src/ZF/AC/WO6_WO1.ML
author lcp
Tue, 25 Apr 1995 11:06:52 +0200
changeset 1071 96dfc9977bf5
parent 1057 5097aa914449
child 1208 bc3093616ba4
permissions -rw-r--r--
Simple updates for compatibility with KG

(*  Title: 	ZF/AC/WO6_WO1.ML
    ID:         $Id$
    Author: 	Krzysztof Gr`abczewski

The proof of "WO6 ==> WO1".  Simplified by L C Paulson.

From the book "Equivalents of the Axiom of Choice" by Rubin & Rubin,
pages 2-5
*)

open WO6_WO1;

goal OrderType.thy 
      "!!i j k. [| k < i++j;  Ord(i);  Ord(j) |] ==>  \
\                  k < i  |  (~ k<i & k = i ++ (k--i) & (k--i)<j)";
by (res_inst_tac [("i","k"),("j","i")] Ord_linear2 1);
by (dtac odiff_lt_mono2 4 THEN assume_tac 4);
by (asm_full_simp_tac
    (ZF_ss addsimps [oadd_odiff_inverse, odiff_oadd_inverse]) 4);
by (safe_tac (ZF_cs addSEs [lt_Ord]));
val lt_oadd_odiff_disj = result();

(*The corresponding elimination rule*)
val lt_oadd_odiff_cases = rule_by_tactic (safe_tac ZF_cs)
                                         (lt_oadd_odiff_disj RS disjE);

(* ********************************************************************** *)
(* The most complicated part of the proof - lemma ii - p. 2-4		  *)
(* ********************************************************************** *)

(* ********************************************************************** *)
(* some properties of relation uu(beta, gamma, delta) - p. 2		  *)
(* ********************************************************************** *)

goalw thy [uu_def] "domain(uu(f,b,g,d)) <= f`b";
by (fast_tac ZF_cs 1);
val domain_uu_subset = result();

goal thy "!! a. ALL b<a. f`b lepoll m ==> \
\               ALL b<a. ALL g<a. ALL d<a. domain(uu(f,b,g,d)) lepoll m";
by (fast_tac (AC_cs addSEs
	[domain_uu_subset RS subset_imp_lepoll RS lepoll_trans]) 1);
val quant_domain_uu_lepoll_m = result();

goalw thy [uu_def] "uu(f,b,g,d) <= f`b * f`g";
by (fast_tac ZF_cs 1);
val uu_subset1 = result();

goalw thy [uu_def] "uu(f,b,g,d) <= f`d";
by (fast_tac ZF_cs 1);
val uu_subset2 = result();

goal thy "!! a. [| ALL b<a. f`b lepoll m;  d<a |] ==> uu(f,b,g,d) lepoll m";
by (fast_tac (AC_cs
	addSEs [uu_subset2 RS subset_imp_lepoll RS lepoll_trans]) 1);
val uu_lepoll_m = result();

(* ********************************************************************** *)
(* Two cases for lemma ii 						  *)
(* ********************************************************************** *)
goalw thy [lesspoll_def] 
  "!! a f u. ALL b<a. ALL g<a. ALL d<a. u(f,b,g,d) lepoll m ==>  \
\            (ALL b<a. f`b ~= 0 --> (EX g<a. EX d<a. u(f,b,g,d) ~= 0 &  \
\		           		u(f,b,g,d) lesspoll m)) |  \
\            (EX b<a. f`b ~= 0 & (ALL g<a. ALL d<a. u(f,b,g,d) ~= 0 -->  \
\		           		u(f,b,g,d) eqpoll m))";
by (asm_simp_tac OrdQuant_ss 1);
by (fast_tac AC_cs 1);
val cases = result();

(* ********************************************************************** *)
(* Lemmas used in both cases						  *)
(* ********************************************************************** *)
goal thy "!!a C. Ord(a) ==> (UN b<a++a. C(b)) = (UN b<a. C(b) Un C(a++b))";
by (fast_tac (AC_cs addSIs [equalityI] addIs [ltI] 
                    addSDs [lt_oadd_disj]
                    addSEs [lt_oadd1, oadd_lt_mono2]) 1);
val UN_oadd = result();


(* ********************************************************************** *)
(* Case 1 : lemmas							  *)
(* ********************************************************************** *)

goalw thy [vv1_def] "vv1(f,m,b) <= f`b";
by (rtac (letI RS letI) 1);
by (split_tac [expand_if] 1);
by (simp_tac (ZF_ss addsimps [domain_uu_subset]) 1);
val vv1_subset = result();

(* ********************************************************************** *)
(* Case 1 : Union of images is the whole "y"				  *)
(* ********************************************************************** *)
goalw thy [gg1_def]
  "!! a f y. [| Ord(a);  m:nat |] ==>  	\
\	     (UN b<a++a. gg1(f,a,m)`b) = (UN b<a. f`b)";
by (asm_simp_tac
    (OrdQuant_ss addsimps [UN_oadd, lt_oadd1,
			   oadd_le_self RS le_imp_not_lt, lt_Ord,
			   odiff_oadd_inverse, ltD,
			   vv1_subset RS Diff_partition, ww1_def]) 1);
val UN_gg1_eq = result();

goal thy "domain(gg1(f,a,m)) = a++a";
by (simp_tac (ZF_ss addsimps [lam_funtype RS domain_of_fun, gg1_def]) 1);
val domain_gg1 = result();

(* ********************************************************************** *)
(* every value of defined function is less than or equipollent to m	  *)
(* ********************************************************************** *)
goal thy "!!a b. [| P(a, b);  Ord(a);  Ord(b);  \
\		Least_a = (LEAST a. EX x. Ord(x) & P(a, x)) |]  \
\		==> P(Least_a, LEAST b. P(Least_a, b))";
by (eresolve_tac [ssubst] 1);
by (res_inst_tac [("Q","%z. P(z, LEAST b. P(z, b))")] LeastI2 1);
by (REPEAT (fast_tac (ZF_cs addSEs [LeastI]) 1));
val nested_LeastI = result();

val nested_Least_instance = 
   standard
     (read_instantiate 
	[("P","%g d. domain(uu(f,b,g,d)) ~= 0 &  \
\		domain(uu(f,b,g,d)) lepoll m")] nested_LeastI);

goalw thy [gg1_def]
    "!!a. [| Ord(a);  m:nat;  \
\	     ALL b<a. f`b ~=0 -->  					\
\	     (EX g<a. EX d<a. domain(uu(f,b,g,d)) ~= 0  &  		\
\	                      domain(uu(f,b,g,d)) lepoll m);    	\
\            ALL b<a. f`b lepoll succ(m);  b<a++a			\
\	  |] ==> gg1(f,a,m)`b lepoll m";
by (asm_simp_tac OrdQuant_ss 1);
by (safe_tac (OrdQuant_cs addSEs [lt_oadd_odiff_cases]));
(*Case b<a   : show vv1(f,m,b) lepoll m *)
by (asm_simp_tac (ZF_ss addsimps [vv1_def, Let_def] 
                        setloop split_tac [expand_if]) 1);
by (fast_tac (AC_cs addIs [nested_Least_instance RS conjunct2]
		addSEs [lt_Ord]
		addSIs [empty_lepollI]) 1);
(*Case a le b: show ww1(f,m,b--a) lepoll m *)
by (asm_simp_tac (ZF_ss addsimps [ww1_def]) 1);
by (excluded_middle_tac "f`(b--a) = 0" 1);
by (asm_simp_tac (OrdQuant_ss addsimps [empty_lepollI]) 2);
by (resolve_tac [Diff_lepoll] 1);
by (fast_tac AC_cs 1);
by (rtac vv1_subset 1);
by (dtac (ospec RS mp) 1);
by (REPEAT (eresolve_tac [asm_rl, oexE] 1));
by (asm_simp_tac (ZF_ss
	addsimps [vv1_def, Let_def, lt_Ord, 
		  nested_Least_instance RS conjunct1]) 1);
val gg1_lepoll_m = result();

(* ********************************************************************** *)
(* Case 2 : lemmas							  *)
(* ********************************************************************** *)

(* ********************************************************************** *)
(* Case 2 : vv2_subset							  *)
(* ********************************************************************** *)

goalw thy [uu_def] "!!f. [| b<a;  g<a;  f`b~=0;  f`g~=0;  	\
\			    y*y <= y;  (UN b<a. f`b)=y  	\
\			 |] ==> EX d<a. uu(f,b,g,d) ~= 0";
by (fast_tac (AC_cs addSIs [not_emptyI] 
	  	    addSDs [SigmaI RSN (2, subsetD)]
		    addSEs [not_emptyE]) 1);
val ex_d_uu_not_empty = result();

goal thy "!!f. [| b<a; g<a; f`b~=0; f`g~=0;  \
\			y*y<=y;	(UN b<a. f`b)=y |]  \
\		==> uu(f,b,g,LEAST d. (uu(f,b,g,d) ~= 0)) ~= 0";
by (dresolve_tac [ex_d_uu_not_empty] 1 THEN REPEAT (assume_tac 1));
by (fast_tac (AC_cs addSEs [LeastI, lt_Ord]) 1);
val uu_not_empty = result();

goal ZF.thy "!!r. [| r<=A*B; r~=0 |] ==> domain(r)~=0";
by (REPEAT (eresolve_tac [asm_rl, not_emptyE, subsetD RS SigmaE, 
		sym RSN (2, subst_elem) RS domainI RS not_emptyI] 1));
val not_empty_rel_imp_domain = result();

goal thy "!!f. [| b<a; g<a; f`b~=0; f`g~=0;  \
\			y*y <= y; (UN b<a. f`b)=y |]  \
\		==> (LEAST d. uu(f,b,g,d) ~= 0) < a";
by (eresolve_tac [ex_d_uu_not_empty RS oexE] 1
	THEN REPEAT (assume_tac 1));
by (resolve_tac [Least_le RS lt_trans1] 1
	THEN (REPEAT (ares_tac [lt_Ord] 1)));
val Least_uu_not_empty_lt_a = result();

goal ZF.thy "!!B. [| B<=A; a~:B |] ==> B <= A-{a}";
by (fast_tac ZF_cs 1);
val subset_Diff_sing = result();

(*Could this be proved more directly?*)
goal thy "!!A B. [| A lepoll m; m lepoll B; B <= A; m:nat |] ==> A=B";
by (eresolve_tac [natE] 1);
by (fast_tac (AC_cs addSDs [lepoll_0_is_0] addSIs [equalityI]) 1);
by (hyp_subst_tac 1);
by (resolve_tac [equalityI] 1);
by (assume_tac 2);
by (resolve_tac [subsetI] 1);
by (excluded_middle_tac "?P" 1 THEN (assume_tac 2));
by (eresolve_tac [subset_Diff_sing RS subset_imp_lepoll RSN (2, 
		Diff_sing_lepoll RSN (3, lepoll_trans RS lepoll_trans)) RS 
		succ_lepoll_natE] 1
	THEN REPEAT (assume_tac 1));
val supset_lepoll_imp_eq = result();

goal thy
 "!!a. [| ALL g<a. ALL d<a. domain(uu(f, b, g, d))~=0 -->  		\
\	  domain(uu(f, b, g, d)) eqpoll succ(m);  			\
\	  ALL b<a. f`b lepoll succ(m);  y*y <= y;  			\
\	  (UN b<a. f`b)=y;  b<a;  g<a;  d<a;  				\
\	  f`b~=0;  f`g~=0;  m:nat;  s:f`b  				\
\      |] ==> uu(f, b, g, LEAST d. uu(f,b,g,d)~=0) : f`b -> f`g";
by (dres_inst_tac [("x2","g")] (ospec RS ospec RS mp) 1);
by (rtac ([uu_subset1, uu_not_empty] MRS not_empty_rel_imp_domain) 3);
by (rtac Least_uu_not_empty_lt_a 2 THEN TRYALL assume_tac);
by (resolve_tac [eqpoll_sym RS eqpoll_imp_lepoll RS 
	(Least_uu_not_empty_lt_a RSN (2, uu_lepoll_m) RSN (2, 
	uu_subset1 RSN (4, rel_is_fun)))] 1
	THEN TRYALL assume_tac);
by (rtac (eqpoll_sym RS eqpoll_imp_lepoll RSN (2, supset_lepoll_imp_eq)) 1);
by (REPEAT (fast_tac (AC_cs addSIs [domain_uu_subset, nat_succI]) 1));
val uu_Least_is_fun = result();

goalw thy [vv2_def]
    "!!a. [| ALL g<a. ALL d<a. domain(uu(f, b, g, d))~=0 -->		\
\	     domain(uu(f, b, g, d)) eqpoll succ(m);			\
\	     ALL b<a. f`b lepoll succ(m); y*y <= y;			\
\	     (UN b<a. f`b)=y;  b<a;  g<a;  m:nat;  s:f`b		\
\	   |] ==> vv2(f,b,g,s) <= f`g";
by (split_tac [expand_if] 1);
by (fast_tac (FOL_cs addSEs [uu_Least_is_fun]
	             addSIs [empty_subsetI, not_emptyI, 
			     singleton_subsetI, apply_type]) 1);
val vv2_subset = result();

(* ********************************************************************** *)
(* Case 2 : Union of images is the whole "y"				  *)
(* ********************************************************************** *)
goalw thy [gg2_def]
    "!!a. [| ALL g<a. ALL d<a. domain(uu(f,b,g,d)) ~= 0 -->  		\
\	     domain(uu(f,b,g,d)) eqpoll succ(m);  			\
\	     ALL b<a. f`b lepoll succ(m); y*y<=y;  			\
\	     (UN b<a.f`b)=y;  Ord(a);  m:nat;  s:f`b;  b<a		\
\	  |] ==> (UN g<a++a. gg2(f,a,b,s) ` g) = y";
bd sym 1;
by (asm_simp_tac
    (OrdQuant_ss addsimps [UN_oadd, lt_oadd1,
			   oadd_le_self RS le_imp_not_lt, lt_Ord,
			   odiff_oadd_inverse, ww2_def,
			   vv2_subset RS Diff_partition]) 1);
val UN_gg2_eq = result();

goal thy "domain(gg2(f,a,b,s)) = a++a";
by (simp_tac (ZF_ss addsimps [lam_funtype RS domain_of_fun, gg2_def]) 1);
val domain_gg2 = result();

(* ********************************************************************** *)
(* every value of defined function is less than or equipollent to m	  *)
(* ********************************************************************** *)

goalw thy [vv2_def]
    "!!m. [| m:nat; m~=0 |] ==> vv2(f,b,g,s) lepoll m";
by (asm_simp_tac (OrdQuant_ss addsimps [empty_lepollI]
                              setloop split_tac [expand_if]) 1);
by (fast_tac (AC_cs
	addSDs [le_imp_subset RS subset_imp_lepoll RS lepoll_0_is_0]
	addSIs [singleton_eqpoll_1 RS eqpoll_imp_lepoll RS lepoll_trans,
		not_lt_imp_le RS le_imp_subset RS subset_imp_lepoll,
		nat_into_Ord, nat_1I]) 1);
val vv2_lepoll = result();

goalw thy [ww2_def]
    "!!m. [| ALL b<a. f`b lepoll succ(m);  g<a;  m:nat;  vv2(f,b,g,d) <= f`g  \
\	  |] ==> ww2(f,b,g,d) lepoll m";
by (excluded_middle_tac "f`g = 0" 1);
by (asm_simp_tac (OrdQuant_ss addsimps [empty_lepollI]) 2);
by (dresolve_tac [ospec] 1 THEN (assume_tac 1));
by (resolve_tac [Diff_lepoll] 1
	THEN (TRYALL assume_tac));
by (asm_simp_tac (OrdQuant_ss addsimps [vv2_def, expand_if, not_emptyI]) 1);
val ww2_lepoll = result();

goalw thy [gg2_def]
    "!!a. [| ALL g<a. ALL d<a. domain(uu(f,b,g,d)) ~= 0 -->		\
\	     domain(uu(f,b,g,d)) eqpoll succ(m);			\
\	     ALL b<a. f`b lepoll succ(m);  y*y <= y;			\
\	     (UN b<a. f`b)=y;  b<a;  s:f`b;  m:nat;  m~= 0;  g<a++a	\
\         |] ==> gg2(f,a,b,s) ` g lepoll m";
by (asm_simp_tac OrdQuant_ss 1);
by (safe_tac (OrdQuant_cs addSEs [lt_oadd_odiff_cases, lt_Ord2]));
by (asm_simp_tac (OrdQuant_ss addsimps [vv2_lepoll]) 1);
by (asm_simp_tac (ZF_ss addsimps [ww2_lepoll, vv2_subset]) 1);
val gg2_lepoll_m = result();

(* ********************************************************************** *)
(* lemma ii	 							  *)
(* ********************************************************************** *)
goalw thy [NN_def]
	"!!y. [| succ(m) : NN(y); y*y <= y; m:nat; m~=0 |] ==> m : NN(y)";
by (REPEAT (eresolve_tac [CollectE, exE, conjE] 1));
by (resolve_tac [quant_domain_uu_lepoll_m RS cases RS disjE] 1
    THEN (assume_tac 1));
(* case 1 *)
by (asm_full_simp_tac (ZF_ss addsimps [lesspoll_succ_iff]) 1);
by (res_inst_tac [("x","a++a")] exI 1);
by (fast_tac (OrdQuant_cs addSIs [Ord_oadd, domain_gg1, UN_gg1_eq, 
				  gg1_lepoll_m]) 1);
(* case 2 *)
by (REPEAT (eresolve_tac [oexE, conjE] 1));
by (res_inst_tac [("A","f`?B")] not_emptyE 1 THEN (assume_tac 1));
by (resolve_tac [CollectI] 1);
by (eresolve_tac [succ_natD] 1);
by (res_inst_tac [("x","a++a")] exI 1);
by (res_inst_tac [("x","gg2(f,a,b,x)")] exI 1);
(*Calling fast_tac might get rid of the res_inst_tac calls, but it
  is just too slow.*)
by (asm_simp_tac (OrdQuant_ss addsimps 
		  [Ord_oadd, domain_gg2, UN_gg2_eq, gg2_lepoll_m]) 1);
val lemma_ii = result();


(* ********************************************************************** *)
(* lemma iv - p. 4 :                                                      *)
(* For every set x there is a set y such that   x Un (y * y) <= y         *)
(* ********************************************************************** *)

(* the quantifier ALL looks inelegant but makes the proofs shorter  *)
(* (used only in the following two lemmas)                          *)

goal thy "ALL n:nat. rec(n, x, %k r. r Un r*r) <=  \
\                    rec(succ(n), x, %k r. r Un r*r)";
by (fast_tac (ZF_cs addIs [rec_succ RS ssubst]) 1);
val z_n_subset_z_succ_n = result();

goal thy "!!n. [| ALL n:nat. f(n)<=f(succ(n)); n le m; n : nat; m: nat |]  \
\              ==> f(n)<=f(m)";
by (res_inst_tac [("P","n le m")] impE 1 THEN (REPEAT (assume_tac 2)));
by (res_inst_tac [("P","%z. n le z --> f(n) <= f(z)")] nat_induct 1);
by (REPEAT (fast_tac lt_cs 1));
val le_subsets = result();

goal thy "!!n m. [| n le m; m:nat |] ==>  \
\	rec(n, x, %k r. r Un r*r) <= rec(m, x, %k r. r Un r*r)";
by (resolve_tac [z_n_subset_z_succ_n RS le_subsets] 1 
    THEN (TRYALL assume_tac));
by (eresolve_tac [Ord_nat RSN (2, ltI) RSN (2, lt_trans1) RS ltD] 1
    THEN (assume_tac 1));
val le_imp_rec_subset = result();

goal thy "EX y. x Un y*y <= y";
by (res_inst_tac [("x","UN n:nat. rec(n, x, %k r. r Un r*r)")] exI 1);
by (safe_tac ZF_cs);
by (fast_tac (ZF_cs addSIs [nat_0I] addss nat_ss) 1);
by (res_inst_tac [("a","succ(n Un na)")] UN_I 1);
by (eresolve_tac [Un_nat_type RS nat_succI] 1 THEN (assume_tac 1));
by (fast_tac (ZF_cs addIs [le_imp_rec_subset RS subsetD]
		addSIs [Un_upper1_le, Un_upper2_le, Un_nat_type]
		addSEs [nat_into_Ord] addss nat_ss) 1);
val lemma_iv = result();

(* ********************************************************************** *)
(* Rubin & Rubin wrote :						  *)
(* "It follows from (ii) and mathematical induction that if y*y <= y then *)
(* y can be well-ordered"						  *)

(* In fact we have to prove :						  *)
(*	* WO6 ==> NN(y) ~= 0						  *)
(*	* reverse induction which lets us infer that 1 : NN(y)		  *)
(*	* 1 : NN(y) ==> y can be well-ordered				  *)
(* ********************************************************************** *)

(* ********************************************************************** *)
(*	WO6 ==> NN(y) ~= 0						  *)
(* ********************************************************************** *)

goalw thy [WO6_def, NN_def] "!!y. WO6 ==> NN(y) ~= 0";
by (fast_tac (ZF_cs addEs [equals0D]) 1);
val WO6_imp_NN_not_empty = result();

(* ********************************************************************** *)
(*	1 : NN(y) ==> y can be well-ordered				  *)
(* ********************************************************************** *)

goal thy "!!f. [| (UN b<a. f`b)=y; x:y; ALL b<a. f`b lepoll 1; Ord(a) |]  \
\		==> EX c<a. f`c = {x}";
by (fast_tac (AC_cs addSEs [lepoll_1_is_sing]) 1);
val lemma1 = result();

goal thy "!!f. [| (UN b<a. f`b)=y; x:y; ALL b<a. f`b lepoll 1; Ord(a) |]  \
\		==> f` (LEAST i. f`i = {x}) = {x}";
by (dresolve_tac [lemma1] 1 THEN REPEAT (assume_tac 1));
by (fast_tac (AC_cs addSEs [lt_Ord] addIs [LeastI]) 1);
val lemma2 = result();

goalw thy [NN_def] "!!y. 1 : NN(y) ==> EX a f. Ord(a) & f:inj(y, a)";
by (eresolve_tac [CollectE] 1);
by (REPEAT (eresolve_tac [exE, conjE] 1));
by (res_inst_tac [("x","a")] exI 1);
by (res_inst_tac [("x","lam x:y. LEAST i. f`i = {x}")] exI 1);
by (resolve_tac [conjI] 1 THEN (assume_tac 1));
by (res_inst_tac [("d","%i. THE x. x:f`i")] lam_injective 1);
by (dresolve_tac [lemma1] 1 THEN REPEAT (assume_tac 1));
by (fast_tac (AC_cs addSEs [Least_le RS lt_trans1 RS ltD, lt_Ord]) 1);
by (resolve_tac [lemma2 RS ssubst] 1 THEN REPEAT (assume_tac 1));
by (fast_tac (ZF_cs addSIs [the_equality]) 1);
val NN_imp_ex_inj = result();

goal thy "!!y. [| y*y <= y; 1 : NN(y) |] ==> EX r. well_ord(y, r)";
by (dresolve_tac [NN_imp_ex_inj] 1);
by (fast_tac (ZF_cs addSEs [well_ord_Memrel RSN (2,  well_ord_rvimage)]) 1);
val y_well_ord = result();

(* ********************************************************************** *)
(*	reverse induction which lets us infer that 1 : NN(y)		  *)
(* ********************************************************************** *)

val [prem1, prem2] = goal thy
	"[| n:nat; !!m. [| m:nat; m~=0; P(succ(m)) |] ==> P(m) |]  \
\	==> n~=0 --> P(n) --> P(1)";
by (res_inst_tac [("n","n")] nat_induct 1);
by (resolve_tac [prem1] 1);
by (fast_tac ZF_cs 1);
by (excluded_middle_tac "x=0" 1);
by (fast_tac ZF_cs 2);
by (fast_tac (ZF_cs addSIs [prem2]) 1);
val rev_induct_lemma = result();

val prems = goal thy
	"[| P(n); n:nat; n~=0;  \
\	!!m. [| m:nat; m~=0; P(succ(m)) |] ==> P(m) |]  \
\	==> P(1)";
by (resolve_tac [rev_induct_lemma RS impE] 1);
by (eresolve_tac [impE] 4 THEN (assume_tac 5));
by (REPEAT (ares_tac prems 1));
val rev_induct = result();

goalw thy [NN_def] "!!n. n:NN(y) ==> n:nat";
by (etac CollectD1 1);
val NN_into_nat = result();

goal thy "!!n. [| n:NN(y); y*y <= y; n~=0 |] ==> 1:NN(y)";
by (resolve_tac [rev_induct] 1 THEN REPEAT (ares_tac [NN_into_nat] 1));
by (resolve_tac [lemma_ii] 1 THEN REPEAT (assume_tac 1));
val lemma3 = result();

(* ********************************************************************** *)
(* Main theorem "WO6 ==> WO1"						  *)
(* ********************************************************************** *)

(* another helpful lemma *)
goalw thy [NN_def] "!!y. 0:NN(y) ==> y=0";
by (fast_tac (AC_cs addSIs [equalityI] 
                    addSDs [lepoll_0_is_0] addEs [subst]) 1);
val NN_y_0 = result();

goalw thy [WO1_def] "!!Z. WO6 ==> WO1";
by (resolve_tac [allI] 1);
by (excluded_middle_tac "A=0" 1);
by (fast_tac (ZF_cs addSIs [well_ord_Memrel, nat_0I RS nat_into_Ord]) 2);
by (res_inst_tac [("x1","A")] (lemma_iv RS revcut_rl) 1);
by (eresolve_tac [exE] 1);
by (dresolve_tac [WO6_imp_NN_not_empty] 1);
by (eresolve_tac [Un_subset_iff RS iffD1 RS conjE] 1);
by (eres_inst_tac [("A","NN(y)")] not_emptyE 1);
by (forward_tac [y_well_ord] 1);
by (fast_tac (ZF_cs addEs [well_ord_subset]) 2);
by (fast_tac (ZF_cs addSIs [lemma3] addSDs [NN_y_0] addSEs [not_emptyE]) 1);
qed "WO6_imp_WO1";