(* Title: HOL/Divides.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
The division operators div, mod and the divides relation "dvd"
*)
(** Less-then properties **)
(*In ordinary notation: if 0<n and n<=m then m-n < m *)
goal Arith.thy "!!m. [| 0<n; ~ m<n |] ==> m - n < m";
by (subgoal_tac "0<n --> ~ m<n --> m - n < m" 1);
by (Blast_tac 1);
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
by (ALLGOALS(asm_simp_tac(simpset() addsimps [diff_less_Suc])));
qed "diff_less";
val wf_less_trans = [eq_reflection, wf_pred_nat RS wf_trancl] MRS
def_wfrec RS trans;
(*** Remainder ***)
goal thy "(%m. m mod n) = wfrec (trancl pred_nat) \
\ (%f j. if j<n then j else f (j-n))";
by (simp_tac (simpset() addsimps [mod_def]) 1);
qed "mod_eq";
goal thy "!!m. m<n ==> m mod n = m";
by (rtac (mod_eq RS wf_less_trans) 1);
by (Asm_simp_tac 1);
qed "mod_less";
goal thy "!!m. [| 0<n; ~m<n |] ==> m mod n = (m-n) mod n";
by (rtac (mod_eq RS wf_less_trans) 1);
by (asm_simp_tac (simpset() addsimps [diff_less, cut_apply, less_eq]) 1);
qed "mod_geq";
goal thy "m mod 1 = 0";
by (induct_tac "m" 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [mod_less, mod_geq])));
qed "mod_1";
Addsimps [mod_1];
goal thy "!!n. 0<n ==> n mod n = 0";
by (asm_simp_tac (simpset() addsimps [mod_less, mod_geq]) 1);
qed "mod_self";
goal thy "!!n. 0<n ==> (m+n) mod n = m mod n";
by (subgoal_tac "(n + m) mod n = (n+m-n) mod n" 1);
by (stac (mod_geq RS sym) 2);
by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [add_commute])));
qed "mod_eq_add";
goal thy "!!k. [| 0<k; 0<n |] ==> (m mod n)*k = (m*k) mod (n*k)";
by (res_inst_tac [("n","m")] less_induct 1);
by (case_tac "na<n" 1);
(*case na<n*)
by (asm_simp_tac (simpset() addsimps [mod_less]) 1);
(*case n<=na*)
by (asm_simp_tac (simpset() addsimps [mod_geq, diff_less, zero_less_mult_iff,
diff_mult_distrib]) 1);
qed "mod_mult_distrib";
goal thy "!!k. [| 0<k; 0<n |] ==> k*(m mod n) = (k*m) mod (k*n)";
by (res_inst_tac [("n","m")] less_induct 1);
by (case_tac "na<n" 1);
(*case na<n*)
by (asm_simp_tac (simpset() addsimps [mod_less]) 1);
(*case n<=na*)
by (asm_simp_tac (simpset() addsimps [mod_geq, diff_less, zero_less_mult_iff,
diff_mult_distrib2]) 1);
qed "mod_mult_distrib2";
goal thy "!!n. 0<n ==> m*n mod n = 0";
by (induct_tac "m" 1);
by (asm_simp_tac (simpset() addsimps [mod_less]) 1);
by (dres_inst_tac [("m","m*n")] mod_eq_add 1);
by (asm_full_simp_tac (simpset() addsimps [add_commute]) 1);
qed "mod_mult_self_is_0";
Addsimps [mod_mult_self_is_0];
(*** Quotient ***)
goal thy "(%m. m div n) = wfrec (trancl pred_nat) \
\ (%f j. if j<n then 0 else Suc (f (j-n)))";
by (simp_tac (simpset() addsimps [div_def]) 1);
qed "div_eq";
goal thy "!!m. m<n ==> m div n = 0";
by (rtac (div_eq RS wf_less_trans) 1);
by (Asm_simp_tac 1);
qed "div_less";
goal thy "!!M. [| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)";
by (rtac (div_eq RS wf_less_trans) 1);
by (asm_simp_tac (simpset() addsimps [diff_less, cut_apply, less_eq]) 1);
qed "div_geq";
(*Main Result about quotient and remainder.*)
goal thy "!!m. 0<n ==> (m div n)*n + m mod n = m";
by (res_inst_tac [("n","m")] less_induct 1);
by (rename_tac "k" 1); (*Variable name used in line below*)
by (case_tac "k<n" 1);
by (ALLGOALS (asm_simp_tac(simpset() addsimps ([add_assoc] @
[mod_less, mod_geq, div_less, div_geq,
add_diff_inverse, diff_less]))));
qed "mod_div_equality";
goal thy "m div 1 = m";
by (induct_tac "m" 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [div_less, div_geq])));
qed "div_1";
Addsimps [div_1];
goal thy "!!n. 0<n ==> n div n = 1";
by (asm_simp_tac (simpset() addsimps [div_less, div_geq]) 1);
qed "div_self";
(* Monotonicity of div in first argument *)
goal thy "!!n. 0<k ==> ALL m. m <= n --> (m div k) <= (n div k)";
by (res_inst_tac [("n","n")] less_induct 1);
by (Clarify_tac 1);
by (case_tac "na<k" 1);
(* 1 case n<k *)
by (subgoal_tac "m<k" 1);
by (asm_simp_tac (simpset() addsimps [div_less]) 1);
by (trans_tac 1);
(* 2 case n >= k *)
by (case_tac "m<k" 1);
(* 2.1 case m<k *)
by (asm_simp_tac (simpset() addsimps [div_less]) 1);
(* 2.2 case m>=k *)
by (asm_simp_tac (simpset() addsimps [div_geq, diff_less, diff_le_mono]) 1);
qed_spec_mp "div_le_mono";
(* Antimonotonicity of div in second argument *)
goal thy "!!k m n. [| 0<m; m<=n |] ==> (k div n) <= (k div m)";
by (subgoal_tac "0<n" 1);
by (trans_tac 2);
by (res_inst_tac [("n","k")] less_induct 1);
by (Simp_tac 1);
by (rename_tac "k" 1);
by (case_tac "k<n" 1);
by (asm_simp_tac (simpset() addsimps [div_less]) 1);
by (subgoal_tac "~(k<m)" 1);
by (trans_tac 2);
by (asm_simp_tac (simpset() addsimps [div_geq]) 1);
by (subgoal_tac "(k-n) div n <= (k-m) div n" 1);
by (best_tac (claset() addIs [le_trans]
addss (simpset() addsimps [diff_less])) 1);
by (REPEAT (eresolve_tac [div_le_mono,diff_le_mono2] 1));
qed "div_le_mono2";
goal thy "!!m n. 0<n ==> m div n <= m";
by (subgoal_tac "m div n <= m div 1" 1);
by (Asm_full_simp_tac 1);
by (rtac div_le_mono2 1);
by (ALLGOALS trans_tac);
qed "div_le_dividend";
Addsimps [div_le_dividend];
(* Similar for "less than" *)
goal thy "!!m n. 1<n ==> (0 < m) --> (m div n < m)";
by (res_inst_tac [("n","m")] less_induct 1);
by (Simp_tac 1);
by (rename_tac "m" 1);
by (case_tac "m<n" 1);
by (asm_full_simp_tac (simpset() addsimps [div_less]) 1);
by (subgoal_tac "0<n" 1);
by (trans_tac 2);
by (asm_full_simp_tac (simpset() addsimps [div_geq]) 1);
by (case_tac "n<m" 1);
by (subgoal_tac "(m-n) div n < (m-n)" 1);
by (REPEAT (ares_tac [impI,less_trans_Suc] 1));
by (asm_full_simp_tac (simpset() addsimps [diff_less]) 1);
by (dres_inst_tac [("m","n")] less_imp_diff_positive 1);
by (asm_full_simp_tac (simpset() addsimps [diff_less]) 1);
(* case n=m *)
by (subgoal_tac "m=n" 1);
by (trans_tac 2);
by (asm_simp_tac (simpset() addsimps [div_less]) 1);
qed_spec_mp "div_less_dividend";
Addsimps [div_less_dividend];
(*** Further facts about mod (mainly for the mutilated chess board ***)
goal thy
"!!m n. 0<n ==> \
\ Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))";
by (res_inst_tac [("n","m")] less_induct 1);
by (excluded_middle_tac "Suc(na)<n" 1);
(* case Suc(na) < n *)
by (forward_tac [lessI RS less_trans] 2);
by (asm_simp_tac (simpset() addsimps [mod_less, less_not_refl2 RS not_sym]) 2);
(* case n <= Suc(na) *)
by (asm_full_simp_tac (simpset() addsimps [not_less_iff_le, mod_geq]) 1);
by (etac (le_imp_less_or_eq RS disjE) 1);
by (asm_simp_tac (simpset() addsimps [Suc_diff_n]) 1);
by (asm_full_simp_tac (simpset() addsimps [not_less_eq RS sym,
diff_less, mod_geq]) 1);
by (asm_simp_tac (simpset() addsimps [mod_less]) 1);
qed "mod_Suc";
goal thy "!!m n. 0<n ==> m mod n < n";
by (res_inst_tac [("n","m")] less_induct 1);
by (excluded_middle_tac "na<n" 1);
(*case na<n*)
by (asm_simp_tac (simpset() addsimps [mod_less]) 2);
(*case n le na*)
by (asm_full_simp_tac (simpset() addsimps [mod_geq, diff_less]) 1);
qed "mod_less_divisor";
(** Evens and Odds **)
(*With less_zeroE, causes case analysis on b<2*)
AddSEs [less_SucE];
goal thy "!!k b. b<2 ==> k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)";
by (subgoal_tac "k mod 2 < 2" 1);
by (asm_simp_tac (simpset() addsimps [mod_less_divisor]) 2);
by (asm_simp_tac (simpset() addsplits [expand_if]) 1);
by (Blast_tac 1);
qed "mod2_cases";
goal thy "Suc(Suc(m)) mod 2 = m mod 2";
by (subgoal_tac "m mod 2 < 2" 1);
by (asm_simp_tac (simpset() addsimps [mod_less_divisor]) 2);
by Safe_tac;
by (ALLGOALS (asm_simp_tac (simpset() addsimps [mod_Suc])));
qed "mod2_Suc_Suc";
Addsimps [mod2_Suc_Suc];
goal thy "!!m. m mod 2 ~= 0 ==> m mod 2 = 1";
by (subgoal_tac "m mod 2 < 2" 1);
by (asm_simp_tac (simpset() addsimps [mod_less_divisor]) 2);
by (safe_tac (claset() addSEs [lessE]));
by (ALLGOALS (blast_tac (claset() addIs [sym])));
qed "mod2_neq_0";
goal thy "(m+m) mod 2 = 0";
by (induct_tac "m" 1);
by (simp_tac (simpset() addsimps [mod_less]) 1);
by (Asm_simp_tac 1);
qed "mod2_add_self";
Addsimps [mod2_add_self];
Delrules [less_SucE];
(*** More division laws ***)
goal thy "!!n. 0<n ==> m*n div n = m";
by (cut_inst_tac [("m", "m*n")] mod_div_equality 1);
by (assume_tac 1);
by (asm_full_simp_tac (simpset() addsimps [mod_mult_self_is_0]) 1);
qed "div_mult_self_is_m";
Addsimps [div_mult_self_is_m];
(*Cancellation law for division*)
goal thy "!!k. [| 0<n; 0<k |] ==> (k*m) div (k*n) = m div n";
by (res_inst_tac [("n","m")] less_induct 1);
by (case_tac "na<n" 1);
by (asm_simp_tac (simpset() addsimps [div_less, zero_less_mult_iff,
mult_less_mono2]) 1);
by (subgoal_tac "~ k*na < k*n" 1);
by (asm_simp_tac
(simpset() addsimps [zero_less_mult_iff, div_geq,
diff_mult_distrib2 RS sym, diff_less]) 1);
by (asm_full_simp_tac (simpset() addsimps [not_less_iff_le,
le_refl RS mult_le_mono]) 1);
qed "div_cancel";
Addsimps [div_cancel];
goal thy "!!k. [| 0<n; 0<k |] ==> (k*m) mod (k*n) = k * (m mod n)";
by (res_inst_tac [("n","m")] less_induct 1);
by (case_tac "na<n" 1);
by (asm_simp_tac (simpset() addsimps [mod_less, zero_less_mult_iff,
mult_less_mono2]) 1);
by (subgoal_tac "~ k*na < k*n" 1);
by (asm_simp_tac
(simpset() addsimps [zero_less_mult_iff, mod_geq,
diff_mult_distrib2 RS sym, diff_less]) 1);
by (asm_full_simp_tac (simpset() addsimps [not_less_iff_le,
le_refl RS mult_le_mono]) 1);
qed "mult_mod_distrib";
(************************************************)
(** Divides Relation **)
(************************************************)
goalw thy [dvd_def] "m dvd 0";
by (blast_tac (claset() addIs [mult_0_right RS sym]) 1);
qed "dvd_0_right";
Addsimps [dvd_0_right];
goalw thy [dvd_def] "!!m. 0 dvd m ==> m = 0";
by (fast_tac (claset() addss simpset()) 1);
qed "dvd_0_left";
goalw thy [dvd_def] "1 dvd k";
by (Simp_tac 1);
qed "dvd_1_left";
AddIffs [dvd_1_left];
goalw thy [dvd_def] "m dvd m";
by (blast_tac (claset() addIs [mult_1_right RS sym]) 1);
qed "dvd_refl";
Addsimps [dvd_refl];
goalw thy [dvd_def] "!!m n p. [| m dvd n; n dvd p |] ==> m dvd p";
by (blast_tac (claset() addIs [mult_assoc] ) 1);
qed "dvd_trans";
goalw thy [dvd_def] "!!m n. [| m dvd n; n dvd m |] ==> m=n";
by (fast_tac (claset() addDs [mult_eq_self_implies_10]
addss (simpset() addsimps [mult_assoc, mult_eq_1_iff])) 1);
qed "dvd_anti_sym";
goalw thy [dvd_def] "!!k. [| k dvd m; k dvd n |] ==> k dvd (m + n)";
by (blast_tac (claset() addIs [add_mult_distrib2 RS sym]) 1);
qed "dvd_add";
goalw thy [dvd_def] "!!k. [| k dvd m; k dvd n |] ==> k dvd (m-n)";
by (blast_tac (claset() addIs [diff_mult_distrib2 RS sym]) 1);
qed "dvd_diff";
goal thy "!!k. [| k dvd (m-n); k dvd n; n<=m |] ==> k dvd m";
by (etac (not_less_iff_le RS iffD2 RS add_diff_inverse RS subst) 1);
by (blast_tac (claset() addIs [dvd_add]) 1);
qed "dvd_diffD";
goalw thy [dvd_def] "!!k. k dvd n ==> k dvd (m*n)";
by (blast_tac (claset() addIs [mult_left_commute]) 1);
qed "dvd_mult";
goal thy "!!k. k dvd m ==> k dvd (m*n)";
by (stac mult_commute 1);
by (etac dvd_mult 1);
qed "dvd_mult2";
(* k dvd (m*k) *)
AddIffs [dvd_refl RS dvd_mult, dvd_refl RS dvd_mult2];
goalw thy [dvd_def] "!!m. [| f dvd m; f dvd n; 0<n |] ==> f dvd (m mod n)";
by (Clarify_tac 1);
by (full_simp_tac (simpset() addsimps [zero_less_mult_iff]) 1);
by (res_inst_tac
[("x", "(((k div ka)*ka + k mod ka) - ((f*k) div (f*ka)) * ka)")]
exI 1);
by (asm_simp_tac (simpset() addsimps [diff_mult_distrib2,
mult_mod_distrib, add_mult_distrib2]) 1);
qed "dvd_mod";
goal thy "!!k. [| k dvd (m mod n); k dvd n; n~=0 |] ==> k dvd m";
by (subgoal_tac "k dvd ((m div n)*n + m mod n)" 1);
by (asm_simp_tac (simpset() addsimps [dvd_add, dvd_mult]) 2);
by (asm_full_simp_tac (simpset() addsimps [mod_div_equality, zero_less_eq]) 1);
qed "dvd_mod_imp_dvd";
goalw thy [dvd_def] "!!k m n. [| (k*m) dvd (k*n); 0<k |] ==> m dvd n";
by (etac exE 1);
by (asm_full_simp_tac (simpset() addsimps mult_ac) 1);
by (Blast_tac 1);
qed "dvd_mult_cancel";
goalw thy [dvd_def] "!!i j. [| i dvd m; j dvd n|] ==> (i*j) dvd (m*n)";
by (Clarify_tac 1);
by (res_inst_tac [("x","k*ka")] exI 1);
by (asm_simp_tac (simpset() addsimps mult_ac) 1);
qed "mult_dvd_mono";
goalw thy [dvd_def] "!!c. (i*j) dvd k ==> i dvd k";
by (full_simp_tac (simpset() addsimps [mult_assoc]) 1);
by (Blast_tac 1);
qed "dvd_mult_left";
goalw thy [dvd_def] "!!n. [| k dvd n; 0 < n |] ==> k <= n";
by (Clarify_tac 1);
by (ALLGOALS (full_simp_tac (simpset() addsimps [zero_less_mult_iff])));
by (etac conjE 1);
by (rtac le_trans 1);
by (rtac (le_refl RS mult_le_mono) 2);
by (etac Suc_leI 2);
by (Simp_tac 1);
qed "dvd_imp_le";
goalw thy [dvd_def] "!!k. 0<k ==> (k dvd n) = (n mod k = 0)";
by Safe_tac;
by (stac mult_commute 1);
by (Asm_simp_tac 1);
by (eres_inst_tac [("t","n")] (mod_div_equality RS subst) 1);
by (asm_simp_tac (simpset() addsimps [mult_commute]) 1);
by (Blast_tac 1);
qed "dvd_eq_mod_eq_0";