(* Title: ZF/bool
ID: $Id$
Author: Martin D Coen, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
For ZF/bool.thy. Booleans in Zermelo-Fraenkel Set Theory
*)
open Bool;
val bool_defs = [bool_def,cond_def];
goalw Bool.thy [succ_def] "{0} = 1";
by (rtac refl 1);
qed "singleton_0";
(* Introduction rules *)
goalw Bool.thy bool_defs "1 : bool";
by (rtac (consI1 RS consI2) 1);
qed "bool_1I";
goalw Bool.thy bool_defs "0 : bool";
by (rtac consI1 1);
qed "bool_0I";
goalw Bool.thy bool_defs "1~=0";
by (rtac succ_not_0 1);
qed "one_not_0";
(** 1=0 ==> R **)
val one_neq_0 = one_not_0 RS notE;
val major::prems = goalw Bool.thy bool_defs
"[| c: bool; c=1 ==> P; c=0 ==> P |] ==> P";
by (rtac (major RS consE) 1);
by (REPEAT (eresolve_tac (singletonE::prems) 1));
qed "boolE";
(** cond **)
(*1 means true*)
goalw Bool.thy bool_defs "cond(1,c,d) = c";
by (rtac (refl RS if_P) 1);
qed "cond_1";
(*0 means false*)
goalw Bool.thy bool_defs "cond(0,c,d) = d";
by (rtac (succ_not_0 RS not_sym RS if_not_P) 1);
qed "cond_0";
Addsimps [cond_1, cond_0];
fun bool_tac i = fast_tac (claset() addSEs [boolE] addss (simpset())) i;
goal Bool.thy
"!!b. [| b: bool; c: A(1); d: A(0) |] ==> cond(b,c,d): A(b)";
by (bool_tac 1);
qed "cond_type";
val [rew] = goal Bool.thy "[| !!b. j(b)==cond(b,c,d) |] ==> j(1) = c";
by (rewtac rew);
by (rtac cond_1 1);
qed "def_cond_1";
val [rew] = goal Bool.thy "[| !!b. j(b)==cond(b,c,d) |] ==> j(0) = d";
by (rewtac rew);
by (rtac cond_0 1);
qed "def_cond_0";
fun conds def = [standard (def RS def_cond_1), standard (def RS def_cond_0)];
val [not_1,not_0] = conds not_def;
val [and_1,and_0] = conds and_def;
val [or_1,or_0] = conds or_def;
val [xor_1,xor_0] = conds xor_def;
Addsimps [not_1,not_0,and_1,and_0,or_1,or_0,xor_1,xor_0];
qed_goalw "not_type" Bool.thy [not_def]
"a:bool ==> not(a) : bool"
(fn prems=> [ (typechk_tac (prems@[bool_1I, bool_0I, cond_type])) ]);
qed_goalw "and_type" Bool.thy [and_def]
"[| a:bool; b:bool |] ==> a and b : bool"
(fn prems=> [ (typechk_tac (prems@[bool_1I, bool_0I, cond_type])) ]);
qed_goalw "or_type" Bool.thy [or_def]
"[| a:bool; b:bool |] ==> a or b : bool"
(fn prems=> [ (typechk_tac (prems@[bool_1I, bool_0I, cond_type])) ]);
qed_goalw "xor_type" Bool.thy [xor_def]
"[| a:bool; b:bool |] ==> a xor b : bool"
(fn prems=> [ (typechk_tac(prems@[bool_1I, bool_0I, cond_type, not_type])) ]);
val bool_typechecks = [bool_1I, bool_0I, cond_type, not_type, and_type,
or_type, xor_type];
(*** Laws for 'not' ***)
goal Bool.thy "!!a. a:bool ==> not(not(a)) = a";
by (bool_tac 1);
qed "not_not";
goal Bool.thy "!!a b. a:bool ==> not(a and b) = not(a) or not(b)";
by (bool_tac 1);
qed "not_and";
goal Bool.thy "!!a b. a:bool ==> not(a or b) = not(a) and not(b)";
by (bool_tac 1);
qed "not_or";
Addsimps [not_not, not_and, not_or];
(*** Laws about 'and' ***)
goal Bool.thy "!!a. a: bool ==> a and a = a";
by (bool_tac 1);
qed "and_absorb";
Addsimps [and_absorb];
goal Bool.thy "!!a b. [| a: bool; b:bool |] ==> a and b = b and a";
by (bool_tac 1);
qed "and_commute";
goal Bool.thy "!!a. a: bool ==> (a and b) and c = a and (b and c)";
by (bool_tac 1);
qed "and_assoc";
goal Bool.thy
"!!a. [| a: bool; b:bool; c:bool |] ==> \
\ (a or b) and c = (a and c) or (b and c)";
by (bool_tac 1);
qed "and_or_distrib";
(** binary orion **)
goal Bool.thy "!!a. a: bool ==> a or a = a";
by (bool_tac 1);
qed "or_absorb";
Addsimps [or_absorb];
goal Bool.thy "!!a b. [| a: bool; b:bool |] ==> a or b = b or a";
by (bool_tac 1);
qed "or_commute";
goal Bool.thy "!!a. a: bool ==> (a or b) or c = a or (b or c)";
by (bool_tac 1);
qed "or_assoc";
goal Bool.thy
"!!a b c. [| a: bool; b: bool; c: bool |] ==> \
\ (a and b) or c = (a or c) and (b or c)";
by (bool_tac 1);
qed "or_and_distrib";