Simplified version of Jia's filter. Now all constants are pooled, rather than
relevance being compared against separate clauses. Rejects are no longer noted,
and units cannot be added at the end.
(*  Title:      HOL/Auth/ZhouGollmann
    ID:         $Id$
    Author:     Giampaolo Bella and L C Paulson, Cambridge Univ Computer Lab
    Copyright   2003  University of Cambridge
The protocol of
  Jianying Zhou and Dieter Gollmann,
  A Fair Non-Repudiation Protocol,
  Security and Privacy 1996 (Oakland)
  55-61
*)
theory ZhouGollmann imports Public begin
syntax
  TTP :: agent
translations
  "TTP" == " Server "
syntax
  f_sub :: nat
  f_nro :: nat
  f_nrr :: nat
  f_con :: nat
translations
  "f_sub" == " 5 "
  "f_nro" == " 2 "
  "f_nrr" == " 3 "
  "f_con" == " 4 "
constdefs
  broken :: "agent set"    
    --{*the compromised honest agents; TTP is included as it's not allowed to
        use the protocol*}
   "broken == bad - {Spy}"
declare broken_def [simp]
consts  zg  :: "event list set"
inductive zg
  intros
  Nil:  "[] \<in> zg"
  Fake: "[| evsf \<in> zg;  X \<in> synth (analz (spies evsf)) |]
	 ==> Says Spy B X  # evsf \<in> zg"
Reception:  "[| evsr \<in> zg; Says A B X \<in> set evsr |] ==> Gets B X # evsr \<in> zg"
  (*L is fresh for honest agents.
    We don't require K to be fresh because we don't bother to prove secrecy!
    We just assume that the protocol's objective is to deliver K fairly,
    rather than to keep M secret.*)
  ZG1: "[| evs1 \<in> zg;  Nonce L \<notin> used evs1; C = Crypt K (Number m);
	   K \<in> symKeys;
	   NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|}|]
       ==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} # evs1 \<in> zg"
  (*B must check that NRO is A's signature to learn the sender's name*)
  ZG2: "[| evs2 \<in> zg;
	   Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs2;
	   NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
	   NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|}|]
       ==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} # evs2  \<in>  zg"
  (*A must check that NRR is B's signature to learn the sender's name;
    without spy, the matching label would be enough*)
  ZG3: "[| evs3 \<in> zg; C = Crypt K M; K \<in> symKeys;
	   Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs3;
	   Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs3;
	   NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
	   sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|}|]
       ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|}
	     # evs3 \<in> zg"
 (*TTP checks that sub_K is A's signature to learn who issued K, then
   gives credentials to A and B.  The Notes event models the availability of
   the credentials, but the act of fetching them is not modelled.  We also
   give con_K to the Spy. This makes the threat model more dangerous, while 
   also allowing lemma @{text Crypt_used_imp_spies} to omit the condition
   @{term "K \<noteq> priK TTP"}. *)
  ZG4: "[| evs4 \<in> zg; K \<in> symKeys;
	   Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|}
	     \<in> set evs4;
	   sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
	   con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
				      Nonce L, Key K|}|]
       ==> Says TTP Spy con_K
           #
	   Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
	   # evs4 \<in> zg"
declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare Fake_parts_insert_in_Un  [dest]
declare analz_into_parts [dest]
declare symKey_neq_priEK [simp]
declare symKey_neq_priEK [THEN not_sym, simp]
text{*A "possibility property": there are traces that reach the end*}
lemma "[|A \<noteq> B; TTP \<noteq> A; TTP \<noteq> B; K \<in> symKeys|] ==>
     \<exists>L. \<exists>evs \<in> zg.
           Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K,
               Crypt (priK TTP) {|Number f_con, Agent A, Agent B, Nonce L, Key K|} |}
               \<in> set evs"
apply (intro exI bexI)
apply (rule_tac [2] zg.Nil
                    [THEN zg.ZG1, THEN zg.Reception [of _ A B],
                     THEN zg.ZG2, THEN zg.Reception [of _ B A],
                     THEN zg.ZG3, THEN zg.Reception [of _ A TTP], 
                     THEN zg.ZG4])
apply (possibility, auto)
done
subsection {*Basic Lemmas*}
lemma Gets_imp_Says:
     "[| Gets B X \<in> set evs; evs \<in> zg |] ==> \<exists>A. Says A B X \<in> set evs"
apply (erule rev_mp)
apply (erule zg.induct, auto)
done
lemma Gets_imp_knows_Spy:
     "[| Gets B X \<in> set evs; evs \<in> zg |]  ==> X \<in> spies evs"
by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)
text{*Lets us replace proofs about @{term "used evs"} by simpler proofs 
about @{term "parts (spies evs)"}.*}
lemma Crypt_used_imp_spies:
     "[| Crypt K X \<in> used evs; evs \<in> zg |]
      ==> Crypt K X \<in> parts (spies evs)"
apply (erule rev_mp)
apply (erule zg.induct)
apply (simp_all add: parts_insert_knows_A) 
done
lemma Notes_TTP_imp_Gets:
     "[|Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K |}
           \<in> set evs;
        sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
        evs \<in> zg|]
    ==> Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
apply (erule rev_mp)
apply (erule zg.induct, auto)
done
text{*For reasoning about C, which is encrypted in message ZG2*}
lemma ZG2_msg_in_parts_spies:
     "[|Gets B {|F, B', L, C, X|} \<in> set evs; evs \<in> zg|]
      ==> C \<in> parts (spies evs)"
by (blast dest: Gets_imp_Says)
(*classical regularity lemma on priK*)
lemma Spy_see_priK [simp]:
     "evs \<in> zg ==> (Key (priK A) \<in> parts (spies evs)) = (A \<in> bad)"
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
done
text{*So that blast can use it too*}
declare  Spy_see_priK [THEN [2] rev_iffD1, dest!]
lemma Spy_analz_priK [simp]:
     "evs \<in> zg ==> (Key (priK A) \<in> analz (spies evs)) = (A \<in> bad)"
by auto 
subsection{*About NRO: Validity for @{term B}*}
text{*Below we prove that if @{term NRO} exists then @{term A} definitely
sent it, provided @{term A} is not broken.*}
text{*Strong conclusion for a good agent*}
lemma NRO_validity_good:
     "[|NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
        NRO \<in> parts (spies evs);
        A \<notin> bad;  evs \<in> zg |]
     ==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)  
done
lemma NRO_sender:
     "[|Says A' B {|n, b, l, C, Crypt (priK A) X|} \<in> set evs; evs \<in> zg|]
    ==> A' \<in> {A,Spy}"
apply (erule rev_mp)  
apply (erule zg.induct, simp_all)
done
text{*Holds also for @{term "A = Spy"}!*}
theorem NRO_validity:
     "[|Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs;
        NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
        A \<notin> broken;  evs \<in> zg |]
     ==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs"
apply (drule Gets_imp_Says, assumption) 
apply clarify 
apply (frule NRO_sender, auto)
txt{*We are left with the case where the sender is @{term Spy} and not
  equal to @{term A}, because @{term "A \<notin> bad"}. 
  Thus theorem @{text NRO_validity_good} applies.*}
apply (blast dest: NRO_validity_good [OF refl])
done
subsection{*About NRR: Validity for @{term A}*}
text{*Below we prove that if @{term NRR} exists then @{term B} definitely
sent it, provided @{term B} is not broken.*}
text{*Strong conclusion for a good agent*}
lemma NRR_validity_good:
     "[|NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
        NRR \<in> parts (spies evs);
        B \<notin> bad;  evs \<in> zg |]
     ==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct) 
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)  
done
lemma NRR_sender:
     "[|Says B' A {|n, a, l, Crypt (priK B) X|} \<in> set evs; evs \<in> zg|]
    ==> B' \<in> {B,Spy}"
apply (erule rev_mp)  
apply (erule zg.induct, simp_all)
done
text{*Holds also for @{term "B = Spy"}!*}
theorem NRR_validity:
     "[|Says B' A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs;
        NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
        B \<notin> broken; evs \<in> zg|]
    ==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs"
apply clarify 
apply (frule NRR_sender, auto)
txt{*We are left with the case where @{term "B' = Spy"} and  @{term "B' \<noteq> B"},
  i.e. @{term "B \<notin> bad"}, when we can apply @{text NRR_validity_good}.*}
 apply (blast dest: NRR_validity_good [OF refl])
done
subsection{*Proofs About @{term sub_K}*}
text{*Below we prove that if @{term sub_K} exists then @{term A} definitely
sent it, provided @{term A} is not broken.  *}
text{*Strong conclusion for a good agent*}
lemma sub_K_validity_good:
     "[|sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
        sub_K \<in> parts (spies evs);
        A \<notin> bad;  evs \<in> zg |]
     ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt{*Fake*} 
apply (blast dest!: Fake_parts_sing_imp_Un)
done
lemma sub_K_sender:
     "[|Says A' TTP {|n, b, l, k, Crypt (priK A) X|} \<in> set evs;  evs \<in> zg|]
    ==> A' \<in> {A,Spy}"
apply (erule rev_mp)  
apply (erule zg.induct, simp_all)
done
text{*Holds also for @{term "A = Spy"}!*}
theorem sub_K_validity:
     "[|Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs;
        sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
        A \<notin> broken;  evs \<in> zg |]
     ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
apply (drule Gets_imp_Says, assumption) 
apply clarify 
apply (frule sub_K_sender, auto)
txt{*We are left with the case where the sender is @{term Spy} and not
  equal to @{term A}, because @{term "A \<notin> bad"}. 
  Thus theorem @{text sub_K_validity_good} applies.*}
apply (blast dest: sub_K_validity_good [OF refl])
done
subsection{*Proofs About @{term con_K}*}
text{*Below we prove that if @{term con_K} exists, then @{term TTP} has it,
and therefore @{term A} and @{term B}) can get it too.  Moreover, we know
that @{term A} sent @{term sub_K}*}
lemma con_K_validity:
     "[|con_K \<in> used evs;
        con_K = Crypt (priK TTP)
                  {|Number f_con, Agent A, Agent B, Nonce L, Key K|};
        evs \<in> zg |]
    ==> Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
          \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt{*Fake*}
apply (blast dest!: Fake_parts_sing_imp_Un)
txt{*ZG2*} 
apply (blast dest: parts_cut)
done
text{*If @{term TTP} holds @{term con_K} then @{term A} sent
 @{term sub_K}.  We assume that @{term A} is not broken.  Importantly, nothing
  needs to be assumed about the form of @{term con_K}!*}
lemma Notes_TTP_imp_Says_A:
     "[|Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
           \<in> set evs;
        sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
        A \<notin> broken; evs \<in> zg|]
     ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt{*ZG4*}
apply clarify 
apply (rule sub_K_validity, auto) 
done
text{*If @{term con_K} exists, then @{term A} sent @{term sub_K}.  We again
   assume that @{term A} is not broken. *}
theorem B_sub_K_validity:
     "[|con_K \<in> used evs;
        con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
                                   Nonce L, Key K|};
        sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
        A \<notin> broken; evs \<in> zg|]
     ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
by (blast dest: con_K_validity Notes_TTP_imp_Says_A)
subsection{*Proving fairness*}
text{*Cannot prove that, if @{term B} has NRO, then  @{term A} has her NRR.
It would appear that @{term B} has a small advantage, though it is
useless to win disputes: @{term B} needs to present @{term con_K} as well.*}
text{*Strange: unicity of the label protects @{term A}?*}
lemma A_unicity: 
     "[|NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};
        NRO \<in> parts (spies evs);
        Says A B {|Number f_nro, Agent B, Nonce L, Crypt K M', NRO'|}
          \<in> set evs;
        A \<notin> bad; evs \<in> zg |]
     ==> M'=M"
apply clarify
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto) 
txt{*ZG1: freshness*}
apply (blast dest: parts.Body) 
done
text{*Fairness lemma: if @{term sub_K} exists, then @{term A} holds 
NRR.  Relies on unicity of labels.*}
lemma sub_K_implies_NRR:
     "[| NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};
         NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M|};
         sub_K \<in> parts (spies evs);
         NRO \<in> parts (spies evs);
         sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
         A \<notin> bad;  evs \<in> zg |]
     ==> Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt{*Fake*}
apply blast 
txt{*ZG1: freshness*}
apply (blast dest: parts.Body) 
txt{*ZG3*} 
apply (blast dest: A_unicity [OF refl]) 
done
lemma Crypt_used_imp_L_used:
     "[| Crypt (priK TTP) {|F, A, B, L, K|} \<in> used evs; evs \<in> zg |]
      ==> L \<in> used evs"
apply (erule rev_mp)
apply (erule zg.induct, auto)
txt{*Fake*}
apply (blast dest!: Fake_parts_sing_imp_Un)
txt{*ZG2: freshness*}
apply (blast dest: parts.Body) 
done
text{*Fairness for @{term A}: if @{term con_K} and @{term NRO} exist, 
then @{term A} holds NRR.  @{term A} must be uncompromised, but there is no
assumption about @{term B}.*}
theorem A_fairness_NRO:
     "[|con_K \<in> used evs;
        NRO \<in> parts (spies evs);
        con_K = Crypt (priK TTP)
                      {|Number f_con, Agent A, Agent B, Nonce L, Key K|};
        NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};
        NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M|};
        A \<notin> bad;  evs \<in> zg |]
    ==> Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
   txt{*Fake*}
   apply (simp add: parts_insert_knows_A) 
   apply (blast dest: Fake_parts_sing_imp_Un) 
  txt{*ZG1*}
  apply (blast dest: Crypt_used_imp_L_used) 
 txt{*ZG2*}
 apply (blast dest: parts_cut)
txt{*ZG4*} 
apply (blast intro: sub_K_implies_NRR [OF refl] 
             dest: Gets_imp_knows_Spy [THEN parts.Inj])
done
text{*Fairness for @{term B}: NRR exists at all, then @{term B} holds NRO.
@{term B} must be uncompromised, but there is no assumption about @{term
A}. *}
theorem B_fairness_NRR:
     "[|NRR \<in> used evs;
        NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
        NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
        B \<notin> bad; evs \<in> zg |]
    ==> Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt{*Fake*}
apply (blast dest!: Fake_parts_sing_imp_Un)
txt{*ZG2*}
apply (blast dest: parts_cut)
done
text{*If @{term con_K} exists at all, then @{term B} can get it, by @{text
con_K_validity}.  Cannot conclude that also NRO is available to @{term B},
because if @{term A} were unfair, @{term A} could build message 3 without
building message 1, which contains NRO. *}
end