset_parts [THEN subsetD])
lemma analz_disj_parts [simp]:
     "(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)"
by (blast intro: analz_subset_parts [THEN subsetD])
text{*Without this equation, other rules for synth and analz would yield
  redundant cases*}
lemma MPair_synth_analz [iff]:
     "({|X,Y|} \<in> synth (analz H)) =  
      (X \<in> synth (analz H) & Y \<in> synth (analz H))"
by blast
lemma Crypt_synth_analz:
     "[| Key K \<in> analz H;  Key (invKey K) \<in> analz H |]  
       ==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))"
by blast
lemma Hash_synth_analz [simp]:
     "X \<notin> synth (analz H)  
      ==> (Hash{|X,Y|} \<in> synth (analz H)) = (Hash{|X,Y|} \<in> analz H)"
by blast
subsection{*HPair: a combination of Hash and MPair*}
subsubsection{*Freeness *}
lemma Agent_neq_HPair: "Agent A ~= Hash[X] Y"
by (unfold HPair_def, simp)
lemma Nonce_neq_HPair: "Nonce N ~= Hash[X] Y"
by (unfold HPair_def, simp)
lemma Number_neq_HPair: "Number N ~= Hash[X] Y"
by (unfold HPair_def, simp)
lemma Key_neq_HPair: "Key K ~= Hash[X] Y"
by (unfold HPair_def, simp)
lemma Hash_neq_HPair: "Hash Z ~= Hash[X] Y"
by (unfold HPair_def, simp)
lemma Crypt_neq_HPair: "Crypt K X' ~= Hash[X] Y"
by (unfold HPair_def, simp)
lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair 
                    Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair
declare HPair_neqs [iff]
declare HPair_neqs [symmetric, iff]
lemma HPair_eq [iff]: "(Hash[X'] Y' = Hash[X] Y) = (X' = X & Y'=Y)"
by (simp add: HPair_def)
lemma MPair_eq_HPair [iff]:
     "({|X',Y'|} = Hash[X] Y) = (X' = Hash{|X,Y|} & Y'=Y)"
by (simp add: HPair_def)
lemma HPair_eq_MPair [iff]:
     "(Hash[X] Y = {|X',Y'|}) = (X' = Hash{|X,Y|} & Y'=Y)"
by (auto simp add: HPair_def)
subsubsection{*Specialized laws, proved in terms of those for Hash and MPair *}
lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor H"
by (simp add: HPair_def)
lemma parts_insert_HPair [simp]: 
    "parts (insert (Hash[X] Y) H) =  
     insert (Hash[X] Y) (insert (Hash{|X,Y|}) (parts (insert Y H)))"
by (simp add: HPair_def)
lemma analz_insert_HPair [simp]: 
    "analz (insert (Hash[X] Y) H) =  
     insert (Hash[X] Y) (insert (Hash{|X,Y|}) (analz (insert Y H)))"
by (simp add: HPair_def)
lemma HPair_synth_analz [simp]:
     "X \<notin> synth (analz H)  
    ==> (Hash[X] Y \<in> synth (analz H)) =  
        (Hash {|X, Y|} \<in> analz H & Y \<in> synth (analz H))"
by (simp add: HPair_def)
text{*We do NOT want Crypt... messages broken up in protocols!!*}
declare parts.Body [rule del]
text{*Rewrites to push in Key and Crypt messages, so that other messages can
    be pulled out using the @{text analz_insert} rules*}
ML
{*
fun insComm x y = inst "x" x (inst "y" y insert_commute);
bind_thms ("pushKeys",
           map (insComm "Key ?K") 
                   ["Agent ?C", "Nonce ?N", "Number ?N", 
		    "Hash ?X", "MPair ?X ?Y", "Crypt ?X ?K'"]);
bind_thms ("pushCrypts",
           map (insComm "Crypt ?X ?K") 
                     ["Agent ?C", "Nonce ?N", "Number ?N", 
		      "Hash ?X'", "MPair ?X' ?Y"]);
*}
text{*Cannot be added with @{text "[simp]"} -- messages should not always be
  re-ordered. *}
lemmas pushes = pushKeys pushCrypts
subsection{*Tactics useful for many protocol proofs*}
ML
{*
val invKey = thm "invKey"
val keysFor_def = thm "keysFor_def"
val HPair_def = thm "HPair_def"
val symKeys_def = thm "symKeys_def"
val parts_mono = thm "parts_mono";
val analz_mono = thm "analz_mono";
val synth_mono = thm "synth_mono";
val analz_increasing = thm "analz_increasing";
val analz_insertI = thm "analz_insertI";
val analz_subset_parts = thm "analz_subset_parts";
val Fake_parts_insert = thm "Fake_parts_insert";
val Fake_analz_insert = thm "Fake_analz_insert";
val pushes = thms "pushes";
(*Prove base case (subgoal i) and simplify others.  A typical base case
  concerns  Crypt K X \<notin> Key`shrK`bad  and cannot be proved by rewriting
  alone.*)
fun prove_simple_subgoals_tac i = 
    force_tac (claset(), simpset() addsimps [image_eq_UN]) i THEN
    ALLGOALS Asm_simp_tac
(*Analysis of Fake cases.  Also works for messages that forward unknown parts,
  but this application is no longer necessary if analz_insert_eq is used.
  Abstraction over i is ESSENTIAL: it delays the dereferencing of claset
  DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *)
(*Apply rules to break down assumptions of the form
  Y \<in> parts(insert X H)  and  Y \<in> analz(insert X H)
*)
val Fake_insert_tac = 
    dresolve_tac [impOfSubs Fake_analz_insert,
                  impOfSubs Fake_parts_insert] THEN'
    eresolve_tac [asm_rl, thm"synth.Inj"];
fun Fake_insert_simp_tac ss i = 
    REPEAT (Fake_insert_tac i) THEN asm_full_simp_tac ss i;
fun atomic_spy_analz_tac (cs,ss) = SELECT_GOAL
    (Fake_insert_simp_tac ss 1
     THEN
     IF_UNSOLVED (Blast.depth_tac
		  (cs addIs [analz_insertI,
				   impOfSubs analz_subset_parts]) 4 1))
(*The explicit claset and simpset arguments help it work with Isar*)
fun gen_spy_analz_tac (cs,ss) i =
  DETERM
   (SELECT_GOAL
     (EVERY 
      [  (*push in occurrences of X...*)
       (REPEAT o CHANGED)
           (res_inst_tac [("x1","X")] (insert_commute RS ssubst) 1),
       (*...allowing further simplifications*)
       simp_tac ss 1,
       REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])),
       DEPTH_SOLVE (atomic_spy_analz_tac (cs,ss) 1)]) i)
fun spy_analz_tac i = gen_spy_analz_tac (claset(), simpset()) i
*}
text{*By default only @{text o_apply} is built-in.  But in the presence of
eta-expansion this means that some terms displayed as @{term "f o g"} will be
rewritten, and others will not!*}
declare o_def [simp]
lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A"
by auto
lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A"
by auto
lemma synth_analz_mono: "G\<subseteq>H ==> synth (analz(G)) \<subseteq> synth (analz(H))"
by (iprover intro: synth_mono analz_mono) 
lemma Fake_analz_eq [simp]:
     "X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)"
apply (drule Fake_analz_insert[of _ _ "H"])
apply (simp add: synth_increasing[THEN Un_absorb2])
apply (drule synth_mono)
apply (simp add: synth_idem)
apply (rule equalityI)
apply (simp add: );
apply (rule synth_analz_mono, blast)   
done
text{*Two generalizations of @{text analz_insert_eq}*}
lemma gen_analz_insert_eq [rule_format]:
     "X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G";
by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD])
lemma synth_analz_insert_eq [rule_format]:
     "X \<in> synth (analz H) 
      ==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)";
apply (erule synth.induct) 
apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI]) 
done
lemma Fake_parts_sing:
     "X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H";
apply (rule subset_trans) 
 apply (erule_tac [2] Fake_parts_insert)
apply (rule parts_mono)  
apply (blast intro: elim:); 
done
lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD]
method_setup spy_analz = {*
    Method.ctxt_args (fn ctxt =>
        Method.METHOD (fn facts => 
            gen_spy_analz_tac (local_clasimpset_of ctxt) 1)) *}
    "for proving the Fake case when analz is involved"
method_setup atomic_spy_analz = {*
    Method.ctxt_args (fn ctxt =>
        Method.METHOD (fn facts => 
            atomic_spy_analz_tac (local_clasimpset_of ctxt) 1)) *}
    "for debugging spy_analz"
method_setup Fake_insert_simp = {*
    Method.ctxt_args (fn ctxt =>
        Method.METHOD (fn facts =>
            Fake_insert_simp_tac (local_simpset_of ctxt) 1)) *}
    "for debugging spy_analz"
end