(* Author: L C Paulson, University of Cambridge
Author: Amine Chaieb, University of Cambridge
Author: Robert Himmelmann, TU Muenchen
Author: Brian Huffman, Portland State University
*)
section \<open>Elementary topology in Euclidean space.\<close>
theory Topology_Euclidean_Space
imports
"~~/src/HOL/Library/Indicator_Function"
"~~/src/HOL/Library/Countable_Set"
"~~/src/HOL/Library/FuncSet"
Linear_Algebra
Norm_Arith
begin
(* FIXME: move elsewhere *)
lemma Times_eq_image_sum:
fixes S :: "'a :: comm_monoid_add set" and T :: "'b :: comm_monoid_add set"
shows "S \<times> T = {u + v |u v. u \<in> (\<lambda>x. (x, 0)) ` S \<and> v \<in> Pair 0 ` T}"
by force
lemma halfspace_Int_eq:
"{x. a \<bullet> x \<le> b} \<inter> {x. b \<le> a \<bullet> x} = {x. a \<bullet> x = b}"
"{x. b \<le> a \<bullet> x} \<inter> {x. a \<bullet> x \<le> b} = {x. a \<bullet> x = b}"
by auto
definition (in monoid_add) support_on :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'b set"
where "support_on s f = {x\<in>s. f x \<noteq> 0}"
lemma in_support_on: "x \<in> support_on s f \<longleftrightarrow> x \<in> s \<and> f x \<noteq> 0"
by (simp add: support_on_def)
lemma support_on_simps[simp]:
"support_on {} f = {}"
"support_on (insert x s) f =
(if f x = 0 then support_on s f else insert x (support_on s f))"
"support_on (s \<union> t) f = support_on s f \<union> support_on t f"
"support_on (s \<inter> t) f = support_on s f \<inter> support_on t f"
"support_on (s - t) f = support_on s f - support_on t f"
"support_on (f ` s) g = f ` (support_on s (g \<circ> f))"
unfolding support_on_def by auto
lemma support_on_cong:
"(\<And>x. x \<in> s \<Longrightarrow> f x = 0 \<longleftrightarrow> g x = 0) \<Longrightarrow> support_on s f = support_on s g"
by (auto simp: support_on_def)
lemma support_on_if: "a \<noteq> 0 \<Longrightarrow> support_on A (\<lambda>x. if P x then a else 0) = {x\<in>A. P x}"
by (auto simp: support_on_def)
lemma support_on_if_subset: "support_on A (\<lambda>x. if P x then a else 0) \<subseteq> {x \<in> A. P x}"
by (auto simp: support_on_def)
lemma finite_support[intro]: "finite s \<Longrightarrow> finite (support_on s f)"
unfolding support_on_def by auto
(* TODO: is supp_sum really needed? TODO: Generalize to Finite_Set.fold *)
definition (in comm_monoid_add) supp_sum :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
where "supp_sum f s = (\<Sum>x\<in>support_on s f. f x)"
lemma supp_sum_empty[simp]: "supp_sum f {} = 0"
unfolding supp_sum_def by auto
lemma supp_sum_insert[simp]:
"finite (support_on s f) \<Longrightarrow>
supp_sum f (insert x s) = (if x \<in> s then supp_sum f s else f x + supp_sum f s)"
by (simp add: supp_sum_def in_support_on insert_absorb)
lemma supp_sum_divide_distrib: "supp_sum f A / (r::'a::field) = supp_sum (\<lambda>n. f n / r) A"
by (cases "r = 0")
(auto simp: supp_sum_def sum_divide_distrib intro!: sum.cong support_on_cong)
(*END OF SUPPORT, ETC.*)
lemma image_affinity_interval:
fixes c :: "'a::ordered_real_vector"
shows "((\<lambda>x. m *\<^sub>R x + c) ` {a..b}) = (if {a..b}={} then {}
else if 0 <= m then {m *\<^sub>R a + c .. m *\<^sub>R b + c}
else {m *\<^sub>R b + c .. m *\<^sub>R a + c})"
apply (case_tac "m=0", force)
apply (auto simp: scaleR_left_mono)
apply (rule_tac x="inverse m *\<^sub>R (x-c)" in rev_image_eqI, auto simp: pos_le_divideR_eq le_diff_eq scaleR_left_mono_neg)
apply (metis diff_le_eq inverse_inverse_eq order.not_eq_order_implies_strict pos_le_divideR_eq positive_imp_inverse_positive)
apply (rule_tac x="inverse m *\<^sub>R (x-c)" in rev_image_eqI, auto simp: not_le neg_le_divideR_eq diff_le_eq)
using le_diff_eq scaleR_le_cancel_left_neg
apply fastforce
done
lemma countable_PiE:
"finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> countable (F i)) \<Longrightarrow> countable (Pi\<^sub>E I F)"
by (induct I arbitrary: F rule: finite_induct) (auto simp: PiE_insert_eq)
lemma open_sums:
fixes T :: "('b::real_normed_vector) set"
assumes "open S \<or> open T"
shows "open (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})"
using assms
proof
assume S: "open S"
show ?thesis
proof (clarsimp simp: open_dist)
fix x y
assume "x \<in> S" "y \<in> T"
with S obtain e where "e > 0" and e: "\<And>x'. dist x' x < e \<Longrightarrow> x' \<in> S"
by (auto simp: open_dist)
then have "\<And>z. dist z (x + y) < e \<Longrightarrow> \<exists>x\<in>S. \<exists>y\<in>T. z = x + y"
by (metis \<open>y \<in> T\<close> diff_add_cancel dist_add_cancel2)
then show "\<exists>e>0. \<forall>z. dist z (x + y) < e \<longrightarrow> (\<exists>x\<in>S. \<exists>y\<in>T. z = x + y)"
using \<open>0 < e\<close> \<open>x \<in> S\<close> by blast
qed
next
assume T: "open T"
show ?thesis
proof (clarsimp simp: open_dist)
fix x y
assume "x \<in> S" "y \<in> T"
with T obtain e where "e > 0" and e: "\<And>x'. dist x' y < e \<Longrightarrow> x' \<in> T"
by (auto simp: open_dist)
then have "\<And>z. dist z (x + y) < e \<Longrightarrow> \<exists>x\<in>S. \<exists>y\<in>T. z = x + y"
by (metis \<open>x \<in> S\<close> add_diff_cancel_left' add_diff_eq diff_diff_add dist_norm)
then show "\<exists>e>0. \<forall>z. dist z (x + y) < e \<longrightarrow> (\<exists>x\<in>S. \<exists>y\<in>T. z = x + y)"
using \<open>0 < e\<close> \<open>y \<in> T\<close> by blast
qed
qed
subsection \<open>Topological Basis\<close>
context topological_space
begin
definition "topological_basis B \<longleftrightarrow>
(\<forall>b\<in>B. open b) \<and> (\<forall>x. open x \<longrightarrow> (\<exists>B'. B' \<subseteq> B \<and> \<Union>B' = x))"
lemma topological_basis:
"topological_basis B \<longleftrightarrow> (\<forall>x. open x \<longleftrightarrow> (\<exists>B'. B' \<subseteq> B \<and> \<Union>B' = x))"
unfolding topological_basis_def
apply safe
apply fastforce
apply fastforce
apply (erule_tac x="x" in allE)
apply simp
apply (rule_tac x="{x}" in exI)
apply auto
done
lemma topological_basis_iff:
assumes "\<And>B'. B' \<in> B \<Longrightarrow> open B'"
shows "topological_basis B \<longleftrightarrow> (\<forall>O'. open O' \<longrightarrow> (\<forall>x\<in>O'. \<exists>B'\<in>B. x \<in> B' \<and> B' \<subseteq> O'))"
(is "_ \<longleftrightarrow> ?rhs")
proof safe
fix O' and x::'a
assume H: "topological_basis B" "open O'" "x \<in> O'"
then have "(\<exists>B'\<subseteq>B. \<Union>B' = O')" by (simp add: topological_basis_def)
then obtain B' where "B' \<subseteq> B" "O' = \<Union>B'" by auto
then show "\<exists>B'\<in>B. x \<in> B' \<and> B' \<subseteq> O'" using H by auto
next
assume H: ?rhs
show "topological_basis B"
using assms unfolding topological_basis_def
proof safe
fix O' :: "'a set"
assume "open O'"
with H obtain f where "\<forall>x\<in>O'. f x \<in> B \<and> x \<in> f x \<and> f x \<subseteq> O'"
by (force intro: bchoice simp: Bex_def)
then show "\<exists>B'\<subseteq>B. \<Union>B' = O'"
by (auto intro: exI[where x="{f x |x. x \<in> O'}"])
qed
qed
lemma topological_basisI:
assumes "\<And>B'. B' \<in> B \<Longrightarrow> open B'"
and "\<And>O' x. open O' \<Longrightarrow> x \<in> O' \<Longrightarrow> \<exists>B'\<in>B. x \<in> B' \<and> B' \<subseteq> O'"
shows "topological_basis B"
using assms by (subst topological_basis_iff) auto
lemma topological_basisE:
fixes O'
assumes "topological_basis B"
and "open O'"
and "x \<in> O'"
obtains B' where "B' \<in> B" "x \<in> B'" "B' \<subseteq> O'"
proof atomize_elim
from assms have "\<And>B'. B'\<in>B \<Longrightarrow> open B'"
by (simp add: topological_basis_def)
with topological_basis_iff assms
show "\<exists>B'. B' \<in> B \<and> x \<in> B' \<and> B' \<subseteq> O'"
using assms by (simp add: Bex_def)
qed
lemma topological_basis_open:
assumes "topological_basis B"
and "X \<in> B"
shows "open X"
using assms by (simp add: topological_basis_def)
lemma topological_basis_imp_subbasis:
assumes B: "topological_basis B"
shows "open = generate_topology B"
proof (intro ext iffI)
fix S :: "'a set"
assume "open S"
with B obtain B' where "B' \<subseteq> B" "S = \<Union>B'"
unfolding topological_basis_def by blast
then show "generate_topology B S"
by (auto intro: generate_topology.intros dest: topological_basis_open)
next
fix S :: "'a set"
assume "generate_topology B S"
then show "open S"
by induct (auto dest: topological_basis_open[OF B])
qed
lemma basis_dense:
fixes B :: "'a set set"
and f :: "'a set \<Rightarrow> 'a"
assumes "topological_basis B"
and choosefrom_basis: "\<And>B'. B' \<noteq> {} \<Longrightarrow> f B' \<in> B'"
shows "\<forall>X. open X \<longrightarrow> X \<noteq> {} \<longrightarrow> (\<exists>B' \<in> B. f B' \<in> X)"
proof (intro allI impI)
fix X :: "'a set"
assume "open X" and "X \<noteq> {}"
from topological_basisE[OF \<open>topological_basis B\<close> \<open>open X\<close> choosefrom_basis[OF \<open>X \<noteq> {}\<close>]]
obtain B' where "B' \<in> B" "f X \<in> B'" "B' \<subseteq> X" .
then show "\<exists>B'\<in>B. f B' \<in> X"
by (auto intro!: choosefrom_basis)
qed
end
lemma topological_basis_prod:
assumes A: "topological_basis A"
and B: "topological_basis B"
shows "topological_basis ((\<lambda>(a, b). a \<times> b) ` (A \<times> B))"
unfolding topological_basis_def
proof (safe, simp_all del: ex_simps add: subset_image_iff ex_simps(1)[symmetric])
fix S :: "('a \<times> 'b) set"
assume "open S"
then show "\<exists>X\<subseteq>A \<times> B. (\<Union>(a,b)\<in>X. a \<times> b) = S"
proof (safe intro!: exI[of _ "{x\<in>A \<times> B. fst x \<times> snd x \<subseteq> S}"])
fix x y
assume "(x, y) \<in> S"
from open_prod_elim[OF \<open>open S\<close> this]
obtain a b where a: "open a""x \<in> a" and b: "open b" "y \<in> b" and "a \<times> b \<subseteq> S"
by (metis mem_Sigma_iff)
moreover
from A a obtain A0 where "A0 \<in> A" "x \<in> A0" "A0 \<subseteq> a"
by (rule topological_basisE)
moreover
from B b obtain B0 where "B0 \<in> B" "y \<in> B0" "B0 \<subseteq> b"
by (rule topological_basisE)
ultimately show "(x, y) \<in> (\<Union>(a, b)\<in>{X \<in> A \<times> B. fst X \<times> snd X \<subseteq> S}. a \<times> b)"
by (intro UN_I[of "(A0, B0)"]) auto
qed auto
qed (metis A B topological_basis_open open_Times)
subsection \<open>Countable Basis\<close>
locale countable_basis =
fixes B :: "'a::topological_space set set"
assumes is_basis: "topological_basis B"
and countable_basis: "countable B"
begin
lemma open_countable_basis_ex:
assumes "open X"
shows "\<exists>B' \<subseteq> B. X = \<Union>B'"
using assms countable_basis is_basis
unfolding topological_basis_def by blast
lemma open_countable_basisE:
assumes "open X"
obtains B' where "B' \<subseteq> B" "X = \<Union>B'"
using assms open_countable_basis_ex
by (atomize_elim) simp
lemma countable_dense_exists:
"\<exists>D::'a set. countable D \<and> (\<forall>X. open X \<longrightarrow> X \<noteq> {} \<longrightarrow> (\<exists>d \<in> D. d \<in> X))"
proof -
let ?f = "(\<lambda>B'. SOME x. x \<in> B')"
have "countable (?f ` B)" using countable_basis by simp
with basis_dense[OF is_basis, of ?f] show ?thesis
by (intro exI[where x="?f ` B"]) (metis (mono_tags) all_not_in_conv imageI someI)
qed
lemma countable_dense_setE:
obtains D :: "'a set"
where "countable D" "\<And>X. open X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> \<exists>d \<in> D. d \<in> X"
using countable_dense_exists by blast
end
lemma (in first_countable_topology) first_countable_basisE:
obtains A where "countable A" "\<And>a. a \<in> A \<Longrightarrow> x \<in> a" "\<And>a. a \<in> A \<Longrightarrow> open a"
"\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> (\<exists>a\<in>A. a \<subseteq> S)"
using first_countable_basis[of x]
apply atomize_elim
apply (elim exE)
apply (rule_tac x="range A" in exI)
apply auto
done
lemma (in first_countable_topology) first_countable_basis_Int_stableE:
obtains A where "countable A" "\<And>a. a \<in> A \<Longrightarrow> x \<in> a" "\<And>a. a \<in> A \<Longrightarrow> open a"
"\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> (\<exists>a\<in>A. a \<subseteq> S)"
"\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<inter> b \<in> A"
proof atomize_elim
obtain A' where A':
"countable A'"
"\<And>a. a \<in> A' \<Longrightarrow> x \<in> a"
"\<And>a. a \<in> A' \<Longrightarrow> open a"
"\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>a\<in>A'. a \<subseteq> S"
by (rule first_countable_basisE) blast
define A where [abs_def]:
"A = (\<lambda>N. \<Inter>((\<lambda>n. from_nat_into A' n) ` N)) ` (Collect finite::nat set set)"
then show "\<exists>A. countable A \<and> (\<forall>a. a \<in> A \<longrightarrow> x \<in> a) \<and> (\<forall>a. a \<in> A \<longrightarrow> open a) \<and>
(\<forall>S. open S \<longrightarrow> x \<in> S \<longrightarrow> (\<exists>a\<in>A. a \<subseteq> S)) \<and> (\<forall>a b. a \<in> A \<longrightarrow> b \<in> A \<longrightarrow> a \<inter> b \<in> A)"
proof (safe intro!: exI[where x=A])
show "countable A"
unfolding A_def by (intro countable_image countable_Collect_finite)
fix a
assume "a \<in> A"
then show "x \<in> a" "open a"
using A'(4)[OF open_UNIV] by (auto simp: A_def intro: A' from_nat_into)
next
let ?int = "\<lambda>N. \<Inter>(from_nat_into A' ` N)"
fix a b
assume "a \<in> A" "b \<in> A"
then obtain N M where "a = ?int N" "b = ?int M" "finite (N \<union> M)"
by (auto simp: A_def)
then show "a \<inter> b \<in> A"
by (auto simp: A_def intro!: image_eqI[where x="N \<union> M"])
next
fix S
assume "open S" "x \<in> S"
then obtain a where a: "a\<in>A'" "a \<subseteq> S" using A' by blast
then show "\<exists>a\<in>A. a \<subseteq> S" using a A'
by (intro bexI[where x=a]) (auto simp: A_def intro: image_eqI[where x="{to_nat_on A' a}"])
qed
qed
lemma (in topological_space) first_countableI:
assumes "countable A"
and 1: "\<And>a. a \<in> A \<Longrightarrow> x \<in> a" "\<And>a. a \<in> A \<Longrightarrow> open a"
and 2: "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>a\<in>A. a \<subseteq> S"
shows "\<exists>A::nat \<Rightarrow> 'a set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))"
proof (safe intro!: exI[of _ "from_nat_into A"])
fix i
have "A \<noteq> {}" using 2[of UNIV] by auto
show "x \<in> from_nat_into A i" "open (from_nat_into A i)"
using range_from_nat_into_subset[OF \<open>A \<noteq> {}\<close>] 1 by auto
next
fix S
assume "open S" "x\<in>S" from 2[OF this]
show "\<exists>i. from_nat_into A i \<subseteq> S"
using subset_range_from_nat_into[OF \<open>countable A\<close>] by auto
qed
instance prod :: (first_countable_topology, first_countable_topology) first_countable_topology
proof
fix x :: "'a \<times> 'b"
obtain A where A:
"countable A"
"\<And>a. a \<in> A \<Longrightarrow> fst x \<in> a"
"\<And>a. a \<in> A \<Longrightarrow> open a"
"\<And>S. open S \<Longrightarrow> fst x \<in> S \<Longrightarrow> \<exists>a\<in>A. a \<subseteq> S"
by (rule first_countable_basisE[of "fst x"]) blast
obtain B where B:
"countable B"
"\<And>a. a \<in> B \<Longrightarrow> snd x \<in> a"
"\<And>a. a \<in> B \<Longrightarrow> open a"
"\<And>S. open S \<Longrightarrow> snd x \<in> S \<Longrightarrow> \<exists>a\<in>B. a \<subseteq> S"
by (rule first_countable_basisE[of "snd x"]) blast
show "\<exists>A::nat \<Rightarrow> ('a \<times> 'b) set.
(\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))"
proof (rule first_countableI[of "(\<lambda>(a, b). a \<times> b) ` (A \<times> B)"], safe)
fix a b
assume x: "a \<in> A" "b \<in> B"
with A(2, 3)[of a] B(2, 3)[of b] show "x \<in> a \<times> b" and "open (a \<times> b)"
unfolding mem_Times_iff
by (auto intro: open_Times)
next
fix S
assume "open S" "x \<in> S"
then obtain a' b' where a'b': "open a'" "open b'" "x \<in> a' \<times> b'" "a' \<times> b' \<subseteq> S"
by (rule open_prod_elim)
moreover
from a'b' A(4)[of a'] B(4)[of b']
obtain a b where "a \<in> A" "a \<subseteq> a'" "b \<in> B" "b \<subseteq> b'"
by auto
ultimately
show "\<exists>a\<in>(\<lambda>(a, b). a \<times> b) ` (A \<times> B). a \<subseteq> S"
by (auto intro!: bexI[of _ "a \<times> b"] bexI[of _ a] bexI[of _ b])
qed (simp add: A B)
qed
class second_countable_topology = topological_space +
assumes ex_countable_subbasis:
"\<exists>B::'a::topological_space set set. countable B \<and> open = generate_topology B"
begin
lemma ex_countable_basis: "\<exists>B::'a set set. countable B \<and> topological_basis B"
proof -
from ex_countable_subbasis obtain B where B: "countable B" "open = generate_topology B"
by blast
let ?B = "Inter ` {b. finite b \<and> b \<subseteq> B }"
show ?thesis
proof (intro exI conjI)
show "countable ?B"
by (intro countable_image countable_Collect_finite_subset B)
{
fix S
assume "open S"
then have "\<exists>B'\<subseteq>{b. finite b \<and> b \<subseteq> B}. (\<Union>b\<in>B'. \<Inter>b) = S"
unfolding B
proof induct
case UNIV
show ?case by (intro exI[of _ "{{}}"]) simp
next
case (Int a b)
then obtain x y where x: "a = UNION x Inter" "\<And>i. i \<in> x \<Longrightarrow> finite i \<and> i \<subseteq> B"
and y: "b = UNION y Inter" "\<And>i. i \<in> y \<Longrightarrow> finite i \<and> i \<subseteq> B"
by blast
show ?case
unfolding x y Int_UN_distrib2
by (intro exI[of _ "{i \<union> j| i j. i \<in> x \<and> j \<in> y}"]) (auto dest: x(2) y(2))
next
case (UN K)
then have "\<forall>k\<in>K. \<exists>B'\<subseteq>{b. finite b \<and> b \<subseteq> B}. UNION B' Inter = k" by auto
then obtain k where
"\<forall>ka\<in>K. k ka \<subseteq> {b. finite b \<and> b \<subseteq> B} \<and> UNION (k ka) Inter = ka"
unfolding bchoice_iff ..
then show "\<exists>B'\<subseteq>{b. finite b \<and> b \<subseteq> B}. UNION B' Inter = \<Union>K"
by (intro exI[of _ "UNION K k"]) auto
next
case (Basis S)
then show ?case
by (intro exI[of _ "{{S}}"]) auto
qed
then have "(\<exists>B'\<subseteq>Inter ` {b. finite b \<and> b \<subseteq> B}. \<Union>B' = S)"
unfolding subset_image_iff by blast }
then show "topological_basis ?B"
unfolding topological_space_class.topological_basis_def
by (safe intro!: topological_space_class.open_Inter)
(simp_all add: B generate_topology.Basis subset_eq)
qed
qed
end
sublocale second_countable_topology <
countable_basis "SOME B. countable B \<and> topological_basis B"
using someI_ex[OF ex_countable_basis]
by unfold_locales safe
instance prod :: (second_countable_topology, second_countable_topology) second_countable_topology
proof
obtain A :: "'a set set" where "countable A" "topological_basis A"
using ex_countable_basis by auto
moreover
obtain B :: "'b set set" where "countable B" "topological_basis B"
using ex_countable_basis by auto
ultimately show "\<exists>B::('a \<times> 'b) set set. countable B \<and> open = generate_topology B"
by (auto intro!: exI[of _ "(\<lambda>(a, b). a \<times> b) ` (A \<times> B)"] topological_basis_prod
topological_basis_imp_subbasis)
qed
instance second_countable_topology \<subseteq> first_countable_topology
proof
fix x :: 'a
define B :: "'a set set" where "B = (SOME B. countable B \<and> topological_basis B)"
then have B: "countable B" "topological_basis B"
using countable_basis is_basis
by (auto simp: countable_basis is_basis)
then show "\<exists>A::nat \<Rightarrow> 'a set.
(\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))"
by (intro first_countableI[of "{b\<in>B. x \<in> b}"])
(fastforce simp: topological_space_class.topological_basis_def)+
qed
instance nat :: second_countable_topology
proof
show "\<exists>B::nat set set. countable B \<and> open = generate_topology B"
by (intro exI[of _ "range lessThan \<union> range greaterThan"]) (auto simp: open_nat_def)
qed
lemma countable_separating_set_linorder1:
shows "\<exists>B::('a::{linorder_topology, second_countable_topology} set). countable B \<and> (\<forall>x y. x < y \<longrightarrow> (\<exists>b \<in> B. x < b \<and> b \<le> y))"
proof -
obtain A::"'a set set" where "countable A" "topological_basis A" using ex_countable_basis by auto
define B1 where "B1 = {(LEAST x. x \<in> U)| U. U \<in> A}"
then have "countable B1" using \<open>countable A\<close> by (simp add: Setcompr_eq_image)
define B2 where "B2 = {(SOME x. x \<in> U)| U. U \<in> A}"
then have "countable B2" using \<open>countable A\<close> by (simp add: Setcompr_eq_image)
have "\<exists>b \<in> B1 \<union> B2. x < b \<and> b \<le> y" if "x < y" for x y
proof (cases)
assume "\<exists>z. x < z \<and> z < y"
then obtain z where z: "x < z \<and> z < y" by auto
define U where "U = {x<..<y}"
then have "open U" by simp
moreover have "z \<in> U" using z U_def by simp
ultimately obtain V where "V \<in> A" "z \<in> V" "V \<subseteq> U" using topological_basisE[OF \<open>topological_basis A\<close>] by auto
define w where "w = (SOME x. x \<in> V)"
then have "w \<in> V" using \<open>z \<in> V\<close> by (metis someI2)
then have "x < w \<and> w \<le> y" using \<open>w \<in> V\<close> \<open>V \<subseteq> U\<close> U_def by fastforce
moreover have "w \<in> B1 \<union> B2" using w_def B2_def \<open>V \<in> A\<close> by auto
ultimately show ?thesis by auto
next
assume "\<not>(\<exists>z. x < z \<and> z < y)"
then have *: "\<And>z. z > x \<Longrightarrow> z \<ge> y" by auto
define U where "U = {x<..}"
then have "open U" by simp
moreover have "y \<in> U" using \<open>x < y\<close> U_def by simp
ultimately obtain "V" where "V \<in> A" "y \<in> V" "V \<subseteq> U" using topological_basisE[OF \<open>topological_basis A\<close>] by auto
have "U = {y..}" unfolding U_def using * \<open>x < y\<close> by auto
then have "V \<subseteq> {y..}" using \<open>V \<subseteq> U\<close> by simp
then have "(LEAST w. w \<in> V) = y" using \<open>y \<in> V\<close> by (meson Least_equality atLeast_iff subsetCE)
then have "y \<in> B1 \<union> B2" using \<open>V \<in> A\<close> B1_def by auto
moreover have "x < y \<and> y \<le> y" using \<open>x < y\<close> by simp
ultimately show ?thesis by auto
qed
moreover have "countable (B1 \<union> B2)" using \<open>countable B1\<close> \<open>countable B2\<close> by simp
ultimately show ?thesis by auto
qed
lemma countable_separating_set_linorder2:
shows "\<exists>B::('a::{linorder_topology, second_countable_topology} set). countable B \<and> (\<forall>x y. x < y \<longrightarrow> (\<exists>b \<in> B. x \<le> b \<and> b < y))"
proof -
obtain A::"'a set set" where "countable A" "topological_basis A" using ex_countable_basis by auto
define B1 where "B1 = {(GREATEST x. x \<in> U) | U. U \<in> A}"
then have "countable B1" using \<open>countable A\<close> by (simp add: Setcompr_eq_image)
define B2 where "B2 = {(SOME x. x \<in> U)| U. U \<in> A}"
then have "countable B2" using \<open>countable A\<close> by (simp add: Setcompr_eq_image)
have "\<exists>b \<in> B1 \<union> B2. x \<le> b \<and> b < y" if "x < y" for x y
proof (cases)
assume "\<exists>z. x < z \<and> z < y"
then obtain z where z: "x < z \<and> z < y" by auto
define U where "U = {x<..<y}"
then have "open U" by simp
moreover have "z \<in> U" using z U_def by simp
ultimately obtain "V" where "V \<in> A" "z \<in> V" "V \<subseteq> U" using topological_basisE[OF \<open>topological_basis A\<close>] by auto
define w where "w = (SOME x. x \<in> V)"
then have "w \<in> V" using \<open>z \<in> V\<close> by (metis someI2)
then have "x \<le> w \<and> w < y" using \<open>w \<in> V\<close> \<open>V \<subseteq> U\<close> U_def by fastforce
moreover have "w \<in> B1 \<union> B2" using w_def B2_def \<open>V \<in> A\<close> by auto
ultimately show ?thesis by auto
next
assume "\<not>(\<exists>z. x < z \<and> z < y)"
then have *: "\<And>z. z < y \<Longrightarrow> z \<le> x" using leI by blast
define U where "U = {..<y}"
then have "open U" by simp
moreover have "x \<in> U" using \<open>x < y\<close> U_def by simp
ultimately obtain "V" where "V \<in> A" "x \<in> V" "V \<subseteq> U" using topological_basisE[OF \<open>topological_basis A\<close>] by auto
have "U = {..x}" unfolding U_def using * \<open>x < y\<close> by auto
then have "V \<subseteq> {..x}" using \<open>V \<subseteq> U\<close> by simp
then have "(GREATEST x. x \<in> V) = x" using \<open>x \<in> V\<close> by (meson Greatest_equality atMost_iff subsetCE)
then have "x \<in> B1 \<union> B2" using \<open>V \<in> A\<close> B1_def by auto
moreover have "x \<le> x \<and> x < y" using \<open>x < y\<close> by simp
ultimately show ?thesis by auto
qed
moreover have "countable (B1 \<union> B2)" using \<open>countable B1\<close> \<open>countable B2\<close> by simp
ultimately show ?thesis by auto
qed
lemma countable_separating_set_dense_linorder:
shows "\<exists>B::('a::{linorder_topology, dense_linorder, second_countable_topology} set). countable B \<and> (\<forall>x y. x < y \<longrightarrow> (\<exists>b \<in> B. x < b \<and> b < y))"
proof -
obtain B::"'a set" where B: "countable B" "\<And>x y. x < y \<Longrightarrow> (\<exists>b \<in> B. x < b \<and> b \<le> y)"
using countable_separating_set_linorder1 by auto
have "\<exists>b \<in> B. x < b \<and> b < y" if "x < y" for x y
proof -
obtain z where "x < z" "z < y" using \<open>x < y\<close> dense by blast
then obtain b where "b \<in> B" "x < b \<and> b \<le> z" using B(2) by auto
then have "x < b \<and> b < y" using \<open>z < y\<close> by auto
then show ?thesis using \<open>b \<in> B\<close> by auto
qed
then show ?thesis using B(1) by auto
qed
subsection \<open>Polish spaces\<close>
text \<open>Textbooks define Polish spaces as completely metrizable.
We assume the topology to be complete for a given metric.\<close>
class polish_space = complete_space + second_countable_topology
subsection \<open>General notion of a topology as a value\<close>
definition "istopology L \<longleftrightarrow>
L {} \<and> (\<forall>S T. L S \<longrightarrow> L T \<longrightarrow> L (S \<inter> T)) \<and> (\<forall>K. Ball K L \<longrightarrow> L (\<Union>K))"
typedef 'a topology = "{L::('a set) \<Rightarrow> bool. istopology L}"
morphisms "openin" "topology"
unfolding istopology_def by blast
lemma istopology_openin[intro]: "istopology(openin U)"
using openin[of U] by blast
lemma topology_inverse': "istopology U \<Longrightarrow> openin (topology U) = U"
using topology_inverse[unfolded mem_Collect_eq] .
lemma topology_inverse_iff: "istopology U \<longleftrightarrow> openin (topology U) = U"
using topology_inverse[of U] istopology_openin[of "topology U"] by auto
lemma topology_eq: "T1 = T2 \<longleftrightarrow> (\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S)"
proof
assume "T1 = T2"
then show "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S" by simp
next
assume H: "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S"
then have "openin T1 = openin T2" by (simp add: fun_eq_iff)
then have "topology (openin T1) = topology (openin T2)" by simp
then show "T1 = T2" unfolding openin_inverse .
qed
text\<open>Infer the "universe" from union of all sets in the topology.\<close>
definition "topspace T = \<Union>{S. openin T S}"
subsubsection \<open>Main properties of open sets\<close>
lemma openin_clauses:
fixes U :: "'a topology"
shows
"openin U {}"
"\<And>S T. openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S\<inter>T)"
"\<And>K. (\<forall>S \<in> K. openin U S) \<Longrightarrow> openin U (\<Union>K)"
using openin[of U] unfolding istopology_def mem_Collect_eq by fast+
lemma openin_subset[intro]: "openin U S \<Longrightarrow> S \<subseteq> topspace U"
unfolding topspace_def by blast
lemma openin_empty[simp]: "openin U {}"
by (rule openin_clauses)
lemma openin_Int[intro]: "openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S \<inter> T)"
by (rule openin_clauses)
lemma openin_Union[intro]: "(\<And>S. S \<in> K \<Longrightarrow> openin U S) \<Longrightarrow> openin U (\<Union>K)"
using openin_clauses by blast
lemma openin_Un[intro]: "openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S \<union> T)"
using openin_Union[of "{S,T}" U] by auto
lemma openin_topspace[intro, simp]: "openin U (topspace U)"
by (force simp add: openin_Union topspace_def)
lemma openin_subopen: "openin U S \<longleftrightarrow> (\<forall>x \<in> S. \<exists>T. openin U T \<and> x \<in> T \<and> T \<subseteq> S)"
(is "?lhs \<longleftrightarrow> ?rhs")
proof
assume ?lhs
then show ?rhs by auto
next
assume H: ?rhs
let ?t = "\<Union>{T. openin U T \<and> T \<subseteq> S}"
have "openin U ?t" by (force simp add: openin_Union)
also have "?t = S" using H by auto
finally show "openin U S" .
qed
lemma openin_INT [intro]:
assumes "finite I"
"\<And>i. i \<in> I \<Longrightarrow> openin T (U i)"
shows "openin T ((\<Inter>i \<in> I. U i) \<inter> topspace T)"
using assms by (induct, auto simp add: inf_sup_aci(2) openin_Int)
lemma openin_INT2 [intro]:
assumes "finite I" "I \<noteq> {}"
"\<And>i. i \<in> I \<Longrightarrow> openin T (U i)"
shows "openin T (\<Inter>i \<in> I. U i)"
proof -
have "(\<Inter>i \<in> I. U i) \<subseteq> topspace T"
using \<open>I \<noteq> {}\<close> openin_subset[OF assms(3)] by auto
then show ?thesis
using openin_INT[of _ _ U, OF assms(1) assms(3)] by (simp add: inf.absorb2 inf_commute)
qed
subsubsection \<open>Closed sets\<close>
definition "closedin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> openin U (topspace U - S)"
lemma closedin_subset: "closedin U S \<Longrightarrow> S \<subseteq> topspace U"
by (metis closedin_def)
lemma closedin_empty[simp]: "closedin U {}"
by (simp add: closedin_def)
lemma closedin_topspace[intro, simp]: "closedin U (topspace U)"
by (simp add: closedin_def)
lemma closedin_Un[intro]: "closedin U S \<Longrightarrow> closedin U T \<Longrightarrow> closedin U (S \<union> T)"
by (auto simp add: Diff_Un closedin_def)
lemma Diff_Inter[intro]: "A - \<Inter>S = \<Union>{A - s|s. s\<in>S}"
by auto
lemma closedin_Union:
assumes "finite S" "\<And>T. T \<in> S \<Longrightarrow> closedin U T"
shows "closedin U (\<Union>S)"
using assms by induction auto
lemma closedin_Inter[intro]:
assumes Ke: "K \<noteq> {}"
and Kc: "\<And>S. S \<in>K \<Longrightarrow> closedin U S"
shows "closedin U (\<Inter>K)"
using Ke Kc unfolding closedin_def Diff_Inter by auto
lemma closedin_INT[intro]:
assumes "A \<noteq> {}" "\<And>x. x \<in> A \<Longrightarrow> closedin U (B x)"
shows "closedin U (\<Inter>x\<in>A. B x)"
apply (rule closedin_Inter)
using assms
apply auto
done
lemma closedin_Int[intro]: "closedin U S \<Longrightarrow> closedin U T \<Longrightarrow> closedin U (S \<inter> T)"
using closedin_Inter[of "{S,T}" U] by auto
lemma openin_closedin_eq: "openin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> closedin U (topspace U - S)"
apply (auto simp add: closedin_def Diff_Diff_Int inf_absorb2)
apply (metis openin_subset subset_eq)
done
lemma openin_closedin: "S \<subseteq> topspace U \<Longrightarrow> (openin U S \<longleftrightarrow> closedin U (topspace U - S))"
by (simp add: openin_closedin_eq)
lemma openin_diff[intro]:
assumes oS: "openin U S"
and cT: "closedin U T"
shows "openin U (S - T)"
proof -
have "S - T = S \<inter> (topspace U - T)" using openin_subset[of U S] oS cT
by (auto simp add: topspace_def openin_subset)
then show ?thesis using oS cT
by (auto simp add: closedin_def)
qed
lemma closedin_diff[intro]:
assumes oS: "closedin U S"
and cT: "openin U T"
shows "closedin U (S - T)"
proof -
have "S - T = S \<inter> (topspace U - T)"
using closedin_subset[of U S] oS cT by (auto simp add: topspace_def)
then show ?thesis
using oS cT by (auto simp add: openin_closedin_eq)
qed
subsubsection \<open>Subspace topology\<close>
definition "subtopology U V = topology (\<lambda>T. \<exists>S. T = S \<inter> V \<and> openin U S)"
lemma istopology_subtopology: "istopology (\<lambda>T. \<exists>S. T = S \<inter> V \<and> openin U S)"
(is "istopology ?L")
proof -
have "?L {}" by blast
{
fix A B
assume A: "?L A" and B: "?L B"
from A B obtain Sa and Sb where Sa: "openin U Sa" "A = Sa \<inter> V" and Sb: "openin U Sb" "B = Sb \<inter> V"
by blast
have "A \<inter> B = (Sa \<inter> Sb) \<inter> V" "openin U (Sa \<inter> Sb)"
using Sa Sb by blast+
then have "?L (A \<inter> B)" by blast
}
moreover
{
fix K
assume K: "K \<subseteq> Collect ?L"
have th0: "Collect ?L = (\<lambda>S. S \<inter> V) ` Collect (openin U)"
by blast
from K[unfolded th0 subset_image_iff]
obtain Sk where Sk: "Sk \<subseteq> Collect (openin U)" "K = (\<lambda>S. S \<inter> V) ` Sk"
by blast
have "\<Union>K = (\<Union>Sk) \<inter> V"
using Sk by auto
moreover have "openin U (\<Union>Sk)"
using Sk by (auto simp add: subset_eq)
ultimately have "?L (\<Union>K)" by blast
}
ultimately show ?thesis
unfolding subset_eq mem_Collect_eq istopology_def by auto
qed
lemma openin_subtopology: "openin (subtopology U V) S \<longleftrightarrow> (\<exists>T. openin U T \<and> S = T \<inter> V)"
unfolding subtopology_def topology_inverse'[OF istopology_subtopology]
by auto
lemma topspace_subtopology: "topspace (subtopology U V) = topspace U \<inter> V"
by (auto simp add: topspace_def openin_subtopology)
lemma closedin_subtopology: "closedin (subtopology U V) S \<longleftrightarrow> (\<exists>T. closedin U T \<and> S = T \<inter> V)"
unfolding closedin_def topspace_subtopology
by (auto simp add: openin_subtopology)
lemma openin_subtopology_refl: "openin (subtopology U V) V \<longleftrightarrow> V \<subseteq> topspace U"
unfolding openin_subtopology
by auto (metis IntD1 in_mono openin_subset)
lemma subtopology_superset:
assumes UV: "topspace U \<subseteq> V"
shows "subtopology U V = U"
proof -
{
fix S
{
fix T
assume T: "openin U T" "S = T \<inter> V"
from T openin_subset[OF T(1)] UV have eq: "S = T"
by blast
have "openin U S"
unfolding eq using T by blast
}
moreover
{
assume S: "openin U S"
then have "\<exists>T. openin U T \<and> S = T \<inter> V"
using openin_subset[OF S] UV by auto
}
ultimately have "(\<exists>T. openin U T \<and> S = T \<inter> V) \<longleftrightarrow> openin U S"
by blast
}
then show ?thesis
unfolding topology_eq openin_subtopology by blast
qed
lemma subtopology_topspace[simp]: "subtopology U (topspace U) = U"
by (simp add: subtopology_superset)
lemma subtopology_UNIV[simp]: "subtopology U UNIV = U"
by (simp add: subtopology_superset)
lemma openin_subtopology_empty:
"openin (subtopology U {}) S \<longleftrightarrow> S = {}"
by (metis Int_empty_right openin_empty openin_subtopology)
lemma closedin_subtopology_empty:
"closedin (subtopology U {}) S \<longleftrightarrow> S = {}"
by (metis Int_empty_right closedin_empty closedin_subtopology)
lemma closedin_subtopology_refl [simp]:
"closedin (subtopology U X) X \<longleftrightarrow> X \<subseteq> topspace U"
by (metis closedin_def closedin_topspace inf.absorb_iff2 le_inf_iff topspace_subtopology)
lemma openin_imp_subset:
"openin (subtopology U S) T \<Longrightarrow> T \<subseteq> S"
by (metis Int_iff openin_subtopology subsetI)
lemma closedin_imp_subset:
"closedin (subtopology U S) T \<Longrightarrow> T \<subseteq> S"
by (simp add: closedin_def topspace_subtopology)
lemma openin_subtopology_Un:
"openin (subtopology U T) S \<and> openin (subtopology U u) S
\<Longrightarrow> openin (subtopology U (T \<union> u)) S"
by (simp add: openin_subtopology) blast
subsubsection \<open>The standard Euclidean topology\<close>
definition euclidean :: "'a::topological_space topology"
where "euclidean = topology open"
lemma open_openin: "open S \<longleftrightarrow> openin euclidean S"
unfolding euclidean_def
apply (rule cong[where x=S and y=S])
apply (rule topology_inverse[symmetric])
apply (auto simp add: istopology_def)
done
declare open_openin [symmetric, simp]
lemma topspace_euclidean [simp]: "topspace euclidean = UNIV"
by (force simp add: topspace_def)
lemma topspace_euclidean_subtopology[simp]: "topspace (subtopology euclidean S) = S"
by (simp add: topspace_subtopology)
lemma closed_closedin: "closed S \<longleftrightarrow> closedin euclidean S"
by (simp add: closed_def closedin_def Compl_eq_Diff_UNIV)
lemma open_subopen: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S)"
using openI by auto
lemma openin_subtopology_self [simp]: "openin (subtopology euclidean S) S"
by (metis openin_topspace topspace_euclidean_subtopology)
text \<open>Basic "localization" results are handy for connectedness.\<close>
lemma openin_open: "openin (subtopology euclidean U) S \<longleftrightarrow> (\<exists>T. open T \<and> (S = U \<inter> T))"
by (auto simp add: openin_subtopology)
lemma openin_Int_open:
"\<lbrakk>openin (subtopology euclidean U) S; open T\<rbrakk>
\<Longrightarrow> openin (subtopology euclidean U) (S \<inter> T)"
by (metis open_Int Int_assoc openin_open)
lemma openin_open_Int[intro]: "open S \<Longrightarrow> openin (subtopology euclidean U) (U \<inter> S)"
by (auto simp add: openin_open)
lemma open_openin_trans[trans]:
"open S \<Longrightarrow> open T \<Longrightarrow> T \<subseteq> S \<Longrightarrow> openin (subtopology euclidean S) T"
by (metis Int_absorb1 openin_open_Int)
lemma open_subset: "S \<subseteq> T \<Longrightarrow> open S \<Longrightarrow> openin (subtopology euclidean T) S"
by (auto simp add: openin_open)
lemma closedin_closed: "closedin (subtopology euclidean U) S \<longleftrightarrow> (\<exists>T. closed T \<and> S = U \<inter> T)"
by (simp add: closedin_subtopology closed_closedin Int_ac)
lemma closedin_closed_Int: "closed S \<Longrightarrow> closedin (subtopology euclidean U) (U \<inter> S)"
by (metis closedin_closed)
lemma closed_subset: "S \<subseteq> T \<Longrightarrow> closed S \<Longrightarrow> closedin (subtopology euclidean T) S"
by (auto simp add: closedin_closed)
lemma closedin_closed_subset:
"\<lbrakk>closedin (subtopology euclidean U) V; T \<subseteq> U; S = V \<inter> T\<rbrakk>
\<Longrightarrow> closedin (subtopology euclidean T) S"
by (metis (no_types, lifting) Int_assoc Int_commute closedin_closed inf.orderE)
lemma finite_imp_closedin:
fixes S :: "'a::t1_space set"
shows "\<lbrakk>finite S; S \<subseteq> T\<rbrakk> \<Longrightarrow> closedin (subtopology euclidean T) S"
by (simp add: finite_imp_closed closed_subset)
lemma closedin_singleton [simp]:
fixes a :: "'a::t1_space"
shows "closedin (subtopology euclidean U) {a} \<longleftrightarrow> a \<in> U"
using closedin_subset by (force intro: closed_subset)
lemma openin_euclidean_subtopology_iff:
fixes S U :: "'a::metric_space set"
shows "openin (subtopology euclidean U) S \<longleftrightarrow>
S \<subseteq> U \<and> (\<forall>x\<in>S. \<exists>e>0. \<forall>x'\<in>U. dist x' x < e \<longrightarrow> x'\<in> S)"
(is "?lhs \<longleftrightarrow> ?rhs")
proof
assume ?lhs
then show ?rhs
unfolding openin_open open_dist by blast
next
define T where "T = {x. \<exists>a\<in>S. \<exists>d>0. (\<forall>y\<in>U. dist y a < d \<longrightarrow> y \<in> S) \<and> dist x a < d}"
have 1: "\<forall>x\<in>T. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> T"
unfolding T_def
apply clarsimp
apply (rule_tac x="d - dist x a" in exI)
apply (clarsimp simp add: less_diff_eq)
by (metis dist_commute dist_triangle_lt)
assume ?rhs then have 2: "S = U \<inter> T"
unfolding T_def
by auto (metis dist_self)
from 1 2 show ?lhs
unfolding openin_open open_dist by fast
qed
lemma connected_openin:
"connected s \<longleftrightarrow>
~(\<exists>e1 e2. openin (subtopology euclidean s) e1 \<and>
openin (subtopology euclidean s) e2 \<and>
s \<subseteq> e1 \<union> e2 \<and> e1 \<inter> e2 = {} \<and> e1 \<noteq> {} \<and> e2 \<noteq> {})"
apply (simp add: connected_def openin_open, safe)
apply (simp_all, blast+) (* SLOW *)
done
lemma connected_openin_eq:
"connected s \<longleftrightarrow>
~(\<exists>e1 e2. openin (subtopology euclidean s) e1 \<and>
openin (subtopology euclidean s) e2 \<and>
e1 \<union> e2 = s \<and> e1 \<inter> e2 = {} \<and>
e1 \<noteq> {} \<and> e2 \<noteq> {})"
apply (simp add: connected_openin, safe)
apply blast
by (metis Int_lower1 Un_subset_iff openin_open subset_antisym)
lemma connected_closedin:
"connected s \<longleftrightarrow>
~(\<exists>e1 e2.
closedin (subtopology euclidean s) e1 \<and>
closedin (subtopology euclidean s) e2 \<and>
s \<subseteq> e1 \<union> e2 \<and> e1 \<inter> e2 = {} \<and>
e1 \<noteq> {} \<and> e2 \<noteq> {})"
proof -
{ fix A B x x'
assume s_sub: "s \<subseteq> A \<union> B"
and disj: "A \<inter> B \<inter> s = {}"
and x: "x \<in> s" "x \<in> B" and x': "x' \<in> s" "x' \<in> A"
and cl: "closed A" "closed B"
assume "\<forall>e1. (\<forall>T. closed T \<longrightarrow> e1 \<noteq> s \<inter> T) \<or> (\<forall>e2. e1 \<inter> e2 = {} \<longrightarrow> s \<subseteq> e1 \<union> e2 \<longrightarrow> (\<forall>T. closed T \<longrightarrow> e2 \<noteq> s \<inter> T) \<or> e1 = {} \<or> e2 = {})"
then have "\<And>C D. s \<inter> C = {} \<or> s \<inter> D = {} \<or> s \<inter> (C \<inter> (s \<inter> D)) \<noteq> {} \<or> \<not> s \<subseteq> s \<inter> (C \<union> D) \<or> \<not> closed C \<or> \<not> closed D"
by (metis (no_types) Int_Un_distrib Int_assoc)
moreover have "s \<inter> (A \<inter> B) = {}" "s \<inter> (A \<union> B) = s" "s \<inter> B \<noteq> {}"
using disj s_sub x by blast+
ultimately have "s \<inter> A = {}"
using cl by (metis inf.left_commute inf_bot_right order_refl)
then have False
using x' by blast
} note * = this
show ?thesis
apply (simp add: connected_closed closedin_closed)
apply (safe; simp)
apply blast
apply (blast intro: *)
done
qed
lemma connected_closedin_eq:
"connected s \<longleftrightarrow>
~(\<exists>e1 e2.
closedin (subtopology euclidean s) e1 \<and>
closedin (subtopology euclidean s) e2 \<and>
e1 \<union> e2 = s \<and> e1 \<inter> e2 = {} \<and>
e1 \<noteq> {} \<and> e2 \<noteq> {})"
apply (simp add: connected_closedin, safe)
apply blast
by (metis Int_lower1 Un_subset_iff closedin_closed subset_antisym)
text \<open>These "transitivity" results are handy too\<close>
lemma openin_trans[trans]:
"openin (subtopology euclidean T) S \<Longrightarrow> openin (subtopology euclidean U) T \<Longrightarrow>
openin (subtopology euclidean U) S"
unfolding open_openin openin_open by blast
lemma openin_open_trans: "openin (subtopology euclidean T) S \<Longrightarrow> open T \<Longrightarrow> open S"
by (auto simp add: openin_open intro: openin_trans)
lemma closedin_trans[trans]:
"closedin (subtopology euclidean T) S \<Longrightarrow> closedin (subtopology euclidean U) T \<Longrightarrow>
closedin (subtopology euclidean U) S"
by (auto simp add: closedin_closed closed_closedin closed_Inter Int_assoc)
lemma closedin_closed_trans: "closedin (subtopology euclidean T) S \<Longrightarrow> closed T \<Longrightarrow> closed S"
by (auto simp add: closedin_closed intro: closedin_trans)
lemma openin_subtopology_Int_subset:
"\<lbrakk>openin (subtopology euclidean u) (u \<inter> S); v \<subseteq> u\<rbrakk> \<Longrightarrow> openin (subtopology euclidean v) (v \<inter> S)"
by (auto simp: openin_subtopology)
lemma openin_open_eq: "open s \<Longrightarrow> (openin (subtopology euclidean s) t \<longleftrightarrow> open t \<and> t \<subseteq> s)"
using open_subset openin_open_trans openin_subset by fastforce
subsection \<open>Open and closed balls\<close>
definition ball :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set"
where "ball x e = {y. dist x y < e}"
definition cball :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set"
where "cball x e = {y. dist x y \<le> e}"
definition sphere :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set"
where "sphere x e = {y. dist x y = e}"
lemma mem_ball [simp]: "y \<in> ball x e \<longleftrightarrow> dist x y < e"
by (simp add: ball_def)
lemma mem_cball [simp]: "y \<in> cball x e \<longleftrightarrow> dist x y \<le> e"
by (simp add: cball_def)
lemma mem_sphere [simp]: "y \<in> sphere x e \<longleftrightarrow> dist x y = e"
by (simp add: sphere_def)
lemma ball_trivial [simp]: "ball x 0 = {}"
by (simp add: ball_def)
lemma cball_trivial [simp]: "cball x 0 = {x}"
by (simp add: cball_def)
lemma sphere_trivial [simp]: "sphere x 0 = {x}"
by (simp add: sphere_def)
lemma mem_ball_0 [simp]: "x \<in> ball 0 e \<longleftrightarrow> norm x < e"
for x :: "'a::real_normed_vector"
by (simp add: dist_norm)
lemma mem_cball_0 [simp]: "x \<in> cball 0 e \<longleftrightarrow> norm x \<le> e"
for x :: "'a::real_normed_vector"
by (simp add: dist_norm)
lemma disjoint_ballI: "dist x y \<ge> r+s \<Longrightarrow> ball x r \<inter> ball y s = {}"
using dist_triangle_less_add not_le by fastforce
lemma disjoint_cballI: "dist x y > r + s \<Longrightarrow> cball x r \<inter> cball y s = {}"
by (metis add_mono disjoint_iff_not_equal dist_triangle2 dual_order.trans leD mem_cball)
lemma mem_sphere_0 [simp]: "x \<in> sphere 0 e \<longleftrightarrow> norm x = e"
for x :: "'a::real_normed_vector"
by (simp add: dist_norm)
lemma sphere_empty [simp]: "r < 0 \<Longrightarrow> sphere a r = {}"
for a :: "'a::metric_space"
by auto
lemma centre_in_ball [simp]: "x \<in> ball x e \<longleftrightarrow> 0 < e"
by simp
lemma centre_in_cball [simp]: "x \<in> cball x e \<longleftrightarrow> 0 \<le> e"
by simp
lemma ball_subset_cball [simp, intro]: "ball x e \<subseteq> cball x e"
by (simp add: subset_eq)
lemma sphere_cball [simp,intro]: "sphere z r \<subseteq> cball z r"
by force
lemma cball_diff_sphere: "cball a r - sphere a r = ball a r"
by auto
lemma subset_ball[intro]: "d \<le> e \<Longrightarrow> ball x d \<subseteq> ball x e"
by (simp add: subset_eq)
lemma subset_cball[intro]: "d \<le> e \<Longrightarrow> cball x d \<subseteq> cball x e"
by (simp add: subset_eq)
lemma ball_max_Un: "ball a (max r s) = ball a r \<union> ball a s"
by (simp add: set_eq_iff) arith
lemma ball_min_Int: "ball a (min r s) = ball a r \<inter> ball a s"
by (simp add: set_eq_iff)
lemma cball_max_Un: "cball a (max r s) = cball a r \<union> cball a s"
by (simp add: set_eq_iff) arith
lemma cball_min_Int: "cball a (min r s) = cball a r \<inter> cball a s"
by (simp add: set_eq_iff)
lemma cball_diff_eq_sphere: "cball a r - ball a r = sphere a r"
by (auto simp: cball_def ball_def dist_commute)
lemma image_add_ball [simp]:
fixes a :: "'a::real_normed_vector"
shows "op + b ` ball a r = ball (a+b) r"
apply (intro equalityI subsetI)
apply (force simp: dist_norm)
apply (rule_tac x="x-b" in image_eqI)
apply (auto simp: dist_norm algebra_simps)
done
lemma image_add_cball [simp]:
fixes a :: "'a::real_normed_vector"
shows "op + b ` cball a r = cball (a+b) r"
apply (intro equalityI subsetI)
apply (force simp: dist_norm)
apply (rule_tac x="x-b" in image_eqI)
apply (auto simp: dist_norm algebra_simps)
done
lemma open_ball [intro, simp]: "open (ball x e)"
proof -
have "open (dist x -` {..<e})"
by (intro open_vimage open_lessThan continuous_intros)
also have "dist x -` {..<e} = ball x e"
by auto
finally show ?thesis .
qed
lemma open_contains_ball: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. ball x e \<subseteq> S)"
by (simp add: open_dist subset_eq mem_ball Ball_def dist_commute)
lemma openI [intro?]: "(\<And>x. x\<in>S \<Longrightarrow> \<exists>e>0. ball x e \<subseteq> S) \<Longrightarrow> open S"
by (auto simp: open_contains_ball)
lemma openE[elim?]:
assumes "open S" "x\<in>S"
obtains e where "e>0" "ball x e \<subseteq> S"
using assms unfolding open_contains_ball by auto
lemma open_contains_ball_eq: "open S \<Longrightarrow> x\<in>S \<longleftrightarrow> (\<exists>e>0. ball x e \<subseteq> S)"
by (metis open_contains_ball subset_eq centre_in_ball)
lemma openin_contains_ball:
"openin (subtopology euclidean t) s \<longleftrightarrow>
s \<subseteq> t \<and> (\<forall>x \<in> s. \<exists>e. 0 < e \<and> ball x e \<inter> t \<subseteq> s)"
(is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
apply (simp add: openin_open)
apply (metis Int_commute Int_mono inf.cobounded2 open_contains_ball order_refl subsetCE)
done
next
assume ?rhs
then show ?lhs
apply (simp add: openin_euclidean_subtopology_iff)
by (metis (no_types) Int_iff dist_commute inf.absorb_iff2 mem_ball)
qed
lemma openin_contains_cball:
"openin (subtopology euclidean t) s \<longleftrightarrow>
s \<subseteq> t \<and>
(\<forall>x \<in> s. \<exists>e. 0 < e \<and> cball x e \<inter> t \<subseteq> s)"
apply (simp add: openin_contains_ball)
apply (rule iffI)
apply (auto dest!: bspec)
apply (rule_tac x="e/2" in exI)
apply force+
done
lemma ball_eq_empty[simp]: "ball x e = {} \<longleftrightarrow> e \<le> 0"
unfolding mem_ball set_eq_iff
apply (simp add: not_less)
apply (metis zero_le_dist order_trans dist_self)
done
lemma ball_empty: "e \<le> 0 \<Longrightarrow> ball x e = {}" by simp
lemma euclidean_dist_l2:
fixes x y :: "'a :: euclidean_space"
shows "dist x y = setL2 (\<lambda>i. dist (x \<bullet> i) (y \<bullet> i)) Basis"
unfolding dist_norm norm_eq_sqrt_inner setL2_def
by (subst euclidean_inner) (simp add: power2_eq_square inner_diff_left)
lemma eventually_nhds_ball: "d > 0 \<Longrightarrow> eventually (\<lambda>x. x \<in> ball z d) (nhds z)"
by (rule eventually_nhds_in_open) simp_all
lemma eventually_at_ball: "d > 0 \<Longrightarrow> eventually (\<lambda>t. t \<in> ball z d \<and> t \<in> A) (at z within A)"
unfolding eventually_at by (intro exI[of _ d]) (simp_all add: dist_commute)
lemma eventually_at_ball': "d > 0 \<Longrightarrow> eventually (\<lambda>t. t \<in> ball z d \<and> t \<noteq> z \<and> t \<in> A) (at z within A)"
unfolding eventually_at by (intro exI[of _ d]) (simp_all add: dist_commute)
subsection \<open>Boxes\<close>
abbreviation One :: "'a::euclidean_space"
where "One \<equiv> \<Sum>Basis"
lemma One_non_0: assumes "One = (0::'a::euclidean_space)" shows False
proof -
have "dependent (Basis :: 'a set)"
apply (simp add: dependent_finite)
apply (rule_tac x="\<lambda>i. 1" in exI)
using SOME_Basis apply (auto simp: assms)
done
with independent_Basis show False by force
qed
corollary One_neq_0[iff]: "One \<noteq> 0"
by (metis One_non_0)
corollary Zero_neq_One[iff]: "0 \<noteq> One"
by (metis One_non_0)
definition (in euclidean_space) eucl_less (infix "<e" 50)
where "eucl_less a b \<longleftrightarrow> (\<forall>i\<in>Basis. a \<bullet> i < b \<bullet> i)"
definition box_eucl_less: "box a b = {x. a <e x \<and> x <e b}"
definition "cbox a b = {x. \<forall>i\<in>Basis. a \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> b \<bullet> i}"
lemma box_def: "box a b = {x. \<forall>i\<in>Basis. a \<bullet> i < x \<bullet> i \<and> x \<bullet> i < b \<bullet> i}"
and in_box_eucl_less: "x \<in> box a b \<longleftrightarrow> a <e x \<and> x <e b"
and mem_box: "x \<in> box a b \<longleftrightarrow> (\<forall>i\<in>Basis. a \<bullet> i < x \<bullet> i \<and> x \<bullet> i < b \<bullet> i)"
"x \<in> cbox a b \<longleftrightarrow> (\<forall>i\<in>Basis. a \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> b \<bullet> i)"
by (auto simp: box_eucl_less eucl_less_def cbox_def)
lemma cbox_Pair_eq: "cbox (a, c) (b, d) = cbox a b \<times> cbox c d"
by (force simp: cbox_def Basis_prod_def)
lemma cbox_Pair_iff [iff]: "(x, y) \<in> cbox (a, c) (b, d) \<longleftrightarrow> x \<in> cbox a b \<and> y \<in> cbox c d"
by (force simp: cbox_Pair_eq)
lemma cbox_Complex_eq: "cbox (Complex a c) (Complex b d) = (\<lambda>(x,y). Complex x y) ` (cbox a b \<times> cbox c d)"
apply (auto simp: cbox_def Basis_complex_def)
apply (rule_tac x = "(Re x, Im x)" in image_eqI)
using complex_eq by auto
lemma cbox_Pair_eq_0: "cbox (a, c) (b, d) = {} \<longleftrightarrow> cbox a b = {} \<or> cbox c d = {}"
by (force simp: cbox_Pair_eq)
lemma swap_cbox_Pair [simp]: "prod.swap ` cbox (c, a) (d, b) = cbox (a,c) (b,d)"
by auto
lemma mem_box_real[simp]:
"(x::real) \<in> box a b \<longleftrightarrow> a < x \<and> x < b"
"(x::real) \<in> cbox a b \<longleftrightarrow> a \<le> x \<and> x \<le> b"
by (auto simp: mem_box)
lemma box_real[simp]:
fixes a b:: real
shows "box a b = {a <..< b}" "cbox a b = {a .. b}"
by auto
lemma box_Int_box:
fixes a :: "'a::euclidean_space"
shows "box a b \<inter> box c d =
box (\<Sum>i\<in>Basis. max (a\<bullet>i) (c\<bullet>i) *\<^sub>R i) (\<Sum>i\<in>Basis. min (b\<bullet>i) (d\<bullet>i) *\<^sub>R i)"
unfolding set_eq_iff and Int_iff and mem_box by auto
lemma rational_boxes:
fixes x :: "'a::euclidean_space"
assumes "e > 0"
shows "\<exists>a b. (\<forall>i\<in>Basis. a \<bullet> i \<in> \<rat> \<and> b \<bullet> i \<in> \<rat> ) \<and> x \<in> box a b \<and> box a b \<subseteq> ball x e"
proof -
define e' where "e' = e / (2 * sqrt (real (DIM ('a))))"
then have e: "e' > 0"
using assms by (auto simp: DIM_positive)
have "\<forall>i. \<exists>y. y \<in> \<rat> \<and> y < x \<bullet> i \<and> x \<bullet> i - y < e'" (is "\<forall>i. ?th i")
proof
fix i
from Rats_dense_in_real[of "x \<bullet> i - e'" "x \<bullet> i"] e
show "?th i" by auto
qed
from choice[OF this] obtain a where
a: "\<forall>xa. a xa \<in> \<rat> \<and> a xa < x \<bullet> xa \<and> x \<bullet> xa - a xa < e'" ..
have "\<forall>i. \<exists>y. y \<in> \<rat> \<and> x \<bullet> i < y \<and> y - x \<bullet> i < e'" (is "\<forall>i. ?th i")
proof
fix i
from Rats_dense_in_real[of "x \<bullet> i" "x \<bullet> i + e'"] e
show "?th i" by auto
qed
from choice[OF this] obtain b where
b: "\<forall>xa. b xa \<in> \<rat> \<and> x \<bullet> xa < b xa \<and> b xa - x \<bullet> xa < e'" ..
let ?a = "\<Sum>i\<in>Basis. a i *\<^sub>R i" and ?b = "\<Sum>i\<in>Basis. b i *\<^sub>R i"
show ?thesis
proof (rule exI[of _ ?a], rule exI[of _ ?b], safe)
fix y :: 'a
assume *: "y \<in> box ?a ?b"
have "dist x y = sqrt (\<Sum>i\<in>Basis. (dist (x \<bullet> i) (y \<bullet> i))\<^sup>2)"
unfolding setL2_def[symmetric] by (rule euclidean_dist_l2)
also have "\<dots> < sqrt (\<Sum>(i::'a)\<in>Basis. e^2 / real (DIM('a)))"
proof (rule real_sqrt_less_mono, rule sum_strict_mono)
fix i :: "'a"
assume i: "i \<in> Basis"
have "a i < y\<bullet>i \<and> y\<bullet>i < b i"
using * i by (auto simp: box_def)
moreover have "a i < x\<bullet>i" "x\<bullet>i - a i < e'"
using a by auto
moreover have "x\<bullet>i < b i" "b i - x\<bullet>i < e'"
using b by auto
ultimately have "\<bar>x\<bullet>i - y\<bullet>i\<bar> < 2 * e'"
by auto
then have "dist (x \<bullet> i) (y \<bullet> i) < e/sqrt (real (DIM('a)))"
unfolding e'_def by (auto simp: dist_real_def)
then have "(dist (x \<bullet> i) (y \<bullet> i))\<^sup>2 < (e/sqrt (real (DIM('a))))\<^sup>2"
by (rule power_strict_mono) auto
then show "(dist (x \<bullet> i) (y \<bullet> i))\<^sup>2 < e\<^sup>2 / real DIM('a)"
by (simp add: power_divide)
qed auto
also have "\<dots> = e"
using \<open>0 < e\<close> by simp
finally show "y \<in> ball x e"
by (auto simp: ball_def)
qed (insert a b, auto simp: box_def)
qed
lemma open_UNION_box:
fixes M :: "'a::euclidean_space set"
assumes "open M"
defines "a' \<equiv> \<lambda>f :: 'a \<Rightarrow> real \<times> real. (\<Sum>(i::'a)\<in>Basis. fst (f i) *\<^sub>R i)"
defines "b' \<equiv> \<lambda>f :: 'a \<Rightarrow> real \<times> real. (\<Sum>(i::'a)\<in>Basis. snd (f i) *\<^sub>R i)"
defines "I \<equiv> {f\<in>Basis \<rightarrow>\<^sub>E \<rat> \<times> \<rat>. box (a' f) (b' f) \<subseteq> M}"
shows "M = (\<Union>f\<in>I. box (a' f) (b' f))"
proof -
have "x \<in> (\<Union>f\<in>I. box (a' f) (b' f))" if "x \<in> M" for x
proof -
obtain e where e: "e > 0" "ball x e \<subseteq> M"
using openE[OF \<open>open M\<close> \<open>x \<in> M\<close>] by auto
moreover obtain a b where ab:
"x \<in> box a b"
"\<forall>i \<in> Basis. a \<bullet> i \<in> \<rat>"
"\<forall>i\<in>Basis. b \<bullet> i \<in> \<rat>"
"box a b \<subseteq> ball x e"
using rational_boxes[OF e(1)] by metis
ultimately show ?thesis
by (intro UN_I[of "\<lambda>i\<in>Basis. (a \<bullet> i, b \<bullet> i)"])
(auto simp: euclidean_representation I_def a'_def b'_def)
qed
then show ?thesis by (auto simp: I_def)
qed
corollary open_countable_Union_open_box:
fixes S :: "'a :: euclidean_space set"
assumes "open S"
obtains \<D> where "countable \<D>" "\<D> \<subseteq> Pow S" "\<And>X. X \<in> \<D> \<Longrightarrow> \<exists>a b. X = box a b" "\<Union>\<D> = S"
proof -
let ?a = "\<lambda>f. (\<Sum>(i::'a)\<in>Basis. fst (f i) *\<^sub>R i)"
let ?b = "\<lambda>f. (\<Sum>(i::'a)\<in>Basis. snd (f i) *\<^sub>R i)"
let ?I = "{f\<in>Basis \<rightarrow>\<^sub>E \<rat> \<times> \<rat>. box (?a f) (?b f) \<subseteq> S}"
let ?\<D> = "(\<lambda>f. box (?a f) (?b f)) ` ?I"
show ?thesis
proof
have "countable ?I"
by (simp add: countable_PiE countable_rat)
then show "countable ?\<D>"
by blast
show "\<Union>?\<D> = S"
using open_UNION_box [OF assms] by metis
qed auto
qed
lemma rational_cboxes:
fixes x :: "'a::euclidean_space"
assumes "e > 0"
shows "\<exists>a b. (\<forall>i\<in>Basis. a \<bullet> i \<in> \<rat> \<and> b \<bullet> i \<in> \<rat>) \<and> x \<in> cbox a b \<and> cbox a b \<subseteq> ball x e"
proof -
define e' where "e' = e / (2 * sqrt (real (DIM ('a))))"
then have e: "e' > 0"
using assms by auto
have "\<forall>i. \<exists>y. y \<in> \<rat> \<and> y < x \<bullet> i \<and> x \<bullet> i - y < e'" (is "\<forall>i. ?th i")
proof
fix i
from Rats_dense_in_real[of "x \<bullet> i - e'" "x \<bullet> i"] e
show "?th i" by auto
qed
from choice[OF this] obtain a where
a: "\<forall>u. a u \<in> \<rat> \<and> a u < x \<bullet> u \<and> x \<bullet> u - a u < e'" ..
have "\<forall>i. \<exists>y. y \<in> \<rat> \<and> x \<bullet> i < y \<and> y - x \<bullet> i < e'" (is "\<forall>i. ?th i")
proof
fix i
from Rats_dense_in_real[of "x \<bullet> i" "x \<bullet> i + e'"] e
show "?th i" by auto
qed
from choice[OF this] obtain b where
b: "\<forall>u. b u \<in> \<rat> \<and> x \<bullet> u < b u \<and> b u - x \<bullet> u < e'" ..
let ?a = "\<Sum>i\<in>Basis. a i *\<^sub>R i" and ?b = "\<Sum>i\<in>Basis. b i *\<^sub>R i"
show ?thesis
proof (rule exI[of _ ?a], rule exI[of _ ?b], safe)
fix y :: 'a
assume *: "y \<in> cbox ?a ?b"
have "dist x y = sqrt (\<Sum>i\<in>Basis. (dist (x \<bullet> i) (y \<bullet> i))\<^sup>2)"
unfolding setL2_def[symmetric] by (rule euclidean_dist_l2)
also have "\<dots> < sqrt (\<Sum>(i::'a)\<in>Basis. e^2 / real (DIM('a)))"
proof (rule real_sqrt_less_mono, rule sum_strict_mono)
fix i :: "'a"
assume i: "i \<in> Basis"
have "a i \<le> y\<bullet>i \<and> y\<bullet>i \<le> b i"
using * i by (auto simp: cbox_def)
moreover have "a i < x\<bullet>i" "x\<bullet>i - a i < e'"
using a by auto
moreover have "x\<bullet>i < b i" "b i - x\<bullet>i < e'"
using b by auto
ultimately have "\<bar>x\<bullet>i - y\<bullet>i\<bar> < 2 * e'"
by auto
then have "dist (x \<bullet> i) (y \<bullet> i) < e/sqrt (real (DIM('a)))"
unfolding e'_def by (auto simp: dist_real_def)
then have "(dist (x \<bullet> i) (y \<bullet> i))\<^sup>2 < (e/sqrt (real (DIM('a))))\<^sup>2"
by (rule power_strict_mono) auto
then show "(dist (x \<bullet> i) (y \<bullet> i))\<^sup>2 < e\<^sup>2 / real DIM('a)"
by (simp add: power_divide)
qed auto
also have "\<dots> = e"
using \<open>0 < e\<close> by simp
finally show "y \<in> ball x e"
by (auto simp: ball_def)
next
show "x \<in> cbox (\<Sum>i\<in>Basis. a i *\<^sub>R i) (\<Sum>i\<in>Basis. b i *\<^sub>R i)"
using a b less_imp_le by (auto simp: cbox_def)
qed (use a b cbox_def in auto)
qed
lemma open_UNION_cbox:
fixes M :: "'a::euclidean_space set"
assumes "open M"
defines "a' \<equiv> \<lambda>f. (\<Sum>(i::'a)\<in>Basis. fst (f i) *\<^sub>R i)"
defines "b' \<equiv> \<lambda>f. (\<Sum>(i::'a)\<in>Basis. snd (f i) *\<^sub>R i)"
defines "I \<equiv> {f\<in>Basis \<rightarrow>\<^sub>E \<rat> \<times> \<rat>. cbox (a' f) (b' f) \<subseteq> M}"
shows "M = (\<Union>f\<in>I. cbox (a' f) (b' f))"
proof -
have "x \<in> (\<Union>f\<in>I. cbox (a' f) (b' f))" if "x \<in> M" for x
proof -
obtain e where e: "e > 0" "ball x e \<subseteq> M"
using openE[OF \<open>open M\<close> \<open>x \<in> M\<close>] by auto
moreover obtain a b where ab: "x \<in> cbox a b" "\<forall>i \<in> Basis. a \<bullet> i \<in> \<rat>"
"\<forall>i \<in> Basis. b \<bullet> i \<in> \<rat>" "cbox a b \<subseteq> ball x e"
using rational_cboxes[OF e(1)] by metis
ultimately show ?thesis
by (intro UN_I[of "\<lambda>i\<in>Basis. (a \<bullet> i, b \<bullet> i)"])
(auto simp: euclidean_representation I_def a'_def b'_def)
qed
then show ?thesis by (auto simp: I_def)
qed
corollary open_countable_Union_open_cbox:
fixes S :: "'a :: euclidean_space set"
assumes "open S"
obtains \<D> where "countable \<D>" "\<D> \<subseteq> Pow S" "\<And>X. X \<in> \<D> \<Longrightarrow> \<exists>a b. X = cbox a b" "\<Union>\<D> = S"
proof -
let ?a = "\<lambda>f. (\<Sum>(i::'a)\<in>Basis. fst (f i) *\<^sub>R i)"
let ?b = "\<lambda>f. (\<Sum>(i::'a)\<in>Basis. snd (f i) *\<^sub>R i)"
let ?I = "{f\<in>Basis \<rightarrow>\<^sub>E \<rat> \<times> \<rat>. cbox (?a f) (?b f) \<subseteq> S}"
let ?\<D> = "(\<lambda>f. cbox (?a f) (?b f)) ` ?I"
show ?thesis
proof
have "countable ?I"
by (simp add: countable_PiE countable_rat)
then show "countable ?\<D>"
by blast
show "\<Union>?\<D> = S"
using open_UNION_cbox [OF assms] by metis
qed auto
qed
lemma box_eq_empty:
fixes a :: "'a::euclidean_space"
shows "(box a b = {} \<longleftrightarrow> (\<exists>i\<in>Basis. b\<bullet>i \<le> a\<bullet>i))" (is ?th1)
and "(cbox a b = {} \<longleftrightarrow> (\<exists>i\<in>Basis. b\<bullet>i < a\<bullet>i))" (is ?th2)
proof -
{
fix i x
assume i: "i\<in>Basis" and as:"b\<bullet>i \<le> a\<bullet>i" and x:"x\<in>box a b"
then have "a \<bullet> i < x \<bullet> i \<and> x \<bullet> i < b \<bullet> i"
unfolding mem_box by (auto simp: box_def)
then have "a\<bullet>i < b\<bullet>i" by auto
then have False using as by auto
}
moreover
{
assume as: "\<forall>i\<in>Basis. \<not> (b\<bullet>i \<le> a\<bullet>i)"
let ?x = "(1/2) *\<^sub>R (a + b)"
{
fix i :: 'a
assume i: "i \<in> Basis"
have "a\<bullet>i < b\<bullet>i"
using as[THEN bspec[where x=i]] i by auto
then have "a\<bullet>i < ((1/2) *\<^sub>R (a+b)) \<bullet> i" "((1/2) *\<^sub>R (a+b)) \<bullet> i < b\<bullet>i"
by (auto simp: inner_add_left)
}
then have "box a b \<noteq> {}"
using mem_box(1)[of "?x" a b] by auto
}
ultimately show ?th1 by blast
{
fix i x
assume i: "i \<in> Basis" and as:"b\<bullet>i < a\<bullet>i" and x:"x\<in>cbox a b"
then have "a \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> b \<bullet> i"
unfolding mem_box by auto
then have "a\<bullet>i \<le> b\<bullet>i" by auto
then have False using as by auto
}
moreover
{
assume as:"\<forall>i\<in>Basis. \<not> (b\<bullet>i < a\<bullet>i)"
let ?x = "(1/2) *\<^sub>R (a + b)"
{
fix i :: 'a
assume i:"i \<in> Basis"
have "a\<bullet>i \<le> b\<bullet>i"
using as[THEN bspec[where x=i]] i by auto
then have "a\<bullet>i \<le> ((1/2) *\<^sub>R (a+b)) \<bullet> i" "((1/2) *\<^sub>R (a+b)) \<bullet> i \<le> b\<bullet>i"
by (auto simp: inner_add_left)
}
then have "cbox a b \<noteq> {}"
using mem_box(2)[of "?x" a b] by auto
}
ultimately show ?th2 by blast
qed
lemma box_ne_empty:
fixes a :: "'a::euclidean_space"
shows "cbox a b \<noteq> {} \<longleftrightarrow> (\<forall>i\<in>Basis. a\<bullet>i \<le> b\<bullet>i)"
and "box a b \<noteq> {} \<longleftrightarrow> (\<forall>i\<in>Basis. a\<bullet>i < b\<bullet>i)"
unfolding box_eq_empty[of a b] by fastforce+
lemma
fixes a :: "'a::euclidean_space"
shows cbox_sing [simp]: "cbox a a = {a}"
and box_sing [simp]: "box a a = {}"
unfolding set_eq_iff mem_box eq_iff [symmetric]
by (auto intro!: euclidean_eqI[where 'a='a])
(metis all_not_in_conv nonempty_Basis)
lemma subset_box_imp:
fixes a :: "'a::euclidean_space"
shows "(\<forall>i\<in>Basis. a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i) \<Longrightarrow> cbox c d \<subseteq> cbox a b"
and "(\<forall>i\<in>Basis. a\<bullet>i < c\<bullet>i \<and> d\<bullet>i < b\<bullet>i) \<Longrightarrow> cbox c d \<subseteq> box a b"
and "(\<forall>i\<in>Basis. a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i) \<Longrightarrow> box c d \<subseteq> cbox a b"
and "(\<forall>i\<in>Basis. a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i) \<Longrightarrow> box c d \<subseteq> box a b"
unfolding subset_eq[unfolded Ball_def] unfolding mem_box
by (best intro: order_trans less_le_trans le_less_trans less_imp_le)+
lemma box_subset_cbox:
fixes a :: "'a::euclidean_space"
shows "box a b \<subseteq> cbox a b"
unfolding subset_eq [unfolded Ball_def] mem_box
by (fast intro: less_imp_le)
lemma subset_box:
fixes a :: "'a::euclidean_space"
shows "cbox c d \<subseteq> cbox a b \<longleftrightarrow> (\<forall>i\<in>Basis. c\<bullet>i \<le> d\<bullet>i) \<longrightarrow> (\<forall>i\<in>Basis. a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i)" (is ?th1)
and "cbox c d \<subseteq> box a b \<longleftrightarrow> (\<forall>i\<in>Basis. c\<bullet>i \<le> d\<bullet>i) \<longrightarrow> (\<forall>i\<in>Basis. a\<bullet>i < c\<bullet>i \<and> d\<bullet>i < b\<bullet>i)" (is ?th2)
and "box c d \<subseteq> cbox a b \<longleftrightarrow> (\<forall>i\<in>Basis. c\<bullet>i < d\<bullet>i) \<longrightarrow> (\<forall>i\<in>Basis. a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i)" (is ?th3)
and "box c d \<subseteq> box a b \<longleftrightarrow> (\<forall>i\<in>Basis. c\<bullet>i < d\<bullet>i) \<longrightarrow> (\<forall>i\<in>Basis. a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i)" (is ?th4)
proof -
show ?th1
unfolding subset_eq and Ball_def and mem_box
by (auto intro: order_trans)
show ?th2
unfolding subset_eq and Ball_def and mem_box
by (auto intro: le_less_trans less_le_trans order_trans less_imp_le)
{
assume as: "box c d \<subseteq> cbox a b" "\<forall>i\<in>Basis. c\<bullet>i < d\<bullet>i"
then have "box c d \<noteq> {}"
unfolding box_eq_empty by auto
fix i :: 'a
assume i: "i \<in> Basis"
(** TODO combine the following two parts as done in the HOL_light version. **)
{
let ?x = "(\<Sum>j\<in>Basis. (if j=i then ((min (a\<bullet>j) (d\<bullet>j))+c\<bullet>j)/2 else (c\<bullet>j+d\<bullet>j)/2) *\<^sub>R j)::'a"
assume as2: "a\<bullet>i > c\<bullet>i"
{
fix j :: 'a
assume j: "j \<in> Basis"
then have "c \<bullet> j < ?x \<bullet> j \<and> ?x \<bullet> j < d \<bullet> j"
apply (cases "j = i")
using as(2)[THEN bspec[where x=j]] i
apply (auto simp add: as2)
done
}
then have "?x\<in>box c d"
using i unfolding mem_box by auto
moreover
have "?x \<notin> cbox a b"
unfolding mem_box
apply auto
apply (rule_tac x=i in bexI)
using as(2)[THEN bspec[where x=i]] and as2 i
apply auto
done
ultimately have False using as by auto
}
then have "a\<bullet>i \<le> c\<bullet>i" by (rule ccontr) auto
moreover
{
let ?x = "(\<Sum>j\<in>Basis. (if j=i then ((max (b\<bullet>j) (c\<bullet>j))+d\<bullet>j)/2 else (c\<bullet>j+d\<bullet>j)/2) *\<^sub>R j)::'a"
assume as2: "b\<bullet>i < d\<bullet>i"
{
fix j :: 'a
assume "j\<in>Basis"
then have "d \<bullet> j > ?x \<bullet> j \<and> ?x \<bullet> j > c \<bullet> j"
apply (cases "j = i")
using as(2)[THEN bspec[where x=j]]
apply (auto simp add: as2)
done
}
then have "?x\<in>box c d"
unfolding mem_box by auto
moreover
have "?x\<notin>cbox a b"
unfolding mem_box
apply auto
apply (rule_tac x=i in bexI)
using as(2)[THEN bspec[where x=i]] and as2 using i
apply auto
done
ultimately have False using as by auto
}
then have "b\<bullet>i \<ge> d\<bullet>i" by (rule ccontr) auto
ultimately
have "a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i" by auto
} note part1 = this
show ?th3
unfolding subset_eq and Ball_def and mem_box
apply (rule, rule, rule, rule)
apply (rule part1)
unfolding subset_eq and Ball_def and mem_box
prefer 4
apply auto
apply (erule_tac x=xa in allE, erule_tac x=xa in allE, fastforce)+
done
{
assume as: "box c d \<subseteq> box a b" "\<forall>i\<in>Basis. c\<bullet>i < d\<bullet>i"
fix i :: 'a
assume i:"i\<in>Basis"
from as(1) have "box c d \<subseteq> cbox a b"
using box_subset_cbox[of a b] by auto
then have "a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i"
using part1 and as(2) using i by auto
} note * = this
show ?th4
unfolding subset_eq and Ball_def and mem_box
apply (rule, rule, rule, rule)
apply (rule *)
unfolding subset_eq and Ball_def and mem_box
prefer 4
apply auto
apply (erule_tac x=xa in allE, simp)+
done
qed
lemma eq_cbox: "cbox a b = cbox c d \<longleftrightarrow> cbox a b = {} \<and> cbox c d = {} \<or> a = c \<and> b = d"
(is "?lhs = ?rhs")
proof
assume ?lhs
then have "cbox a b \<subseteq> cbox c d" "cbox c d \<subseteq> cbox a b"
by auto
then show ?rhs
by (force simp add: subset_box box_eq_empty intro: antisym euclidean_eqI)
next
assume ?rhs
then show ?lhs
by force
qed
lemma eq_cbox_box [simp]: "cbox a b = box c d \<longleftrightarrow> cbox a b = {} \<and> box c d = {}"
(is "?lhs \<longleftrightarrow> ?rhs")
proof
assume ?lhs
then have "cbox a b \<subseteq> box c d" "box c d \<subseteq>cbox a b"
by auto
then show ?rhs
apply (simp add: subset_box)
using \<open>cbox a b = box c d\<close> box_ne_empty box_sing
apply (fastforce simp add:)
done
next
assume ?rhs
then show ?lhs
by force
qed
lemma eq_box_cbox [simp]: "box a b = cbox c d \<longleftrightarrow> box a b = {} \<and> cbox c d = {}"
by (metis eq_cbox_box)
lemma eq_box: "box a b = box c d \<longleftrightarrow> box a b = {} \<and> box c d = {} \<or> a = c \<and> b = d"
(is "?lhs \<longleftrightarrow> ?rhs")
proof
assume ?lhs
then have "box a b \<subseteq> box c d" "box c d \<subseteq> box a b"
by auto
then show ?rhs
apply (simp add: subset_box)
using box_ne_empty(2) \<open>box a b = box c d\<close>
apply auto
apply (meson euclidean_eqI less_eq_real_def not_less)+
done
next
assume ?rhs
then show ?lhs
by force
qed
lemma Int_interval:
fixes a :: "'a::euclidean_space"
shows "cbox a b \<inter> cbox c d =
cbox (\<Sum>i\<in>Basis. max (a\<bullet>i) (c\<bullet>i) *\<^sub>R i) (\<Sum>i\<in>Basis. min (b\<bullet>i) (d\<bullet>i) *\<^sub>R i)"
unfolding set_eq_iff and Int_iff and mem_box
by auto
lemma disjoint_interval:
fixes a::"'a::euclidean_space"
shows "cbox a b \<inter> cbox c d = {} \<longleftrightarrow> (\<exists>i\<in>Basis. (b\<bullet>i < a\<bullet>i \<or> d\<bullet>i < c\<bullet>i \<or> b\<bullet>i < c\<bullet>i \<or> d\<bullet>i < a\<bullet>i))" (is ?th1)
and "cbox a b \<inter> box c d = {} \<longleftrightarrow> (\<exists>i\<in>Basis. (b\<bullet>i < a\<bullet>i \<or> d\<bullet>i \<le> c\<bullet>i \<or> b\<bullet>i \<le> c\<bullet>i \<or> d\<bullet>i \<le> a\<bullet>i))" (is ?th2)
and "box a b \<inter> cbox c d = {} \<longleftrightarrow> (\<exists>i\<in>Basis. (b\<bullet>i \<le> a\<bullet>i \<or> d\<bullet>i < c\<bullet>i \<or> b\<bullet>i \<le> c\<bullet>i \<or> d\<bullet>i \<le> a\<bullet>i))" (is ?th3)
and "box a b \<inter> box c d = {} \<longleftrightarrow> (\<exists>i\<in>Basis. (b\<bullet>i \<le> a\<bullet>i \<or> d\<bullet>i \<le> c\<bullet>i \<or> b\<bullet>i \<le> c\<bullet>i \<or> d\<bullet>i \<le> a\<bullet>i))" (is ?th4)
proof -
let ?z = "(\<Sum>i\<in>Basis. (((max (a\<bullet>i) (c\<bullet>i)) + (min (b\<bullet>i) (d\<bullet>i))) / 2) *\<^sub>R i)::'a"
have **: "\<And>P Q. (\<And>i :: 'a. i \<in> Basis \<Longrightarrow> Q ?z i \<Longrightarrow> P i) \<Longrightarrow>
(\<And>i x :: 'a. i \<in> Basis \<Longrightarrow> P i \<Longrightarrow> Q x i) \<Longrightarrow> (\<forall>x. \<exists>i\<in>Basis. Q x i) \<longleftrightarrow> (\<exists>i\<in>Basis. P i)"
by blast
note * = set_eq_iff Int_iff empty_iff mem_box ball_conj_distrib[symmetric] eq_False ball_simps(10)
show ?th1 unfolding * by (intro **) auto
show ?th2 unfolding * by (intro **) auto
show ?th3 unfolding * by (intro **) auto
show ?th4 unfolding * by (intro **) auto
qed
lemma UN_box_eq_UNIV: "(\<Union>i::nat. box (- (real i *\<^sub>R One)) (real i *\<^sub>R One)) = UNIV"
proof -
have "\<bar>x \<bullet> b\<bar> < real_of_int (\<lceil>Max ((\<lambda>b. \<bar>x \<bullet> b\<bar>)`Basis)\<rceil> + 1)"
if [simp]: "b \<in> Basis" for x b :: 'a
proof -
have "\<bar>x \<bullet> b\<bar> \<le> real_of_int \<lceil>\<bar>x \<bullet> b\<bar>\<rceil>"
by (rule le_of_int_ceiling)
also have "\<dots> \<le> real_of_int \<lceil>Max ((\<lambda>b. \<bar>x \<bullet> b\<bar>)`Basis)\<rceil>"
by (auto intro!: ceiling_mono)
also have "\<dots> < real_of_int (\<lceil>Max ((\<lambda>b. \<bar>x \<bullet> b\<bar>)`Basis)\<rceil> + 1)"
by simp
finally show ?thesis .
qed
then have "\<exists>n::nat. \<forall>b\<in>Basis. \<bar>x \<bullet> b\<bar> < real n" for x :: 'a
by (metis order.strict_trans reals_Archimedean2)
moreover have "\<And>x b::'a. \<And>n::nat. \<bar>x \<bullet> b\<bar> < real n \<longleftrightarrow> - real n < x \<bullet> b \<and> x \<bullet> b < real n"
by auto
ultimately show ?thesis
by (auto simp: box_def inner_sum_left inner_Basis sum.If_cases)
qed
text \<open>Intervals in general, including infinite and mixtures of open and closed.\<close>
definition "is_interval (s::('a::euclidean_space) set) \<longleftrightarrow>
(\<forall>a\<in>s. \<forall>b\<in>s. \<forall>x. (\<forall>i\<in>Basis. ((a\<bullet>i \<le> x\<bullet>i \<and> x\<bullet>i \<le> b\<bullet>i) \<or> (b\<bullet>i \<le> x\<bullet>i \<and> x\<bullet>i \<le> a\<bullet>i))) \<longrightarrow> x \<in> s)"
lemma is_interval_cbox [simp]: "is_interval (cbox a (b::'a::euclidean_space))" (is ?th1)
and is_interval_box [simp]: "is_interval (box a b)" (is ?th2)
unfolding is_interval_def mem_box Ball_def atLeastAtMost_iff
by (meson order_trans le_less_trans less_le_trans less_trans)+
lemma is_interval_empty [iff]: "is_interval {}"
unfolding is_interval_def by simp
lemma is_interval_univ [iff]: "is_interval UNIV"
unfolding is_interval_def by simp
lemma mem_is_intervalI:
assumes "is_interval s"
and "a \<in> s" "b \<in> s"
and "\<And>i. i \<in> Basis \<Longrightarrow> a \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> b \<bullet> i \<or> b \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> a \<bullet> i"
shows "x \<in> s"
by (rule assms(1)[simplified is_interval_def, rule_format, OF assms(2,3,4)])
lemma interval_subst:
fixes S::"'a::euclidean_space set"
assumes "is_interval S"
and "x \<in> S" "y j \<in> S"
and "j \<in> Basis"
shows "(\<Sum>i\<in>Basis. (if i = j then y i \<bullet> i else x \<bullet> i) *\<^sub>R i) \<in> S"
by (rule mem_is_intervalI[OF assms(1,2)]) (auto simp: assms)
lemma mem_box_componentwiseI:
fixes S::"'a::euclidean_space set"
assumes "is_interval S"
assumes "\<And>i. i \<in> Basis \<Longrightarrow> x \<bullet> i \<in> ((\<lambda>x. x \<bullet> i) ` S)"
shows "x \<in> S"
proof -
from assms have "\<forall>i \<in> Basis. \<exists>s \<in> S. x \<bullet> i = s \<bullet> i"
by auto
with finite_Basis obtain s and bs::"'a list"
where s: "\<And>i. i \<in> Basis \<Longrightarrow> x \<bullet> i = s i \<bullet> i" "\<And>i. i \<in> Basis \<Longrightarrow> s i \<in> S"
and bs: "set bs = Basis" "distinct bs"
by (metis finite_distinct_list)
from nonempty_Basis s obtain j where j: "j \<in> Basis" "s j \<in> S"
by blast
define y where
"y = rec_list (s j) (\<lambda>j _ Y. (\<Sum>i\<in>Basis. (if i = j then s i \<bullet> i else Y \<bullet> i) *\<^sub>R i))"
have "x = (\<Sum>i\<in>Basis. (if i \<in> set bs then s i \<bullet> i else s j \<bullet> i) *\<^sub>R i)"
using bs by (auto simp add: s(1)[symmetric] euclidean_representation)
also have [symmetric]: "y bs = \<dots>"
using bs(2) bs(1)[THEN equalityD1]
by (induct bs) (auto simp: y_def euclidean_representation intro!: euclidean_eqI[where 'a='a])
also have "y bs \<in> S"
using bs(1)[THEN equalityD1]
apply (induct bs)
apply (auto simp: y_def j)
apply (rule interval_subst[OF assms(1)])
apply (auto simp: s)
done
finally show ?thesis .
qed
lemma cbox01_nonempty [simp]: "cbox 0 One \<noteq> {}"
by (simp add: box_ne_empty inner_Basis inner_sum_left sum_nonneg)
lemma box01_nonempty [simp]: "box 0 One \<noteq> {}"
by (simp add: box_ne_empty inner_Basis inner_sum_left)
lemma empty_as_interval: "{} = cbox One (0::'a::euclidean_space)"
using nonempty_Basis box01_nonempty box_eq_empty(1) box_ne_empty(1) by blast
lemma interval_subset_is_interval:
assumes "is_interval S"
shows "cbox a b \<subseteq> S \<longleftrightarrow> cbox a b = {} \<or> a \<in> S \<and> b \<in> S" (is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs using box_ne_empty(1) mem_box(2) by fastforce
next
assume ?rhs
have "cbox a b \<subseteq> S" if "a \<in> S" "b \<in> S"
using assms unfolding is_interval_def
apply (clarsimp simp add: mem_box)
using that by blast
with \<open>?rhs\<close> show ?lhs
by blast
qed
subsection \<open>Connectedness\<close>
lemma connected_local:
"connected S \<longleftrightarrow>
\<not> (\<exists>e1 e2.
openin (subtopology euclidean S) e1 \<and>
openin (subtopology euclidean S) e2 \<and>
S \<subseteq> e1 \<union> e2 \<and>
e1 \<inter> e2 = {} \<and>
e1 \<noteq> {} \<and>
e2 \<noteq> {})"
unfolding connected_def openin_open
by safe blast+
lemma exists_diff:
fixes P :: "'a set \<Rightarrow> bool"
shows "(\<exists>S. P (- S)) \<longleftrightarrow> (\<exists>S. P S)"
(is "?lhs \<longleftrightarrow> ?rhs")
proof -
have ?rhs if ?lhs
using that by blast
moreover have "P (- (- S))" if "P S" for S
proof -
have "S = - (- S)" by simp
with that show ?thesis by metis
qed
ultimately show ?thesis by metis
qed
lemma connected_clopen: "connected S \<longleftrightarrow>
(\<forall>T. openin (subtopology euclidean S) T \<and>
closedin (subtopology euclidean S) T \<longrightarrow> T = {} \<or> T = S)" (is "?lhs \<longleftrightarrow> ?rhs")
proof -
have "\<not> connected S \<longleftrightarrow>
(\<exists>e1 e2. open e1 \<and> open (- e2) \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
unfolding connected_def openin_open closedin_closed
by (metis double_complement)
then have th0: "connected S \<longleftrightarrow>
\<not> (\<exists>e2 e1. closed e2 \<and> open e1 \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
(is " _ \<longleftrightarrow> \<not> (\<exists>e2 e1. ?P e2 e1)")
by (simp add: closed_def) metis
have th1: "?rhs \<longleftrightarrow> \<not> (\<exists>t' t. closed t'\<and>t = S\<inter>t' \<and> t\<noteq>{} \<and> t\<noteq>S \<and> (\<exists>t'. open t' \<and> t = S \<inter> t'))"
(is "_ \<longleftrightarrow> \<not> (\<exists>t' t. ?Q t' t)")
unfolding connected_def openin_open closedin_closed by auto
have "(\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)" for e2
proof -
have "?P e2 e1 \<longleftrightarrow> (\<exists>t. closed e2 \<and> t = S\<inter>e2 \<and> open e1 \<and> t = S\<inter>e1 \<and> t\<noteq>{} \<and> t \<noteq> S)" for e1
by auto
then show ?thesis
by metis
qed
then have "\<forall>e2. (\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)"
by blast
then show ?thesis
by (simp add: th0 th1)
qed
subsection \<open>Limit points\<close>
definition (in topological_space) islimpt:: "'a \<Rightarrow> 'a set \<Rightarrow> bool" (infixr "islimpt" 60)
where "x islimpt S \<longleftrightarrow> (\<forall>T. x\<in>T \<longrightarrow> open T \<longrightarrow> (\<exists>y\<in>S. y\<in>T \<and> y\<noteq>x))"
lemma islimptI:
assumes "\<And>T. x \<in> T \<Longrightarrow> open T \<Longrightarrow> \<exists>y\<in>S. y \<in> T \<and> y \<noteq> x"
shows "x islimpt S"
using assms unfolding islimpt_def by auto
lemma islimptE:
assumes "x islimpt S" and "x \<in> T" and "open T"
obtains y where "y \<in> S" and "y \<in> T" and "y \<noteq> x"
using assms unfolding islimpt_def by auto
lemma islimpt_iff_eventually: "x islimpt S \<longleftrightarrow> \<not> eventually (\<lambda>y. y \<notin> S) (at x)"
unfolding islimpt_def eventually_at_topological by auto
lemma islimpt_subset: "x islimpt S \<Longrightarrow> S \<subseteq> T \<Longrightarrow> x islimpt T"
unfolding islimpt_def by fast
lemma islimpt_approachable:
fixes x :: "'a::metric_space"
shows "x islimpt S \<longleftrightarrow> (\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e)"
unfolding islimpt_iff_eventually eventually_at by fast
lemma islimpt_approachable_le: "x islimpt S \<longleftrightarrow> (\<forall>e>0. \<exists>x'\<in> S. x' \<noteq> x \<and> dist x' x \<le> e)"
for x :: "'a::metric_space"
unfolding islimpt_approachable
using approachable_lt_le [where f="\<lambda>y. dist y x" and P="\<lambda>y. y \<notin> S \<or> y = x",
THEN arg_cong [where f=Not]]
by (simp add: Bex_def conj_commute conj_left_commute)
lemma islimpt_UNIV_iff: "x islimpt UNIV \<longleftrightarrow> \<not> open {x}"
unfolding islimpt_def by (safe, fast, case_tac "T = {x}", fast, fast)
lemma islimpt_punctured: "x islimpt S = x islimpt (S-{x})"
unfolding islimpt_def by blast
text \<open>A perfect space has no isolated points.\<close>
lemma islimpt_UNIV [simp, intro]: "x islimpt UNIV"
for x :: "'a::perfect_space"
unfolding islimpt_UNIV_iff by (rule not_open_singleton)
lemma perfect_choose_dist: "0 < r \<Longrightarrow> \<exists>a. a \<noteq> x \<and> dist a x < r"
for x :: "'a::{perfect_space,metric_space}"
using islimpt_UNIV [of x] by (simp add: islimpt_approachable)
lemma closed_limpt: "closed S \<longleftrightarrow> (\<forall>x. x islimpt S \<longrightarrow> x \<in> S)"
unfolding closed_def
apply (subst open_subopen)
apply (simp add: islimpt_def subset_eq)
apply (metis ComplE ComplI)
done
lemma islimpt_EMPTY[simp]: "\<not> x islimpt {}"
by (auto simp add: islimpt_def)
lemma finite_set_avoid:
fixes a :: "'a::metric_space"
assumes fS: "finite S"
shows "\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<longrightarrow> d \<le> dist a x"
proof (induct rule: finite_induct[OF fS])
case 1
then show ?case by (auto intro: zero_less_one)
next
case (2 x F)
from 2 obtain d where d: "d > 0" "\<forall>x\<in>F. x \<noteq> a \<longrightarrow> d \<le> dist a x"
by blast
show ?case
proof (cases "x = a")
case True
with d show ?thesis by auto
next
case False
let ?d = "min d (dist a x)"
from False d(1) have dp: "?d > 0"
by auto
from d have d': "\<forall>x\<in>F. x \<noteq> a \<longrightarrow> ?d \<le> dist a x"
by auto
with dp False show ?thesis
by (auto intro!: exI[where x="?d"])
qed
qed
lemma islimpt_Un: "x islimpt (S \<union> T) \<longleftrightarrow> x islimpt S \<or> x islimpt T"
by (simp add: islimpt_iff_eventually eventually_conj_iff)
lemma discrete_imp_closed:
fixes S :: "'a::metric_space set"
assumes e: "0 < e"
and d: "\<forall>x \<in> S. \<forall>y \<in> S. dist y x < e \<longrightarrow> y = x"
shows "closed S"
proof -
have False if C: "\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e" for x
proof -
from e have e2: "e/2 > 0" by arith
from C[rule_format, OF e2] obtain y where y: "y \<in> S" "y \<noteq> x" "dist y x < e/2"
by blast
let ?m = "min (e/2) (dist x y) "
from e2 y(2) have mp: "?m > 0"
by simp
from C[rule_format, OF mp] obtain z where z: "z \<in> S" "z \<noteq> x" "dist z x < ?m"
by blast
from z y have "dist z y < e"
by (intro dist_triangle_lt [where z=x]) simp
from d[rule_format, OF y(1) z(1) this] y z show ?thesis
by (auto simp add: dist_commute)
qed
then show ?thesis
by (metis islimpt_approachable closed_limpt [where 'a='a])
qed
lemma closed_of_nat_image: "closed (of_nat ` A :: 'a::real_normed_algebra_1 set)"
by (rule discrete_imp_closed[of 1]) (auto simp: dist_of_nat)
lemma closed_of_int_image: "closed (of_int ` A :: 'a::real_normed_algebra_1 set)"
by (rule discrete_imp_closed[of 1]) (auto simp: dist_of_int)
lemma closed_Nats [simp]: "closed (\<nat> :: 'a :: real_normed_algebra_1 set)"
unfolding Nats_def by (rule closed_of_nat_image)
lemma closed_Ints [simp]: "closed (\<int> :: 'a :: real_normed_algebra_1 set)"
unfolding Ints_def by (rule closed_of_int_image)
lemma closed_subset_Ints:
fixes A :: "'a :: real_normed_algebra_1 set"
assumes "A \<subseteq> \<int>"
shows "closed A"
proof (intro discrete_imp_closed[OF zero_less_one] ballI impI, goal_cases)
case (1 x y)
with assms have "x \<in> \<int>" and "y \<in> \<int>" by auto
with \<open>dist y x < 1\<close> show "y = x"
by (auto elim!: Ints_cases simp: dist_of_int)
qed
subsection \<open>Interior of a Set\<close>
definition "interior S = \<Union>{T. open T \<and> T \<subseteq> S}"
lemma interiorI [intro?]:
assumes "open T" and "x \<in> T" and "T \<subseteq> S"
shows "x \<in> interior S"
using assms unfolding interior_def by fast
lemma interiorE [elim?]:
assumes "x \<in> interior S"
obtains T where "open T" and "x \<in> T" and "T \<subseteq> S"
using assms unfolding interior_def by fast
lemma open_interior [simp, intro]: "open (interior S)"
by (simp add: interior_def open_Union)
lemma interior_subset: "interior S \<subseteq> S"
by (auto simp add: interior_def)
lemma interior_maximal: "T \<subseteq> S \<Longrightarrow> open T \<Longrightarrow> T \<subseteq> interior S"
by (auto simp add: interior_def)
lemma interior_open: "open S \<Longrightarrow> interior S = S"
by (intro equalityI interior_subset interior_maximal subset_refl)
lemma interior_eq: "interior S = S \<longleftrightarrow> open S"
by (metis open_interior interior_open)
lemma open_subset_interior: "open S \<Longrightarrow> S \<subseteq> interior T \<longleftrightarrow> S \<subseteq> T"
by (metis interior_maximal interior_subset subset_trans)
lemma interior_empty [simp]: "interior {} = {}"
using open_empty by (rule interior_open)
lemma interior_UNIV [simp]: "interior UNIV = UNIV"
using open_UNIV by (rule interior_open)
lemma interior_interior [simp]: "interior (interior S) = interior S"
using open_interior by (rule interior_open)
lemma interior_mono: "S \<subseteq> T \<Longrightarrow> interior S \<subseteq> interior T"
by (auto simp add: interior_def)
lemma interior_unique:
assumes "T \<subseteq> S" and "open T"
assumes "\<And>T'. T' \<subseteq> S \<Longrightarrow> open T' \<Longrightarrow> T' \<subseteq> T"
shows "interior S = T"
by (intro equalityI assms interior_subset open_interior interior_maximal)
lemma interior_singleton [simp]: "interior {a} = {}"
for a :: "'a::perfect_space"
apply (rule interior_unique)
apply simp_all
using not_open_singleton subset_singletonD
apply fastforce
done
lemma interior_Int [simp]: "interior (S \<inter> T) = interior S \<inter> interior T"
by (intro equalityI Int_mono Int_greatest interior_mono Int_lower1
Int_lower2 interior_maximal interior_subset open_Int open_interior)
lemma mem_interior: "x \<in> interior S \<longleftrightarrow> (\<exists>e>0. ball x e \<subseteq> S)"
using open_contains_ball_eq [where S="interior S"]
by (simp add: open_subset_interior)
lemma eventually_nhds_in_nhd: "x \<in> interior s \<Longrightarrow> eventually (\<lambda>y. y \<in> s) (nhds x)"
using interior_subset[of s] by (subst eventually_nhds) blast
lemma interior_limit_point [intro]:
fixes x :: "'a::perfect_space"
assumes x: "x \<in> interior S"
shows "x islimpt S"
using x islimpt_UNIV [of x]
unfolding interior_def islimpt_def
apply (clarsimp, rename_tac T T')
apply (drule_tac x="T \<inter> T'" in spec)
apply (auto simp add: open_Int)
done
lemma interior_closed_Un_empty_interior:
assumes cS: "closed S"
and iT: "interior T = {}"
shows "interior (S \<union> T) = interior S"
proof
show "interior S \<subseteq> interior (S \<union> T)"
by (rule interior_mono) (rule Un_upper1)
show "interior (S \<union> T) \<subseteq> interior S"
proof
fix x
assume "x \<in> interior (S \<union> T)"
then obtain R where "open R" "x \<in> R" "R \<subseteq> S \<union> T" ..
show "x \<in> interior S"
proof (rule ccontr)
assume "x \<notin> interior S"
with \<open>x \<in> R\<close> \<open>open R\<close> obtain y where "y \<in> R - S"
unfolding interior_def by fast
from \<open>open R\<close> \<open>closed S\<close> have "open (R - S)"
by (rule open_Diff)
from \<open>R \<subseteq> S \<union> T\<close> have "R - S \<subseteq> T"
by fast
from \<open>y \<in> R - S\<close> \<open>open (R - S)\<close> \<open>R - S \<subseteq> T\<close> \<open>interior T = {}\<close> show False
unfolding interior_def by fast
qed
qed
qed
lemma interior_Times: "interior (A \<times> B) = interior A \<times> interior B"
proof (rule interior_unique)
show "interior A \<times> interior B \<subseteq> A \<times> B"
by (intro Sigma_mono interior_subset)
show "open (interior A \<times> interior B)"
by (intro open_Times open_interior)
fix T
assume "T \<subseteq> A \<times> B" and "open T"
then show "T \<subseteq> interior A \<times> interior B"
proof safe
fix x y
assume "(x, y) \<in> T"
then obtain C D where "open C" "open D" "C \<times> D \<subseteq> T" "x \<in> C" "y \<in> D"
using \<open>open T\<close> unfolding open_prod_def by fast
then have "open C" "open D" "C \<subseteq> A" "D \<subseteq> B" "x \<in> C" "y \<in> D"
using \<open>T \<subseteq> A \<times> B\<close> by auto
then show "x \<in> interior A" and "y \<in> interior B"
by (auto intro: interiorI)
qed
qed
lemma interior_Ici:
fixes x :: "'a :: {dense_linorder,linorder_topology}"
assumes "b < x"
shows "interior {x ..} = {x <..}"
proof (rule interior_unique)
fix T
assume "T \<subseteq> {x ..}" "open T"
moreover have "x \<notin> T"
proof
assume "x \<in> T"
obtain y where "y < x" "{y <.. x} \<subseteq> T"
using open_left[OF \<open>open T\<close> \<open>x \<in> T\<close> \<open>b < x\<close>] by auto
with dense[OF \<open>y < x\<close>] obtain z where "z \<in> T" "z < x"
by (auto simp: subset_eq Ball_def)
with \<open>T \<subseteq> {x ..}\<close> show False by auto
qed
ultimately show "T \<subseteq> {x <..}"
by (auto simp: subset_eq less_le)
qed auto
lemma interior_Iic:
fixes x :: "'a ::{dense_linorder,linorder_topology}"
assumes "x < b"
shows "interior {.. x} = {..< x}"
proof (rule interior_unique)
fix T
assume "T \<subseteq> {.. x}" "open T"
moreover have "x \<notin> T"
proof
assume "x \<in> T"
obtain y where "x < y" "{x ..< y} \<subseteq> T"
using open_right[OF \<open>open T\<close> \<open>x \<in> T\<close> \<open>x < b\<close>] by auto
with dense[OF \<open>x < y\<close>] obtain z where "z \<in> T" "x < z"
by (auto simp: subset_eq Ball_def less_le)
with \<open>T \<subseteq> {.. x}\<close> show False by auto
qed
ultimately show "T \<subseteq> {..< x}"
by (auto simp: subset_eq less_le)
qed auto
subsection \<open>Closure of a Set\<close>
definition "closure S = S \<union> {x | x. x islimpt S}"
lemma interior_closure: "interior S = - (closure (- S))"
by (auto simp add: interior_def closure_def islimpt_def)
lemma closure_interior: "closure S = - interior (- S)"
by (simp add: interior_closure)
lemma closed_closure[simp, intro]: "closed (closure S)"
by (simp add: closure_interior closed_Compl)
lemma closure_subset: "S \<subseteq> closure S"
by (simp add: closure_def)
lemma closure_hull: "closure S = closed hull S"
by (auto simp add: hull_def closure_interior interior_def)
lemma closure_eq: "closure S = S \<longleftrightarrow> closed S"
unfolding closure_hull using closed_Inter by (rule hull_eq)
lemma closure_closed [simp]: "closed S \<Longrightarrow> closure S = S"
by (simp only: closure_eq)
lemma closure_closure [simp]: "closure (closure S) = closure S"
unfolding closure_hull by (rule hull_hull)
lemma closure_mono: "S \<subseteq> T \<Longrightarrow> closure S \<subseteq> closure T"
unfolding closure_hull by (rule hull_mono)
lemma closure_minimal: "S \<subseteq> T \<Longrightarrow> closed T \<Longrightarrow> closure S \<subseteq> T"
unfolding closure_hull by (rule hull_minimal)
lemma closure_unique:
assumes "S \<subseteq> T"
and "closed T"
and "\<And>T'. S \<subseteq> T' \<Longrightarrow> closed T' \<Longrightarrow> T \<subseteq> T'"
shows "closure S = T"
using assms unfolding closure_hull by (rule hull_unique)
lemma closure_empty [simp]: "closure {} = {}"
using closed_empty by (rule closure_closed)
lemma closure_UNIV [simp]: "closure UNIV = UNIV"
using closed_UNIV by (rule closure_closed)
lemma closure_Un [simp]: "closure (S \<union> T) = closure S \<union> closure T"
by (simp add: closure_interior)
lemma closure_eq_empty [iff]: "closure S = {} \<longleftrightarrow> S = {}"
using closure_empty closure_subset[of S] by blast
lemma closure_subset_eq: "closure S \<subseteq> S \<longleftrightarrow> closed S"
using closure_eq[of S] closure_subset[of S] by simp
lemma open_Int_closure_eq_empty: "open S \<Longrightarrow> (S \<inter> closure T) = {} \<longleftrightarrow> S \<inter> T = {}"
using open_subset_interior[of S "- T"]
using interior_subset[of "- T"]
by (auto simp: closure_interior)
lemma open_Int_closure_subset: "open S \<Longrightarrow> S \<inter> closure T \<subseteq> closure (S \<inter> T)"
proof
fix x
assume *: "open S" "x \<in> S \<inter> closure T"
have "x islimpt (S \<inter> T)" if **: "x islimpt T"
proof (rule islimptI)
fix A
assume "x \<in> A" "open A"
with * have "x \<in> A \<inter> S" "open (A \<inter> S)"
by (simp_all add: open_Int)
with ** obtain y where "y \<in> T" "y \<in> A \<inter> S" "y \<noteq> x"
by (rule islimptE)
then have "y \<in> S \<inter> T" "y \<in> A \<and> y \<noteq> x"
by simp_all
then show "\<exists>y\<in>(S \<inter> T). y \<in> A \<and> y \<noteq> x" ..
qed
with * show "x \<in> closure (S \<inter> T)"
unfolding closure_def by blast
qed
lemma closure_complement: "closure (- S) = - interior S"
by (simp add: closure_interior)
lemma interior_complement: "interior (- S) = - closure S"
by (simp add: closure_interior)
lemma interior_diff: "interior(S - T) = interior S - closure T"
by (simp add: Diff_eq interior_complement)
lemma closure_Times: "closure (A \<times> B) = closure A \<times> closure B"
proof (rule closure_unique)
show "A \<times> B \<subseteq> closure A \<times> closure B"
by (intro Sigma_mono closure_subset)
show "closed (closure A \<times> closure B)"
by (intro closed_Times closed_closure)
fix T
assume "A \<times> B \<subseteq> T" and "closed T"
then show "closure A \<times> closure B \<subseteq> T"
apply (simp add: closed_def open_prod_def)
apply clarify
apply (rule ccontr)
apply (drule_tac x="(a, b)" in bspec, simp, clarify, rename_tac C D)
apply (simp add: closure_interior interior_def)
apply (drule_tac x=C in spec)
apply (drule_tac x=D in spec)
apply auto
done
qed
lemma islimpt_in_closure: "(x islimpt S) = (x:closure(S-{x}))"
unfolding closure_def using islimpt_punctured by blast
lemma connected_imp_connected_closure: "connected S \<Longrightarrow> connected (closure S)"
by (rule connectedI) (meson closure_subset open_Int open_Int_closure_eq_empty subset_trans connectedD)
lemma limpt_of_limpts: "x islimpt {y. y islimpt S} \<Longrightarrow> x islimpt S"
for x :: "'a::metric_space"
apply (clarsimp simp add: islimpt_approachable)
apply (drule_tac x="e/2" in spec)
apply (auto simp: simp del: less_divide_eq_numeral1)
apply (drule_tac x="dist x' x" in spec)
apply (auto simp: zero_less_dist_iff simp del: less_divide_eq_numeral1)
apply (erule rev_bexI)
apply (metis dist_commute dist_triangle_half_r less_trans less_irrefl)
done
lemma closed_limpts: "closed {x::'a::metric_space. x islimpt S}"
using closed_limpt limpt_of_limpts by blast
lemma limpt_of_closure: "x islimpt closure S \<longleftrightarrow> x islimpt S"
for x :: "'a::metric_space"
by (auto simp: closure_def islimpt_Un dest: limpt_of_limpts)
lemma closedin_limpt:
"closedin (subtopology euclidean T) S \<longleftrightarrow> S \<subseteq> T \<and> (\<forall>x. x islimpt S \<and> x \<in> T \<longrightarrow> x \<in> S)"
apply (simp add: closedin_closed, safe)
apply (simp add: closed_limpt islimpt_subset)
apply (rule_tac x="closure S" in exI)
apply simp
apply (force simp: closure_def)
done
lemma closedin_closed_eq: "closed S \<Longrightarrow> closedin (subtopology euclidean S) T \<longleftrightarrow> closed T \<and> T \<subseteq> S"
by (meson closedin_limpt closed_subset closedin_closed_trans)
lemma closedin_subset_trans:
"closedin (subtopology euclidean U) S \<Longrightarrow> S \<subseteq> T \<Longrightarrow> T \<subseteq> U \<Longrightarrow>
closedin (subtopology euclidean T) S"
by (meson closedin_limpt subset_iff)
lemma openin_subset_trans:
"openin (subtopology euclidean U) S \<Longrightarrow> S \<subseteq> T \<Longrightarrow> T \<subseteq> U \<Longrightarrow>
openin (subtopology euclidean T) S"
by (auto simp: openin_open)
lemma openin_Times:
"openin (subtopology euclidean S) S' \<Longrightarrow> openin (subtopology euclidean T) T' \<Longrightarrow>
openin (subtopology euclidean (S \<times> T)) (S' \<times> T')"
unfolding openin_open using open_Times by blast
lemma Times_in_interior_subtopology:
fixes U :: "('a::metric_space \<times> 'b::metric_space) set"
assumes "(x, y) \<in> U" "openin (subtopology euclidean (S \<times> T)) U"
obtains V W where "openin (subtopology euclidean S) V" "x \<in> V"
"openin (subtopology euclidean T) W" "y \<in> W" "(V \<times> W) \<subseteq> U"
proof -
from assms obtain e where "e > 0" and "U \<subseteq> S \<times> T"
and e: "\<And>x' y'. \<lbrakk>x'\<in>S; y'\<in>T; dist (x', y') (x, y) < e\<rbrakk> \<Longrightarrow> (x', y') \<in> U"
by (force simp: openin_euclidean_subtopology_iff)
with assms have "x \<in> S" "y \<in> T"
by auto
show ?thesis
proof
show "openin (subtopology euclidean S) (ball x (e/2) \<inter> S)"
by (simp add: Int_commute openin_open_Int)
show "x \<in> ball x (e / 2) \<inter> S"
by (simp add: \<open>0 < e\<close> \<open>x \<in> S\<close>)
show "openin (subtopology euclidean T) (ball y (e/2) \<inter> T)"
by (simp add: Int_commute openin_open_Int)
show "y \<in> ball y (e / 2) \<inter> T"
by (simp add: \<open>0 < e\<close> \<open>y \<in> T\<close>)
show "(ball x (e / 2) \<inter> S) \<times> (ball y (e / 2) \<inter> T) \<subseteq> U"
by clarify (simp add: e dist_Pair_Pair \<open>0 < e\<close> dist_commute sqrt_sum_squares_half_less)
qed
qed
lemma openin_Times_eq:
fixes S :: "'a::metric_space set" and T :: "'b::metric_space set"
shows
"openin (subtopology euclidean (S \<times> T)) (S' \<times> T') \<longleftrightarrow>
S' = {} \<or> T' = {} \<or> openin (subtopology euclidean S) S' \<and> openin (subtopology euclidean T) T'"
(is "?lhs = ?rhs")
proof (cases "S' = {} \<or> T' = {}")
case True
then show ?thesis by auto
next
case False
then obtain x y where "x \<in> S'" "y \<in> T'"
by blast
show ?thesis
proof
assume ?lhs
have "openin (subtopology euclidean S) S'"
apply (subst openin_subopen, clarify)
apply (rule Times_in_interior_subtopology [OF _ \<open>?lhs\<close>])
using \<open>y \<in> T'\<close>
apply auto
done
moreover have "openin (subtopology euclidean T) T'"
apply (subst openin_subopen, clarify)
apply (rule Times_in_interior_subtopology [OF _ \<open>?lhs\<close>])
using \<open>x \<in> S'\<close>
apply auto
done
ultimately show ?rhs
by simp
next
assume ?rhs
with False show ?lhs
by (simp add: openin_Times)
qed
qed
lemma closedin_Times:
"closedin (subtopology euclidean S) S' \<Longrightarrow> closedin (subtopology euclidean T) T' \<Longrightarrow>
closedin (subtopology euclidean (S \<times> T)) (S' \<times> T')"
unfolding closedin_closed using closed_Times by blast
lemma bdd_below_closure:
fixes A :: "real set"
assumes "bdd_below A"
shows "bdd_below (closure A)"
proof -
from assms obtain m where "\<And>x. x \<in> A \<Longrightarrow> m \<le> x"
by (auto simp: bdd_below_def)
then have "A \<subseteq> {m..}" by auto
then have "closure A \<subseteq> {m..}"
using closed_real_atLeast by (rule closure_minimal)
then show ?thesis
by (auto simp: bdd_below_def)
qed
subsection \<open>Connected components, considered as a connectedness relation or a set\<close>
definition "connected_component s x y \<equiv> \<exists>t. connected t \<and> t \<subseteq> s \<and> x \<in> t \<and> y \<in> t"
abbreviation "connected_component_set s x \<equiv> Collect (connected_component s x)"
lemma connected_componentI:
"connected t \<Longrightarrow> t \<subseteq> s \<Longrightarrow> x \<in> t \<Longrightarrow> y \<in> t \<Longrightarrow> connected_component s x y"
by (auto simp: connected_component_def)
lemma connected_component_in: "connected_component s x y \<Longrightarrow> x \<in> s \<and> y \<in> s"
by (auto simp: connected_component_def)
lemma connected_component_refl: "x \<in> s \<Longrightarrow> connected_component s x x"
by (auto simp: connected_component_def) (use connected_sing in blast)
lemma connected_component_refl_eq [simp]: "connected_component s x x \<longleftrightarrow> x \<in> s"
by (auto simp: connected_component_refl) (auto simp: connected_component_def)
lemma connected_component_sym: "connected_component s x y \<Longrightarrow> connected_component s y x"
by (auto simp: connected_component_def)
lemma connected_component_trans:
"connected_component s x y \<Longrightarrow> connected_component s y z \<Longrightarrow> connected_component s x z"
unfolding connected_component_def
by (metis Int_iff Un_iff Un_subset_iff equals0D connected_Un)
lemma connected_component_of_subset:
"connected_component s x y \<Longrightarrow> s \<subseteq> t \<Longrightarrow> connected_component t x y"
by (auto simp: connected_component_def)
lemma connected_component_Union: "connected_component_set s x = \<Union>{t. connected t \<and> x \<in> t \<and> t \<subseteq> s}"
by (auto simp: connected_component_def)
lemma connected_connected_component [iff]: "connected (connected_component_set s x)"
by (auto simp: connected_component_Union intro: connected_Union)
lemma connected_iff_eq_connected_component_set:
"connected s \<longleftrightarrow> (\<forall>x \<in> s. connected_component_set s x = s)"
proof (cases "s = {}")
case True
then show ?thesis by simp
next
case False
then obtain x where "x \<in> s" by auto
show ?thesis
proof
assume "connected s"
then show "\<forall>x \<in> s. connected_component_set s x = s"
by (force simp: connected_component_def)
next
assume "\<forall>x \<in> s. connected_component_set s x = s"
then show "connected s"
by (metis \<open>x \<in> s\<close> connected_connected_component)
qed
qed
lemma connected_component_subset: "connected_component_set s x \<subseteq> s"
using connected_component_in by blast
lemma connected_component_eq_self: "connected s \<Longrightarrow> x \<in> s \<Longrightarrow> connected_component_set s x = s"
by (simp add: connected_iff_eq_connected_component_set)
lemma connected_iff_connected_component:
"connected s \<longleftrightarrow> (\<forall>x \<in> s. \<forall>y \<in> s. connected_component s x y)"
using connected_component_in by (auto simp: connected_iff_eq_connected_component_set)
lemma connected_component_maximal:
"x \<in> t \<Longrightarrow> connected t \<Longrightarrow> t \<subseteq> s \<Longrightarrow> t \<subseteq> (connected_component_set s x)"
using connected_component_eq_self connected_component_of_subset by blast
lemma connected_component_mono:
"s \<subseteq> t \<Longrightarrow> connected_component_set s x \<subseteq> connected_component_set t x"
by (simp add: Collect_mono connected_component_of_subset)
lemma connected_component_eq_empty [simp]: "connected_component_set s x = {} \<longleftrightarrow> x \<notin> s"
using connected_component_refl by (fastforce simp: connected_component_in)
lemma connected_component_set_empty [simp]: "connected_component_set {} x = {}"
using connected_component_eq_empty by blast
lemma connected_component_eq:
"y \<in> connected_component_set s x \<Longrightarrow> (connected_component_set s y = connected_component_set s x)"
by (metis (no_types, lifting)
Collect_cong connected_component_sym connected_component_trans mem_Collect_eq)
lemma closed_connected_component:
assumes s: "closed s"
shows "closed (connected_component_set s x)"
proof (cases "x \<in> s")
case False
then show ?thesis
by (metis connected_component_eq_empty closed_empty)
next
case True
show ?thesis
unfolding closure_eq [symmetric]
proof
show "closure (connected_component_set s x) \<subseteq> connected_component_set s x"
apply (rule connected_component_maximal)
apply (simp add: closure_def True)
apply (simp add: connected_imp_connected_closure)
apply (simp add: s closure_minimal connected_component_subset)
done
next
show "connected_component_set s x \<subseteq> closure (connected_component_set s x)"
by (simp add: closure_subset)
qed
qed
lemma connected_component_disjoint:
"connected_component_set s a \<inter> connected_component_set s b = {} \<longleftrightarrow>
a \<notin> connected_component_set s b"
apply (auto simp: connected_component_eq)
using connected_component_eq connected_component_sym
apply blast
done
lemma connected_component_nonoverlap:
"connected_component_set s a \<inter> connected_component_set s b = {} \<longleftrightarrow>
a \<notin> s \<or> b \<notin> s \<or> connected_component_set s a \<noteq> connected_component_set s b"
apply (auto simp: connected_component_in)
using connected_component_refl_eq
apply blast
apply (metis connected_component_eq mem_Collect_eq)
apply (metis connected_component_eq mem_Collect_eq)
done
lemma connected_component_overlap:
"connected_component_set s a \<inter> connected_component_set s b \<noteq> {} \<longleftrightarrow>
a \<in> s \<and> b \<in> s \<and> connected_component_set s a = connected_component_set s b"
by (auto simp: connected_component_nonoverlap)
lemma connected_component_sym_eq: "connected_component s x y \<longleftrightarrow> connected_component s y x"
using connected_component_sym by blast
lemma connected_component_eq_eq:
"connected_component_set s x = connected_component_set s y \<longleftrightarrow>
x \<notin> s \<and> y \<notin> s \<or> x \<in> s \<and> y \<in> s \<and> connected_component s x y"
apply (cases "y \<in> s")
apply (simp add:)
apply (metis connected_component_eq connected_component_eq_empty connected_component_refl_eq mem_Collect_eq)
apply (cases "x \<in> s")
apply (simp add:)
apply (metis connected_component_eq_empty)
using connected_component_eq_empty
apply blast
done
lemma connected_iff_connected_component_eq:
"connected s \<longleftrightarrow> (\<forall>x \<in> s. \<forall>y \<in> s. connected_component_set s x = connected_component_set s y)"
by (simp add: connected_component_eq_eq connected_iff_connected_component)
lemma connected_component_idemp:
"connected_component_set (connected_component_set s x) x = connected_component_set s x"
apply (rule subset_antisym)
apply (simp add: connected_component_subset)
apply (metis connected_component_eq_empty connected_component_maximal
connected_component_refl_eq connected_connected_component mem_Collect_eq set_eq_subset)
done
lemma connected_component_unique:
"\<lbrakk>x \<in> c; c \<subseteq> s; connected c;
\<And>c'. x \<in> c' \<and> c' \<subseteq> s \<and> connected c'
\<Longrightarrow> c' \<subseteq> c\<rbrakk>
\<Longrightarrow> connected_component_set s x = c"
apply (rule subset_antisym)
apply (meson connected_component_maximal connected_component_subset connected_connected_component contra_subsetD)
by (simp add: connected_component_maximal)
lemma joinable_connected_component_eq:
"\<lbrakk>connected t; t \<subseteq> s;
connected_component_set s x \<inter> t \<noteq> {};
connected_component_set s y \<inter> t \<noteq> {}\<rbrakk>
\<Longrightarrow> connected_component_set s x = connected_component_set s y"
apply (simp add: ex_in_conv [symmetric])
apply (rule connected_component_eq)
by (metis (no_types, hide_lams) connected_component_eq_eq connected_component_in connected_component_maximal subsetD mem_Collect_eq)
lemma Union_connected_component: "\<Union>(connected_component_set s ` s) = s"
apply (rule subset_antisym)
apply (simp add: SUP_least connected_component_subset)
using connected_component_refl_eq
by force
lemma complement_connected_component_unions:
"s - connected_component_set s x =
\<Union>(connected_component_set s ` s - {connected_component_set s x})"
apply (subst Union_connected_component [symmetric], auto)
apply (metis connected_component_eq_eq connected_component_in)
by (metis connected_component_eq mem_Collect_eq)
lemma connected_component_intermediate_subset:
"\<lbrakk>connected_component_set u a \<subseteq> t; t \<subseteq> u\<rbrakk>
\<Longrightarrow> connected_component_set t a = connected_component_set u a"
apply (case_tac "a \<in> u")
apply (simp add: connected_component_maximal connected_component_mono subset_antisym)
using connected_component_eq_empty by blast
proposition connected_Times:
assumes S: "connected S" and T: "connected T"
shows "connected (S \<times> T)"
proof (clarsimp simp add: connected_iff_connected_component)
fix x y x' y'
assume xy: "x \<in> S" "y \<in> T" "x' \<in> S" "y' \<in> T"
with xy obtain U V where U: "connected U" "U \<subseteq> S" "x \<in> U" "x' \<in> U"
and V: "connected V" "V \<subseteq> T" "y \<in> V" "y' \<in> V"
using S T \<open>x \<in> S\<close> \<open>x' \<in> S\<close> by blast+
show "connected_component (S \<times> T) (x, y) (x', y')"
unfolding connected_component_def
proof (intro exI conjI)
show "connected ((\<lambda>x. (x, y)) ` U \<union> Pair x' ` V)"
proof (rule connected_Un)
have "continuous_on U (\<lambda>x. (x, y))"
by (intro continuous_intros)
then show "connected ((\<lambda>x. (x, y)) ` U)"
by (rule connected_continuous_image) (rule \<open>connected U\<close>)
have "continuous_on V (Pair x')"
by (intro continuous_intros)
then show "connected (Pair x' ` V)"
by (rule connected_continuous_image) (rule \<open>connected V\<close>)
qed (use U V in auto)
qed (use U V in auto)
qed
corollary connected_Times_eq [simp]:
"connected (S \<times> T) \<longleftrightarrow> S = {} \<or> T = {} \<or> connected S \<and> connected T" (is "?lhs = ?rhs")
proof
assume L: ?lhs
show ?rhs
proof (cases "S = {} \<or> T = {}")
case True
then show ?thesis by auto
next
case False
have "connected (fst ` (S \<times> T))" "connected (snd ` (S \<times> T))"
using continuous_on_fst continuous_on_snd continuous_on_id
by (blast intro: connected_continuous_image [OF _ L])+
with False show ?thesis
by auto
qed
next
assume ?rhs
then show ?lhs
by (auto simp: connected_Times)
qed
subsection \<open>The set of connected components of a set\<close>
definition components:: "'a::topological_space set \<Rightarrow> 'a set set"
where "components s \<equiv> connected_component_set s ` s"
lemma components_iff: "s \<in> components u \<longleftrightarrow> (\<exists>x. x \<in> u \<and> s = connected_component_set u x)"
by (auto simp: components_def)
lemma componentsI: "x \<in> u \<Longrightarrow> connected_component_set u x \<in> components u"
by (auto simp: components_def)
lemma componentsE:
assumes "s \<in> components u"
obtains x where "x \<in> u" "s = connected_component_set u x"
using assms by (auto simp: components_def)
lemma Union_components [simp]: "\<Union>(components u) = u"
apply (rule subset_antisym)
using Union_connected_component components_def apply fastforce
apply (metis Union_connected_component components_def set_eq_subset)
done
lemma pairwise_disjoint_components: "pairwise (\<lambda>X Y. X \<inter> Y = {}) (components u)"
apply (simp add: pairwise_def)
apply (auto simp: components_iff)
apply (metis connected_component_eq_eq connected_component_in)+
done
lemma in_components_nonempty: "c \<in> components s \<Longrightarrow> c \<noteq> {}"
by (metis components_iff connected_component_eq_empty)
lemma in_components_subset: "c \<in> components s \<Longrightarrow> c \<subseteq> s"
using Union_components by blast
lemma in_components_connected: "c \<in> components s \<Longrightarrow> connected c"
by (metis components_iff connected_connected_component)
lemma in_components_maximal:
"c \<in> components s \<longleftrightarrow>
c \<noteq> {} \<and> c \<subseteq> s \<and> connected c \<and> (\<forall>d. d \<noteq> {} \<and> c \<subseteq> d \<and> d \<subseteq> s \<and> connected d \<longrightarrow> d = c)"
apply (rule iffI)
apply (simp add: in_components_nonempty in_components_connected)
apply (metis (full_types) components_iff connected_component_eq_self connected_component_intermediate_subset connected_component_refl in_components_subset mem_Collect_eq rev_subsetD)
apply (metis bot.extremum_uniqueI components_iff connected_component_eq_empty connected_component_maximal connected_component_subset connected_connected_component subset_emptyI)
done
lemma joinable_components_eq:
"connected t \<and> t \<subseteq> s \<and> c1 \<in> components s \<and> c2 \<in> components s \<and> c1 \<inter> t \<noteq> {} \<and> c2 \<inter> t \<noteq> {} \<Longrightarrow> c1 = c2"
by (metis (full_types) components_iff joinable_connected_component_eq)
lemma closed_components: "\<lbrakk>closed s; c \<in> components s\<rbrakk> \<Longrightarrow> closed c"
by (metis closed_connected_component components_iff)
lemma components_nonoverlap:
"\<lbrakk>c \<in> components s; c' \<in> components s\<rbrakk> \<Longrightarrow> (c \<inter> c' = {}) \<longleftrightarrow> (c \<noteq> c')"
apply (auto simp: in_components_nonempty components_iff)
using connected_component_refl apply blast
apply (metis connected_component_eq_eq connected_component_in)
by (metis connected_component_eq mem_Collect_eq)
lemma components_eq: "\<lbrakk>c \<in> components s; c' \<in> components s\<rbrakk> \<Longrightarrow> (c = c' \<longleftrightarrow> c \<inter> c' \<noteq> {})"
by (metis components_nonoverlap)
lemma components_eq_empty [simp]: "components s = {} \<longleftrightarrow> s = {}"
by (simp add: components_def)
lemma components_empty [simp]: "components {} = {}"
by simp
lemma connected_eq_connected_components_eq: "connected s \<longleftrightarrow> (\<forall>c \<in> components s. \<forall>c' \<in> components s. c = c')"
by (metis (no_types, hide_lams) components_iff connected_component_eq_eq connected_iff_connected_component)
lemma components_eq_sing_iff: "components s = {s} \<longleftrightarrow> connected s \<and> s \<noteq> {}"
apply (rule iffI)
using in_components_connected apply fastforce
apply safe
using Union_components apply fastforce
apply (metis components_iff connected_component_eq_self)
using in_components_maximal
apply auto
done
lemma components_eq_sing_exists: "(\<exists>a. components s = {a}) \<longleftrightarrow> connected s \<and> s \<noteq> {}"
apply (rule iffI)
using connected_eq_connected_components_eq apply fastforce
apply (metis components_eq_sing_iff)
done
lemma connected_eq_components_subset_sing: "connected s \<longleftrightarrow> components s \<subseteq> {s}"
by (metis Union_components components_empty components_eq_sing_iff connected_empty insert_subset order_refl subset_singletonD)
lemma connected_eq_components_subset_sing_exists: "connected s \<longleftrightarrow> (\<exists>a. components s \<subseteq> {a})"
by (metis components_eq_sing_exists connected_eq_components_subset_sing empty_iff subset_iff subset_singletonD)
lemma in_components_self: "s \<in> components s \<longleftrightarrow> connected s \<and> s \<noteq> {}"
by (metis components_empty components_eq_sing_iff empty_iff in_components_connected insertI1)
lemma components_maximal: "\<lbrakk>c \<in> components s; connected t; t \<subseteq> s; c \<inter> t \<noteq> {}\<rbrakk> \<Longrightarrow> t \<subseteq> c"
apply (simp add: components_def ex_in_conv [symmetric], clarify)
by (meson connected_component_def connected_component_trans)
lemma exists_component_superset: "\<lbrakk>t \<subseteq> s; s \<noteq> {}; connected t\<rbrakk> \<Longrightarrow> \<exists>c. c \<in> components s \<and> t \<subseteq> c"
apply (cases "t = {}")
apply force
apply (metis components_def ex_in_conv connected_component_maximal contra_subsetD image_eqI)
done
lemma components_intermediate_subset: "\<lbrakk>s \<in> components u; s \<subseteq> t; t \<subseteq> u\<rbrakk> \<Longrightarrow> s \<in> components t"
apply (auto simp: components_iff)
apply (metis connected_component_eq_empty connected_component_intermediate_subset)
done
lemma in_components_unions_complement: "c \<in> components s \<Longrightarrow> s - c = \<Union>(components s - {c})"
by (metis complement_connected_component_unions components_def components_iff)
lemma connected_intermediate_closure:
assumes cs: "connected s" and st: "s \<subseteq> t" and ts: "t \<subseteq> closure s"
shows "connected t"
proof (rule connectedI)
fix A B
assume A: "open A" and B: "open B" and Alap: "A \<inter> t \<noteq> {}" and Blap: "B \<inter> t \<noteq> {}"
and disj: "A \<inter> B \<inter> t = {}" and cover: "t \<subseteq> A \<union> B"
have disjs: "A \<inter> B \<inter> s = {}"
using disj st by auto
have "A \<inter> closure s \<noteq> {}"
using Alap Int_absorb1 ts by blast
then have Alaps: "A \<inter> s \<noteq> {}"
by (simp add: A open_Int_closure_eq_empty)
have "B \<inter> closure s \<noteq> {}"
using Blap Int_absorb1 ts by blast
then have Blaps: "B \<inter> s \<noteq> {}"
by (simp add: B open_Int_closure_eq_empty)
then show False
using cs [unfolded connected_def] A B disjs Alaps Blaps cover st
by blast
qed
lemma closedin_connected_component: "closedin (subtopology euclidean s) (connected_component_set s x)"
proof (cases "connected_component_set s x = {}")
case True
then show ?thesis
by (metis closedin_empty)
next
case False
then obtain y where y: "connected_component s x y"
by blast
have *: "connected_component_set s x \<subseteq> s \<inter> closure (connected_component_set s x)"
by (auto simp: closure_def connected_component_in)
have "connected_component s x y \<Longrightarrow> s \<inter> closure (connected_component_set s x) \<subseteq> connected_component_set s x"
apply (rule connected_component_maximal)
apply simp
using closure_subset connected_component_in apply fastforce
using * connected_intermediate_closure apply blast+
done
with y * show ?thesis
by (auto simp add: Topology_Euclidean_Space.closedin_closed)
qed
subsection \<open>Frontier (also known as boundary)\<close>
definition "frontier S = closure S - interior S"
lemma frontier_closed [iff]: "closed (frontier S)"
by (simp add: frontier_def closed_Diff)
lemma frontier_closures: "frontier S = closure S \<inter> closure (- S)"
by (auto simp add: frontier_def interior_closure)
lemma frontier_straddle:
fixes a :: "'a::metric_space"
shows "a \<in> frontier S \<longleftrightarrow> (\<forall>e>0. (\<exists>x\<in>S. dist a x < e) \<and> (\<exists>x. x \<notin> S \<and> dist a x < e))"
unfolding frontier_def closure_interior
by (auto simp add: mem_interior subset_eq ball_def)
lemma frontier_subset_closed: "closed S \<Longrightarrow> frontier S \<subseteq> S"
by (metis frontier_def closure_closed Diff_subset)
lemma frontier_empty [simp]: "frontier {} = {}"
by (simp add: frontier_def)
lemma frontier_subset_eq: "frontier S \<subseteq> S \<longleftrightarrow> closed S"
proof -
{
assume "frontier S \<subseteq> S"
then have "closure S \<subseteq> S"
using interior_subset unfolding frontier_def by auto
then have "closed S"
using closure_subset_eq by auto
}
then show ?thesis using frontier_subset_closed[of S] ..
qed
lemma frontier_complement [simp]: "frontier (- S) = frontier S"
by (auto simp add: frontier_def closure_complement interior_complement)
lemma frontier_disjoint_eq: "frontier S \<inter> S = {} \<longleftrightarrow> open S"
using frontier_complement frontier_subset_eq[of "- S"]
unfolding open_closed by auto
lemma frontier_UNIV [simp]: "frontier UNIV = {}"
using frontier_complement frontier_empty by fastforce
lemma frontier_interiors: "frontier s = - interior(s) - interior(-s)"
by (simp add: Int_commute frontier_def interior_closure)
lemma frontier_interior_subset: "frontier(interior S) \<subseteq> frontier S"
by (simp add: Diff_mono frontier_interiors interior_mono interior_subset)
lemma connected_Int_frontier:
"\<lbrakk>connected s; s \<inter> t \<noteq> {}; s - t \<noteq> {}\<rbrakk> \<Longrightarrow> (s \<inter> frontier t \<noteq> {})"
apply (simp add: frontier_interiors connected_openin, safe)
apply (drule_tac x="s \<inter> interior t" in spec, safe)
apply (drule_tac [2] x="s \<inter> interior (-t)" in spec)
apply (auto simp: disjoint_eq_subset_Compl dest: interior_subset [THEN subsetD])
done
lemma closure_Un_frontier: "closure S = S \<union> frontier S"
proof -
have "S \<union> interior S = S"
using interior_subset by auto
then show ?thesis
using closure_subset by (auto simp: frontier_def)
qed
subsection \<open>Filters and the ``eventually true'' quantifier\<close>
definition indirection :: "'a::real_normed_vector \<Rightarrow> 'a \<Rightarrow> 'a filter" (infixr "indirection" 70)
where "a indirection v = at a within {b. \<exists>c\<ge>0. b - a = scaleR c v}"
text \<open>Identify Trivial limits, where we can't approach arbitrarily closely.\<close>
lemma trivial_limit_within: "trivial_limit (at a within S) \<longleftrightarrow> \<not> a islimpt S"
proof
assume "trivial_limit (at a within S)"
then show "\<not> a islimpt S"
unfolding trivial_limit_def
unfolding eventually_at_topological
unfolding islimpt_def
apply (clarsimp simp add: set_eq_iff)
apply (rename_tac T, rule_tac x=T in exI)
apply (clarsimp, drule_tac x=y in bspec, simp_all)
done
next
assume "\<not> a islimpt S"
then show "trivial_limit (at a within S)"
unfolding trivial_limit_def eventually_at_topological islimpt_def
by metis
qed
lemma trivial_limit_at_iff: "trivial_limit (at a) \<longleftrightarrow> \<not> a islimpt UNIV"
using trivial_limit_within [of a UNIV] by simp
lemma trivial_limit_at: "\<not> trivial_limit (at a)"
for a :: "'a::perfect_space"
by (rule at_neq_bot)
lemma trivial_limit_at_infinity:
"\<not> trivial_limit (at_infinity :: ('a::{real_normed_vector,perfect_space}) filter)"
unfolding trivial_limit_def eventually_at_infinity
apply clarsimp
apply (subgoal_tac "\<exists>x::'a. x \<noteq> 0", clarify)
apply (rule_tac x="scaleR (b / norm x) x" in exI, simp)
apply (cut_tac islimpt_UNIV [of "0::'a", unfolded islimpt_def])
apply (drule_tac x=UNIV in spec, simp)
done
lemma not_trivial_limit_within: "\<not> trivial_limit (at x within S) = (x \<in> closure (S - {x}))"
using islimpt_in_closure by (metis trivial_limit_within)
lemma at_within_eq_bot_iff: "at c within A = bot \<longleftrightarrow> c \<notin> closure (A - {c})"
using not_trivial_limit_within[of c A] by blast
text \<open>Some property holds "sufficiently close" to the limit point.\<close>
lemma trivial_limit_eventually: "trivial_limit net \<Longrightarrow> eventually P net"
by simp
lemma trivial_limit_eq: "trivial_limit net \<longleftrightarrow> (\<forall>P. eventually P net)"
by (simp add: filter_eq_iff)
subsection \<open>Limits\<close>
lemma Lim: "(f \<longlongrightarrow> l) net \<longleftrightarrow> trivial_limit net \<or> (\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) net)"
by (auto simp: tendsto_iff trivial_limit_eq)
text \<open>Show that they yield usual definitions in the various cases.\<close>
lemma Lim_within_le: "(f \<longlongrightarrow> l)(at a within S) \<longleftrightarrow>
(\<forall>e>0. \<exists>d>0. \<forall>x\<in>S. 0 < dist x a \<and> dist x a \<le> d \<longrightarrow> dist (f x) l < e)"
by (auto simp add: tendsto_iff eventually_at_le)
lemma Lim_within: "(f \<longlongrightarrow> l) (at a within S) \<longleftrightarrow>
(\<forall>e >0. \<exists>d>0. \<forall>x \<in> S. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l < e)"
by (auto simp add: tendsto_iff eventually_at)
corollary Lim_withinI [intro?]:
assumes "\<And>e. e > 0 \<Longrightarrow> \<exists>d>0. \<forall>x \<in> S. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l \<le> e"
shows "(f \<longlongrightarrow> l) (at a within S)"
apply (simp add: Lim_within, clarify)
apply (rule ex_forward [OF assms [OF half_gt_zero]])
apply auto
done
lemma Lim_at: "(f \<longlongrightarrow> l) (at a) \<longleftrightarrow>
(\<forall>e >0. \<exists>d>0. \<forall>x. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l < e)"
by (auto simp add: tendsto_iff eventually_at)
lemma Lim_at_infinity: "(f \<longlongrightarrow> l) at_infinity \<longleftrightarrow> (\<forall>e>0. \<exists>b. \<forall>x. norm x \<ge> b \<longrightarrow> dist (f x) l < e)"
by (auto simp add: tendsto_iff eventually_at_infinity)
corollary Lim_at_infinityI [intro?]:
assumes "\<And>e. e > 0 \<Longrightarrow> \<exists>B. \<forall>x. norm x \<ge> B \<longrightarrow> dist (f x) l \<le> e"
shows "(f \<longlongrightarrow> l) at_infinity"
apply (simp add: Lim_at_infinity, clarify)
apply (rule ex_forward [OF assms [OF half_gt_zero]])
apply auto
done
lemma Lim_eventually: "eventually (\<lambda>x. f x = l) net \<Longrightarrow> (f \<longlongrightarrow> l) net"
by (rule topological_tendstoI) (auto elim: eventually_mono)
lemma Lim_transform_within_set:
fixes a :: "'a::metric_space" and l :: "'b::metric_space"
shows "\<lbrakk>(f \<longlongrightarrow> l) (at a within S); eventually (\<lambda>x. x \<in> S \<longleftrightarrow> x \<in> T) (at a)\<rbrakk>
\<Longrightarrow> (f \<longlongrightarrow> l) (at a within T)"
apply (clarsimp simp: eventually_at Lim_within)
apply (drule_tac x=e in spec, clarify)
apply (rename_tac k)
apply (rule_tac x="min d k" in exI, simp)
done
lemma Lim_transform_within_set_eq:
fixes a l :: "'a::real_normed_vector"
shows "eventually (\<lambda>x. x \<in> s \<longleftrightarrow> x \<in> t) (at a)
\<Longrightarrow> ((f \<longlongrightarrow> l) (at a within s) \<longleftrightarrow> (f \<longlongrightarrow> l) (at a within t))"
by (force intro: Lim_transform_within_set elim: eventually_mono)
lemma Lim_transform_within_openin:
fixes a :: "'a::metric_space"
assumes f: "(f \<longlongrightarrow> l) (at a within T)"
and "openin (subtopology euclidean T) S" "a \<in> S"
and eq: "\<And>x. \<lbrakk>x \<in> S; x \<noteq> a\<rbrakk> \<Longrightarrow> f x = g x"
shows "(g \<longlongrightarrow> l) (at a within T)"
proof -
obtain \<epsilon> where "0 < \<epsilon>" and \<epsilon>: "ball a \<epsilon> \<inter> T \<subseteq> S"
using assms by (force simp: openin_contains_ball)
then have "a \<in> ball a \<epsilon>"
by simp
show ?thesis
by (rule Lim_transform_within [OF f \<open>0 < \<epsilon>\<close> eq]) (use \<epsilon> in \<open>auto simp: dist_commute subset_iff\<close>)
qed
lemma continuous_transform_within_openin:
fixes a :: "'a::metric_space"
assumes "continuous (at a within T) f"
and "openin (subtopology euclidean T) S" "a \<in> S"
and eq: "\<And>x. x \<in> S \<Longrightarrow> f x = g x"
shows "continuous (at a within T) g"
using assms by (simp add: Lim_transform_within_openin continuous_within)
text \<open>The expected monotonicity property.\<close>
lemma Lim_Un:
assumes "(f \<longlongrightarrow> l) (at x within S)" "(f \<longlongrightarrow> l) (at x within T)"
shows "(f \<longlongrightarrow> l) (at x within (S \<union> T))"
using assms unfolding at_within_union by (rule filterlim_sup)
lemma Lim_Un_univ:
"(f \<longlongrightarrow> l) (at x within S) \<Longrightarrow> (f \<longlongrightarrow> l) (at x within T) \<Longrightarrow>
S \<union> T = UNIV \<Longrightarrow> (f \<longlongrightarrow> l) (at x)"
by (metis Lim_Un)
text \<open>Interrelations between restricted and unrestricted limits.\<close>
lemma Lim_at_imp_Lim_at_within: "(f \<longlongrightarrow> l) (at x) \<Longrightarrow> (f \<longlongrightarrow> l) (at x within S)"
by (metis order_refl filterlim_mono subset_UNIV at_le)
lemma eventually_within_interior:
assumes "x \<in> interior S"
shows "eventually P (at x within S) \<longleftrightarrow> eventually P (at x)"
(is "?lhs = ?rhs")
proof
from assms obtain T where T: "open T" "x \<in> T" "T \<subseteq> S" ..
{
assume ?lhs
then obtain A where "open A" and "x \<in> A" and "\<forall>y\<in>A. y \<noteq> x \<longrightarrow> y \<in> S \<longrightarrow> P y"
by (auto simp: eventually_at_topological)
with T have "open (A \<inter> T)" and "x \<in> A \<inter> T" and "\<forall>y \<in> A \<inter> T. y \<noteq> x \<longrightarrow> P y"
by auto
then show ?rhs
by (auto simp: eventually_at_topological)
next
assume ?rhs
then show ?lhs
by (auto elim: eventually_mono simp: eventually_at_filter)
}
qed
lemma at_within_interior: "x \<in> interior S \<Longrightarrow> at x within S = at x"
unfolding filter_eq_iff by (intro allI eventually_within_interior)
lemma Lim_within_LIMSEQ:
fixes a :: "'a::first_countable_topology"
assumes "\<forall>S. (\<forall>n. S n \<noteq> a \<and> S n \<in> T) \<and> S \<longlonglongrightarrow> a \<longrightarrow> (\<lambda>n. X (S n)) \<longlonglongrightarrow> L"
shows "(X \<longlongrightarrow> L) (at a within T)"
using assms unfolding tendsto_def [where l=L]
by (simp add: sequentially_imp_eventually_within)
lemma Lim_right_bound:
fixes f :: "'a :: {linorder_topology, conditionally_complete_linorder, no_top} \<Rightarrow>
'b::{linorder_topology, conditionally_complete_linorder}"
assumes mono: "\<And>a b. a \<in> I \<Longrightarrow> b \<in> I \<Longrightarrow> x < a \<Longrightarrow> a \<le> b \<Longrightarrow> f a \<le> f b"
and bnd: "\<And>a. a \<in> I \<Longrightarrow> x < a \<Longrightarrow> K \<le> f a"
shows "(f \<longlongrightarrow> Inf (f ` ({x<..} \<inter> I))) (at x within ({x<..} \<inter> I))"
proof (cases "{x<..} \<inter> I = {}")
case True
then show ?thesis by simp
next
case False
show ?thesis
proof (rule order_tendstoI)
fix a
assume a: "a < Inf (f ` ({x<..} \<inter> I))"
{
fix y
assume "y \<in> {x<..} \<inter> I"
with False bnd have "Inf (f ` ({x<..} \<inter> I)) \<le> f y"
by (auto intro!: cInf_lower bdd_belowI2)
with a have "a < f y"
by (blast intro: less_le_trans)
}
then show "eventually (\<lambda>x. a < f x) (at x within ({x<..} \<inter> I))"
by (auto simp: eventually_at_filter intro: exI[of _ 1] zero_less_one)
next
fix a
assume "Inf (f ` ({x<..} \<inter> I)) < a"
from cInf_lessD[OF _ this] False obtain y where y: "x < y" "y \<in> I" "f y < a"
by auto
then have "eventually (\<lambda>x. x \<in> I \<longrightarrow> f x < a) (at_right x)"
unfolding eventually_at_right[OF \<open>x < y\<close>] by (metis less_imp_le le_less_trans mono)
then show "eventually (\<lambda>x. f x < a) (at x within ({x<..} \<inter> I))"
unfolding eventually_at_filter by eventually_elim simp
qed
qed
text \<open>Another limit point characterization.\<close>
lemma limpt_sequential_inj:
fixes x :: "'a::metric_space"
shows "x islimpt S \<longleftrightarrow>
(\<exists>f. (\<forall>n::nat. f n \<in> S - {x}) \<and> inj f \<and> (f \<longlongrightarrow> x) sequentially)"
(is "?lhs = ?rhs")
proof
assume ?lhs
then have "\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e"
by (force simp: islimpt_approachable)
then obtain y where y: "\<And>e. e>0 \<Longrightarrow> y e \<in> S \<and> y e \<noteq> x \<and> dist (y e) x < e"
by metis
define f where "f \<equiv> rec_nat (y 1) (\<lambda>n fn. y (min (inverse(2 ^ (Suc n))) (dist fn x)))"
have [simp]: "f 0 = y 1"
"f(Suc n) = y (min (inverse(2 ^ (Suc n))) (dist (f n) x))" for n
by (simp_all add: f_def)
have f: "f n \<in> S \<and> (f n \<noteq> x) \<and> dist (f n) x < inverse(2 ^ n)" for n
proof (induction n)
case 0 show ?case
by (simp add: y)
next
case (Suc n) then show ?case
apply (auto simp: y)
by (metis half_gt_zero_iff inverse_positive_iff_positive less_divide_eq_numeral1(1) min_less_iff_conj y zero_less_dist_iff zero_less_numeral zero_less_power)
qed
show ?rhs
proof (rule_tac x=f in exI, intro conjI allI)
show "\<And>n. f n \<in> S - {x}"
using f by blast
have "dist (f n) x < dist (f m) x" if "m < n" for m n
using that
proof (induction n)
case 0 then show ?case by simp
next
case (Suc n)
then consider "m < n" | "m = n" using less_Suc_eq by blast
then show ?case
proof cases
assume "m < n"
have "dist (f(Suc n)) x = dist (y (min (inverse(2 ^ (Suc n))) (dist (f n) x))) x"
by simp
also have "... < dist (f n) x"
by (metis dist_pos_lt f min.strict_order_iff min_less_iff_conj y)
also have "... < dist (f m) x"
using Suc.IH \<open>m < n\<close> by blast
finally show ?thesis .
next
assume "m = n" then show ?case
by simp (metis dist_pos_lt f half_gt_zero_iff inverse_positive_iff_positive min_less_iff_conj y zero_less_numeral zero_less_power)
qed
qed
then show "inj f"
by (metis less_irrefl linorder_injI)
show "f \<longlonglongrightarrow> x"
apply (rule tendstoI)
apply (rule_tac c="nat (ceiling(1/e))" in eventually_sequentiallyI)
apply (rule less_trans [OF f [THEN conjunct2, THEN conjunct2]])
apply (simp add: field_simps)
by (meson le_less_trans mult_less_cancel_left not_le of_nat_less_two_power)
qed
next
assume ?rhs
then show ?lhs
by (fastforce simp add: islimpt_approachable lim_sequentially)
qed
(*could prove directly from islimpt_sequential_inj, but only for metric spaces*)
lemma islimpt_sequential:
fixes x :: "'a::first_countable_topology"
shows "x islimpt S \<longleftrightarrow> (\<exists>f. (\<forall>n::nat. f n \<in> S - {x}) \<and> (f \<longlongrightarrow> x) sequentially)"
(is "?lhs = ?rhs")
proof
assume ?lhs
from countable_basis_at_decseq[of x] obtain A where A:
"\<And>i. open (A i)"
"\<And>i. x \<in> A i"
"\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially"
by blast
define f where "f n = (SOME y. y \<in> S \<and> y \<in> A n \<and> x \<noteq> y)" for n
{
fix n
from \<open>?lhs\<close> have "\<exists>y. y \<in> S \<and> y \<in> A n \<and> x \<noteq> y"
unfolding islimpt_def using A(1,2)[of n] by auto
then have "f n \<in> S \<and> f n \<in> A n \<and> x \<noteq> f n"
unfolding f_def by (rule someI_ex)
then have "f n \<in> S" "f n \<in> A n" "x \<noteq> f n" by auto
}
then have "\<forall>n. f n \<in> S - {x}" by auto
moreover have "(\<lambda>n. f n) \<longlonglongrightarrow> x"
proof (rule topological_tendstoI)
fix S
assume "open S" "x \<in> S"
from A(3)[OF this] \<open>\<And>n. f n \<in> A n\<close>
show "eventually (\<lambda>x. f x \<in> S) sequentially"
by (auto elim!: eventually_mono)
qed
ultimately show ?rhs by fast
next
assume ?rhs
then obtain f :: "nat \<Rightarrow> 'a" where f: "\<And>n. f n \<in> S - {x}" and lim: "f \<longlonglongrightarrow> x"
by auto
show ?lhs
unfolding islimpt_def
proof safe
fix T
assume "open T" "x \<in> T"
from lim[THEN topological_tendstoD, OF this] f
show "\<exists>y\<in>S. y \<in> T \<and> y \<noteq> x"
unfolding eventually_sequentially by auto
qed
qed
lemma Lim_null:
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
shows "(f \<longlongrightarrow> l) net \<longleftrightarrow> ((\<lambda>x. f(x) - l) \<longlongrightarrow> 0) net"
by (simp add: Lim dist_norm)
lemma Lim_null_comparison:
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
assumes "eventually (\<lambda>x. norm (f x) \<le> g x) net" "(g \<longlongrightarrow> 0) net"
shows "(f \<longlongrightarrow> 0) net"
using assms(2)
proof (rule metric_tendsto_imp_tendsto)
show "eventually (\<lambda>x. dist (f x) 0 \<le> dist (g x) 0) net"
using assms(1) by (rule eventually_mono) (simp add: dist_norm)
qed
lemma Lim_transform_bound:
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
and g :: "'a \<Rightarrow> 'c::real_normed_vector"
assumes "eventually (\<lambda>n. norm (f n) \<le> norm (g n)) net"
and "(g \<longlongrightarrow> 0) net"
shows "(f \<longlongrightarrow> 0) net"
using assms(1) tendsto_norm_zero [OF assms(2)]
by (rule Lim_null_comparison)
lemma lim_null_mult_right_bounded:
fixes f :: "'a \<Rightarrow> 'b::real_normed_div_algebra"
assumes f: "(f \<longlongrightarrow> 0) F" and g: "eventually (\<lambda>x. norm(g x) \<le> B) F"
shows "((\<lambda>z. f z * g z) \<longlongrightarrow> 0) F"
proof -
have *: "((\<lambda>x. norm (f x) * B) \<longlongrightarrow> 0) F"
by (simp add: f tendsto_mult_left_zero tendsto_norm_zero)
have "((\<lambda>x. norm (f x) * norm (g x)) \<longlongrightarrow> 0) F"
apply (rule Lim_null_comparison [OF _ *])
apply (simp add: eventually_mono [OF g] mult_left_mono)
done
then show ?thesis
by (subst tendsto_norm_zero_iff [symmetric]) (simp add: norm_mult)
qed
lemma lim_null_mult_left_bounded:
fixes f :: "'a \<Rightarrow> 'b::real_normed_div_algebra"
assumes g: "eventually (\<lambda>x. norm(g x) \<le> B) F" and f: "(f \<longlongrightarrow> 0) F"
shows "((\<lambda>z. g z * f z) \<longlongrightarrow> 0) F"
proof -
have *: "((\<lambda>x. B * norm (f x)) \<longlongrightarrow> 0) F"
by (simp add: f tendsto_mult_right_zero tendsto_norm_zero)
have "((\<lambda>x. norm (g x) * norm (f x)) \<longlongrightarrow> 0) F"
apply (rule Lim_null_comparison [OF _ *])
apply (simp add: eventually_mono [OF g] mult_right_mono)
done
then show ?thesis
by (subst tendsto_norm_zero_iff [symmetric]) (simp add: norm_mult)
qed
lemma lim_null_scaleR_bounded:
assumes f: "(f \<longlongrightarrow> 0) net" and gB: "eventually (\<lambda>a. f a = 0 \<or> norm(g a) \<le> B) net"
shows "((\<lambda>n. f n *\<^sub>R g n) \<longlongrightarrow> 0) net"
proof
fix \<epsilon>::real
assume "0 < \<epsilon>"
then have B: "0 < \<epsilon> / (abs B + 1)" by simp
have *: "\<bar>f x\<bar> * norm (g x) < \<epsilon>" if f: "\<bar>f x\<bar> * (\<bar>B\<bar> + 1) < \<epsilon>" and g: "norm (g x) \<le> B" for x
proof -
have "\<bar>f x\<bar> * norm (g x) \<le> \<bar>f x\<bar> * B"
by (simp add: mult_left_mono g)
also have "... \<le> \<bar>f x\<bar> * (\<bar>B\<bar> + 1)"
by (simp add: mult_left_mono)
also have "... < \<epsilon>"
by (rule f)
finally show ?thesis .
qed
show "\<forall>\<^sub>F x in net. dist (f x *\<^sub>R g x) 0 < \<epsilon>"
apply (rule eventually_mono [OF eventually_conj [OF tendstoD [OF f B] gB] ])
apply (auto simp: \<open>0 < \<epsilon>\<close> divide_simps * split: if_split_asm)
done
qed
text\<open>Deducing things about the limit from the elements.\<close>
lemma Lim_in_closed_set:
assumes "closed S"
and "eventually (\<lambda>x. f(x) \<in> S) net"
and "\<not> trivial_limit net" "(f \<longlongrightarrow> l) net"
shows "l \<in> S"
proof (rule ccontr)
assume "l \<notin> S"
with \<open>closed S\<close> have "open (- S)" "l \<in> - S"
by (simp_all add: open_Compl)
with assms(4) have "eventually (\<lambda>x. f x \<in> - S) net"
by (rule topological_tendstoD)
with assms(2) have "eventually (\<lambda>x. False) net"
by (rule eventually_elim2) simp
with assms(3) show "False"
by (simp add: eventually_False)
qed
text\<open>Need to prove closed(cball(x,e)) before deducing this as a corollary.\<close>
lemma Lim_dist_ubound:
assumes "\<not>(trivial_limit net)"
and "(f \<longlongrightarrow> l) net"
and "eventually (\<lambda>x. dist a (f x) \<le> e) net"
shows "dist a l \<le> e"
using assms by (fast intro: tendsto_le tendsto_intros)
lemma Lim_norm_ubound:
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
assumes "\<not>(trivial_limit net)" "(f \<longlongrightarrow> l) net" "eventually (\<lambda>x. norm(f x) \<le> e) net"
shows "norm(l) \<le> e"
using assms by (fast intro: tendsto_le tendsto_intros)
lemma Lim_norm_lbound:
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
assumes "\<not> trivial_limit net"
and "(f \<longlongrightarrow> l) net"
and "eventually (\<lambda>x. e \<le> norm (f x)) net"
shows "e \<le> norm l"
using assms by (fast intro: tendsto_le tendsto_intros)
text\<open>Limit under bilinear function\<close>
lemma Lim_bilinear:
assumes "(f \<longlongrightarrow> l) net"
and "(g \<longlongrightarrow> m) net"
and "bounded_bilinear h"
shows "((\<lambda>x. h (f x) (g x)) \<longlongrightarrow> (h l m)) net"
using \<open>bounded_bilinear h\<close> \<open>(f \<longlongrightarrow> l) net\<close> \<open>(g \<longlongrightarrow> m) net\<close>
by (rule bounded_bilinear.tendsto)
text\<open>These are special for limits out of the same vector space.\<close>
lemma Lim_within_id: "(id \<longlongrightarrow> a) (at a within s)"
unfolding id_def by (rule tendsto_ident_at)
lemma Lim_at_id: "(id \<longlongrightarrow> a) (at a)"
unfolding id_def by (rule tendsto_ident_at)
lemma Lim_at_zero:
fixes a :: "'a::real_normed_vector"
and l :: "'b::topological_space"
shows "(f \<longlongrightarrow> l) (at a) \<longleftrightarrow> ((\<lambda>x. f(a + x)) \<longlongrightarrow> l) (at 0)"
using LIM_offset_zero LIM_offset_zero_cancel ..
text\<open>It's also sometimes useful to extract the limit point from the filter.\<close>
abbreviation netlimit :: "'a::t2_space filter \<Rightarrow> 'a"
where "netlimit F \<equiv> Lim F (\<lambda>x. x)"
lemma netlimit_within: "\<not> trivial_limit (at a within S) \<Longrightarrow> netlimit (at a within S) = a"
by (rule tendsto_Lim) (auto intro: tendsto_intros)
lemma netlimit_at:
fixes a :: "'a::{perfect_space,t2_space}"
shows "netlimit (at a) = a"
using netlimit_within [of a UNIV] by simp
lemma lim_within_interior:
"x \<in> interior S \<Longrightarrow> (f \<longlongrightarrow> l) (at x within S) \<longleftrightarrow> (f \<longlongrightarrow> l) (at x)"
by (metis at_within_interior)
lemma netlimit_within_interior:
fixes x :: "'a::{t2_space,perfect_space}"
assumes "x \<in> interior S"
shows "netlimit (at x within S) = x"
using assms by (metis at_within_interior netlimit_at)
lemma netlimit_at_vector:
fixes a :: "'a::real_normed_vector"
shows "netlimit (at a) = a"
proof (cases "\<exists>x. x \<noteq> a")
case True then obtain x where x: "x \<noteq> a" ..
have "\<not> trivial_limit (at a)"
unfolding trivial_limit_def eventually_at dist_norm
apply clarsimp
apply (rule_tac x="a + scaleR (d / 2) (sgn (x - a))" in exI)
apply (simp add: norm_sgn sgn_zero_iff x)
done
then show ?thesis
by (rule netlimit_within [of a UNIV])
qed simp
text\<open>Useful lemmas on closure and set of possible sequential limits.\<close>
lemma closure_sequential:
fixes l :: "'a::first_countable_topology"
shows "l \<in> closure S \<longleftrightarrow> (\<exists>x. (\<forall>n. x n \<in> S) \<and> (x \<longlongrightarrow> l) sequentially)"
(is "?lhs = ?rhs")
proof
assume "?lhs"
moreover
{
assume "l \<in> S"
then have "?rhs" using tendsto_const[of l sequentially] by auto
}
moreover
{
assume "l islimpt S"
then have "?rhs" unfolding islimpt_sequential by auto
}
ultimately show "?rhs"
unfolding closure_def by auto
next
assume "?rhs"
then show "?lhs" unfolding closure_def islimpt_sequential by auto
qed
lemma closed_sequential_limits:
fixes S :: "'a::first_countable_topology set"
shows "closed S \<longleftrightarrow> (\<forall>x l. (\<forall>n. x n \<in> S) \<and> (x \<longlongrightarrow> l) sequentially \<longrightarrow> l \<in> S)"
by (metis closure_sequential closure_subset_eq subset_iff)
lemma closure_approachable:
fixes S :: "'a::metric_space set"
shows "x \<in> closure S \<longleftrightarrow> (\<forall>e>0. \<exists>y\<in>S. dist y x < e)"
apply (auto simp add: closure_def islimpt_approachable)
apply (metis dist_self)
done
lemma closed_approachable:
fixes S :: "'a::metric_space set"
shows "closed S \<Longrightarrow> (\<forall>e>0. \<exists>y\<in>S. dist y x < e) \<longleftrightarrow> x \<in> S"
by (metis closure_closed closure_approachable)
lemma closure_contains_Inf:
fixes S :: "real set"
assumes "S \<noteq> {}" "bdd_below S"
shows "Inf S \<in> closure S"
proof -
have *: "\<forall>x\<in>S. Inf S \<le> x"
using cInf_lower[of _ S] assms by metis
{
fix e :: real
assume "e > 0"
then have "Inf S < Inf S + e" by simp
with assms obtain x where "x \<in> S" "x < Inf S + e"
by (subst (asm) cInf_less_iff) auto
with * have "\<exists>x\<in>S. dist x (Inf S) < e"
by (intro bexI[of _ x]) (auto simp add: dist_real_def)
}
then show ?thesis unfolding closure_approachable by auto
qed
lemma closed_contains_Inf:
fixes S :: "real set"
shows "S \<noteq> {} \<Longrightarrow> bdd_below S \<Longrightarrow> closed S \<Longrightarrow> Inf S \<in> S"
by (metis closure_contains_Inf closure_closed)
lemma closed_subset_contains_Inf:
fixes A C :: "real set"
shows "closed C \<Longrightarrow> A \<subseteq> C \<Longrightarrow> A \<noteq> {} \<Longrightarrow> bdd_below A \<Longrightarrow> Inf A \<in> C"
by (metis closure_contains_Inf closure_minimal subset_eq)
lemma atLeastAtMost_subset_contains_Inf:
fixes A :: "real set" and a b :: real
shows "A \<noteq> {} \<Longrightarrow> a \<le> b \<Longrightarrow> A \<subseteq> {a..b} \<Longrightarrow> Inf A \<in> {a..b}"
by (rule closed_subset_contains_Inf)
(auto intro: closed_real_atLeastAtMost intro!: bdd_belowI[of A a])
lemma not_trivial_limit_within_ball:
"\<not> trivial_limit (at x within S) \<longleftrightarrow> (\<forall>e>0. S \<inter> ball x e - {x} \<noteq> {})"
(is "?lhs \<longleftrightarrow> ?rhs")
proof
show ?rhs if ?lhs
proof -
{
fix e :: real
assume "e > 0"
then obtain y where "y \<in> S - {x}" and "dist y x < e"
using \<open>?lhs\<close> not_trivial_limit_within[of x S] closure_approachable[of x "S - {x}"]
by auto
then have "y \<in> S \<inter> ball x e - {x}"
unfolding ball_def by (simp add: dist_commute)
then have "S \<inter> ball x e - {x} \<noteq> {}" by blast
}
then show ?thesis by auto
qed
show ?lhs if ?rhs
proof -
{
fix e :: real
assume "e > 0"
then obtain y where "y \<in> S \<inter> ball x e - {x}"
using \<open>?rhs\<close> by blast
then have "y \<in> S - {x}" and "dist y x < e"
unfolding ball_def by (simp_all add: dist_commute)
then have "\<exists>y \<in> S - {x}. dist y x < e"
by auto
}
then show ?thesis
using not_trivial_limit_within[of x S] closure_approachable[of x "S - {x}"]
by auto
qed
qed
subsection \<open>Infimum Distance\<close>
definition "infdist x A = (if A = {} then 0 else INF a:A. dist x a)"
lemma bdd_below_infdist[intro, simp]: "bdd_below (dist x`A)"
by (auto intro!: zero_le_dist)
lemma infdist_notempty: "A \<noteq> {} \<Longrightarrow> infdist x A = (INF a:A. dist x a)"
by (simp add: infdist_def)
lemma infdist_nonneg: "0 \<le> infdist x A"
by (auto simp add: infdist_def intro: cINF_greatest)
lemma infdist_le: "a \<in> A \<Longrightarrow> infdist x A \<le> dist x a"
by (auto intro: cINF_lower simp add: infdist_def)
lemma infdist_le2: "a \<in> A \<Longrightarrow> dist x a \<le> d \<Longrightarrow> infdist x A \<le> d"
by (auto intro!: cINF_lower2 simp add: infdist_def)
lemma infdist_zero[simp]: "a \<in> A \<Longrightarrow> infdist a A = 0"
by (auto intro!: antisym infdist_nonneg infdist_le2)
lemma infdist_triangle: "infdist x A \<le> infdist y A + dist x y"
proof (cases "A = {}")
case True
then show ?thesis by (simp add: infdist_def)
next
case False
then obtain a where "a \<in> A" by auto
have "infdist x A \<le> Inf {dist x y + dist y a |a. a \<in> A}"
proof (rule cInf_greatest)
from \<open>A \<noteq> {}\<close> show "{dist x y + dist y a |a. a \<in> A} \<noteq> {}"
by simp
fix d
assume "d \<in> {dist x y + dist y a |a. a \<in> A}"
then obtain a where d: "d = dist x y + dist y a" "a \<in> A"
by auto
show "infdist x A \<le> d"
unfolding infdist_notempty[OF \<open>A \<noteq> {}\<close>]
proof (rule cINF_lower2)
show "a \<in> A" by fact
show "dist x a \<le> d"
unfolding d by (rule dist_triangle)
qed simp
qed
also have "\<dots> = dist x y + infdist y A"
proof (rule cInf_eq, safe)
fix a
assume "a \<in> A"
then show "dist x y + infdist y A \<le> dist x y + dist y a"
by (auto intro: infdist_le)
next
fix i
assume inf: "\<And>d. d \<in> {dist x y + dist y a |a. a \<in> A} \<Longrightarrow> i \<le> d"
then have "i - dist x y \<le> infdist y A"
unfolding infdist_notempty[OF \<open>A \<noteq> {}\<close>] using \<open>a \<in> A\<close>
by (intro cINF_greatest) (auto simp: field_simps)
then show "i \<le> dist x y + infdist y A"
by simp
qed
finally show ?thesis by simp
qed
lemma in_closure_iff_infdist_zero:
assumes "A \<noteq> {}"
shows "x \<in> closure A \<longleftrightarrow> infdist x A = 0"
proof
assume "x \<in> closure A"
show "infdist x A = 0"
proof (rule ccontr)
assume "infdist x A \<noteq> 0"
with infdist_nonneg[of x A] have "infdist x A > 0"
by auto
then have "ball x (infdist x A) \<inter> closure A = {}"
apply auto
apply (metis \<open>x \<in> closure A\<close> closure_approachable dist_commute infdist_le not_less)
done
then have "x \<notin> closure A"
by (metis \<open>0 < infdist x A\<close> centre_in_ball disjoint_iff_not_equal)
then show False using \<open>x \<in> closure A\<close> by simp
qed
next
assume x: "infdist x A = 0"
then obtain a where "a \<in> A"
by atomize_elim (metis all_not_in_conv assms)
show "x \<in> closure A"
unfolding closure_approachable
apply safe
proof (rule ccontr)
fix e :: real
assume "e > 0"
assume "\<not> (\<exists>y\<in>A. dist y x < e)"
then have "infdist x A \<ge> e" using \<open>a \<in> A\<close>
unfolding infdist_def
by (force simp: dist_commute intro: cINF_greatest)
with x \<open>e > 0\<close> show False by auto
qed
qed
lemma in_closed_iff_infdist_zero:
assumes "closed A" "A \<noteq> {}"
shows "x \<in> A \<longleftrightarrow> infdist x A = 0"
proof -
have "x \<in> closure A \<longleftrightarrow> infdist x A = 0"
by (rule in_closure_iff_infdist_zero) fact
with assms show ?thesis by simp
qed
lemma tendsto_infdist [tendsto_intros]:
assumes f: "(f \<longlongrightarrow> l) F"
shows "((\<lambda>x. infdist (f x) A) \<longlongrightarrow> infdist l A) F"
proof (rule tendstoI)
fix e ::real
assume "e > 0"
from tendstoD[OF f this]
show "eventually (\<lambda>x. dist (infdist (f x) A) (infdist l A) < e) F"
proof (eventually_elim)
fix x
from infdist_triangle[of l A "f x"] infdist_triangle[of "f x" A l]
have "dist (infdist (f x) A) (infdist l A) \<le> dist (f x) l"
by (simp add: dist_commute dist_real_def)
also assume "dist (f x) l < e"
finally show "dist (infdist (f x) A) (infdist l A) < e" .
qed
qed
text\<open>Some other lemmas about sequences.\<close>
lemma sequentially_offset: (* TODO: move to Topological_Spaces.thy *)
assumes "eventually (\<lambda>i. P i) sequentially"
shows "eventually (\<lambda>i. P (i + k)) sequentially"
using assms by (rule eventually_sequentially_seg [THEN iffD2])
lemma seq_offset_neg: (* TODO: move to Topological_Spaces.thy *)
"(f \<longlongrightarrow> l) sequentially \<Longrightarrow> ((\<lambda>i. f(i - k)) \<longlongrightarrow> l) sequentially"
apply (erule filterlim_compose)
apply (simp add: filterlim_def le_sequentially eventually_filtermap eventually_sequentially)
apply arith
done
lemma seq_harmonic: "((\<lambda>n. inverse (real n)) \<longlongrightarrow> 0) sequentially"
using LIMSEQ_inverse_real_of_nat by (rule LIMSEQ_imp_Suc) (* TODO: move to Limits.thy *)
subsection \<open>More properties of closed balls\<close>
lemma closed_cball [iff]: "closed (cball x e)"
proof -
have "closed (dist x -` {..e})"
by (intro closed_vimage closed_atMost continuous_intros)
also have "dist x -` {..e} = cball x e"
by auto
finally show ?thesis .
qed
lemma open_contains_cball: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. cball x e \<subseteq> S)"
proof -
{
fix x and e::real
assume "x\<in>S" "e>0" "ball x e \<subseteq> S"
then have "\<exists>d>0. cball x d \<subseteq> S" unfolding subset_eq by (rule_tac x="e/2" in exI, auto)
}
moreover
{
fix x and e::real
assume "x\<in>S" "e>0" "cball x e \<subseteq> S"
then have "\<exists>d>0. ball x d \<subseteq> S"
unfolding subset_eq
apply(rule_tac x="e/2" in exI)
apply auto
done
}
ultimately show ?thesis
unfolding open_contains_ball by auto
qed
lemma open_contains_cball_eq: "open S \<Longrightarrow> (\<forall>x. x \<in> S \<longleftrightarrow> (\<exists>e>0. cball x e \<subseteq> S))"
by (metis open_contains_cball subset_eq order_less_imp_le centre_in_cball)
lemma mem_interior_cball: "x \<in> interior S \<longleftrightarrow> (\<exists>e>0. cball x e \<subseteq> S)"
apply (simp add: interior_def, safe)
apply (force simp add: open_contains_cball)
apply (rule_tac x="ball x e" in exI)
apply (simp add: subset_trans [OF ball_subset_cball])
done
lemma islimpt_ball:
fixes x y :: "'a::{real_normed_vector,perfect_space}"
shows "y islimpt ball x e \<longleftrightarrow> 0 < e \<and> y \<in> cball x e"
(is "?lhs \<longleftrightarrow> ?rhs")
proof
show ?rhs if ?lhs
proof
{
assume "e \<le> 0"
then have *: "ball x e = {}"
using ball_eq_empty[of x e] by auto
have False using \<open>?lhs\<close>
unfolding * using islimpt_EMPTY[of y] by auto
}
then show "e > 0" by (metis not_less)
show "y \<in> cball x e"
using closed_cball[of x e] islimpt_subset[of y "ball x e" "cball x e"]
ball_subset_cball[of x e] \<open>?lhs\<close>
unfolding closed_limpt by auto
qed
show ?lhs if ?rhs
proof -
from that have "e > 0" by auto
{
fix d :: real
assume "d > 0"
have "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
proof (cases "d \<le> dist x y")
case True
then show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
proof (cases "x = y")
case True
then have False
using \<open>d \<le> dist x y\<close> \<open>d>0\<close> by auto
then show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
by auto
next
case False
have "dist x (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) =
norm (x - y + (d / (2 * norm (y - x))) *\<^sub>R (y - x))"
unfolding mem_cball mem_ball dist_norm diff_diff_eq2 diff_add_eq[symmetric]
by auto
also have "\<dots> = \<bar>- 1 + d / (2 * norm (x - y))\<bar> * norm (x - y)"
using scaleR_left_distrib[of "- 1" "d / (2 * norm (y - x))", symmetric, of "y - x"]
unfolding scaleR_minus_left scaleR_one
by (auto simp add: norm_minus_commute)
also have "\<dots> = \<bar>- norm (x - y) + d / 2\<bar>"
unfolding abs_mult_pos[of "norm (x - y)", OF norm_ge_zero[of "x - y"]]
unfolding distrib_right using \<open>x\<noteq>y\<close> by auto
also have "\<dots> \<le> e - d/2" using \<open>d \<le> dist x y\<close> and \<open>d>0\<close> and \<open>?rhs\<close>
by (auto simp add: dist_norm)
finally have "y - (d / (2 * dist y x)) *\<^sub>R (y - x) \<in> ball x e" using \<open>d>0\<close>
by auto
moreover
have "(d / (2*dist y x)) *\<^sub>R (y - x) \<noteq> 0"
using \<open>x\<noteq>y\<close>[unfolded dist_nz] \<open>d>0\<close> unfolding scaleR_eq_0_iff
by (auto simp add: dist_commute)
moreover
have "dist (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) y < d"
unfolding dist_norm
apply simp
unfolding norm_minus_cancel
using \<open>d > 0\<close> \<open>x\<noteq>y\<close>[unfolded dist_nz] dist_commute[of x y]
unfolding dist_norm
apply auto
done
ultimately show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
apply (rule_tac x = "y - (d / (2*dist y x)) *\<^sub>R (y - x)" in bexI)
apply auto
done
qed
next
case False
then have "d > dist x y" by auto
show "\<exists>x' \<in> ball x e. x' \<noteq> y \<and> dist x' y < d"
proof (cases "x = y")
case True
obtain z where **: "z \<noteq> y" "dist z y < min e d"
using perfect_choose_dist[of "min e d" y]
using \<open>d > 0\<close> \<open>e>0\<close> by auto
show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
unfolding \<open>x = y\<close>
using \<open>z \<noteq> y\<close> **
apply (rule_tac x=z in bexI)
apply (auto simp add: dist_commute)
done
next
case False
then show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
using \<open>d>0\<close> \<open>d > dist x y\<close> \<open>?rhs\<close>
apply (rule_tac x=x in bexI)
apply auto
done
qed
qed
}
then show ?thesis
unfolding mem_cball islimpt_approachable mem_ball by auto
qed
qed
lemma closure_ball_lemma:
fixes x y :: "'a::real_normed_vector"
assumes "x \<noteq> y"
shows "y islimpt ball x (dist x y)"
proof (rule islimptI)
fix T
assume "y \<in> T" "open T"
then obtain r where "0 < r" "\<forall>z. dist z y < r \<longrightarrow> z \<in> T"
unfolding open_dist by fast
(* choose point between x and y, within distance r of y. *)
define k where "k = min 1 (r / (2 * dist x y))"
define z where "z = y + scaleR k (x - y)"
have z_def2: "z = x + scaleR (1 - k) (y - x)"
unfolding z_def by (simp add: algebra_simps)
have "dist z y < r"
unfolding z_def k_def using \<open>0 < r\<close>
by (simp add: dist_norm min_def)
then have "z \<in> T"
using \<open>\<forall>z. dist z y < r \<longrightarrow> z \<in> T\<close> by simp
have "dist x z < dist x y"
unfolding z_def2 dist_norm
apply (simp add: norm_minus_commute)
apply (simp only: dist_norm [symmetric])
apply (subgoal_tac "\<bar>1 - k\<bar> * dist x y < 1 * dist x y", simp)
apply (rule mult_strict_right_mono)
apply (simp add: k_def \<open>0 < r\<close> \<open>x \<noteq> y\<close>)
apply (simp add: \<open>x \<noteq> y\<close>)
done
then have "z \<in> ball x (dist x y)"
by simp
have "z \<noteq> y"
unfolding z_def k_def using \<open>x \<noteq> y\<close> \<open>0 < r\<close>
by (simp add: min_def)
show "\<exists>z\<in>ball x (dist x y). z \<in> T \<and> z \<noteq> y"
using \<open>z \<in> ball x (dist x y)\<close> \<open>z \<in> T\<close> \<open>z \<noteq> y\<close>
by fast
qed
lemma closure_ball [simp]:
fixes x :: "'a::real_normed_vector"
shows "0 < e \<Longrightarrow> closure (ball x e) = cball x e"
apply (rule equalityI)
apply (rule closure_minimal)
apply (rule ball_subset_cball)
apply (rule closed_cball)
apply (rule subsetI, rename_tac y)
apply (simp add: le_less [where 'a=real])
apply (erule disjE)
apply (rule subsetD [OF closure_subset], simp)
apply (simp add: closure_def)
apply clarify
apply (rule closure_ball_lemma)
apply (simp add: zero_less_dist_iff)
done
(* In a trivial vector space, this fails for e = 0. *)
lemma interior_cball [simp]:
fixes x :: "'a::{real_normed_vector, perfect_space}"
shows "interior (cball x e) = ball x e"
proof (cases "e \<ge> 0")
case False note cs = this
from cs have null: "ball x e = {}"
using ball_empty[of e x] by auto
moreover
{
fix y
assume "y \<in> cball x e"
then have False
by (metis ball_eq_empty null cs dist_eq_0_iff dist_le_zero_iff empty_subsetI mem_cball subset_antisym subset_ball)
}
then have "cball x e = {}" by auto
then have "interior (cball x e) = {}"
using interior_empty by auto
ultimately show ?thesis by blast
next
case True note cs = this
have "ball x e \<subseteq> cball x e"
using ball_subset_cball by auto
moreover
{
fix S y
assume as: "S \<subseteq> cball x e" "open S" "y\<in>S"
then obtain d where "d>0" and d: "\<forall>x'. dist x' y < d \<longrightarrow> x' \<in> S"
unfolding open_dist by blast
then obtain xa where xa_y: "xa \<noteq> y" and xa: "dist xa y < d"
using perfect_choose_dist [of d] by auto
have "xa \<in> S"
using d[THEN spec[where x = xa]]
using xa by (auto simp add: dist_commute)
then have xa_cball: "xa \<in> cball x e"
using as(1) by auto
then have "y \<in> ball x e"
proof (cases "x = y")
case True
then have "e > 0" using cs order.order_iff_strict xa_cball xa_y by fastforce
then show "y \<in> ball x e"
using \<open>x = y \<close> by simp
next
case False
have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) y < d"
unfolding dist_norm
using \<open>d>0\<close> norm_ge_zero[of "y - x"] \<open>x \<noteq> y\<close> by auto
then have *: "y + (d / 2 / dist y x) *\<^sub>R (y - x) \<in> cball x e"
using d as(1)[unfolded subset_eq] by blast
have "y - x \<noteq> 0" using \<open>x \<noteq> y\<close> by auto
hence **:"d / (2 * norm (y - x)) > 0"
unfolding zero_less_norm_iff[symmetric] using \<open>d>0\<close> by auto
have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) x =
norm (y + (d / (2 * norm (y - x))) *\<^sub>R y - (d / (2 * norm (y - x))) *\<^sub>R x - x)"
by (auto simp add: dist_norm algebra_simps)
also have "\<dots> = norm ((1 + d / (2 * norm (y - x))) *\<^sub>R (y - x))"
by (auto simp add: algebra_simps)
also have "\<dots> = \<bar>1 + d / (2 * norm (y - x))\<bar> * norm (y - x)"
using ** by auto
also have "\<dots> = (dist y x) + d/2"
using ** by (auto simp add: distrib_right dist_norm)
finally have "e \<ge> dist x y +d/2"
using *[unfolded mem_cball] by (auto simp add: dist_commute)
then show "y \<in> ball x e"
unfolding mem_ball using \<open>d>0\<close> by auto
qed
}
then have "\<forall>S \<subseteq> cball x e. open S \<longrightarrow> S \<subseteq> ball x e"
by auto
ultimately show ?thesis
using interior_unique[of "ball x e" "cball x e"]
using open_ball[of x e]
by auto
qed
lemma interior_ball [simp]: "interior (ball x e) = ball x e"
by (simp add: interior_open)
lemma frontier_ball [simp]:
fixes a :: "'a::real_normed_vector"
shows "0 < e \<Longrightarrow> frontier (ball a e) = sphere a e"
by (force simp: frontier_def)
lemma frontier_cball [simp]:
fixes a :: "'a::{real_normed_vector, perfect_space}"
shows "frontier (cball a e) = sphere a e"
by (force simp: frontier_def)
lemma cball_eq_empty [simp]: "cball x e = {} \<longleftrightarrow> e < 0"
apply (simp add: set_eq_iff not_le)
apply (metis zero_le_dist dist_self order_less_le_trans)
done
lemma cball_empty [simp]: "e < 0 \<Longrightarrow> cball x e = {}"
by (simp add: cball_eq_empty)
lemma cball_eq_sing:
fixes x :: "'a::{metric_space,perfect_space}"
shows "cball x e = {x} \<longleftrightarrow> e = 0"
proof (rule linorder_cases)
assume e: "0 < e"
obtain a where "a \<noteq> x" "dist a x < e"
using perfect_choose_dist [OF e] by auto
then have "a \<noteq> x" "dist x a \<le> e"
by (auto simp add: dist_commute)
with e show ?thesis by (auto simp add: set_eq_iff)
qed auto
lemma cball_sing:
fixes x :: "'a::metric_space"
shows "e = 0 \<Longrightarrow> cball x e = {x}"
by (auto simp add: set_eq_iff)
lemma ball_divide_subset: "d \<ge> 1 \<Longrightarrow> ball x (e/d) \<subseteq> ball x e"
apply (cases "e \<le> 0")
apply (simp add: ball_empty divide_simps)
apply (rule subset_ball)
apply (simp add: divide_simps)
done
lemma ball_divide_subset_numeral: "ball x (e / numeral w) \<subseteq> ball x e"
using ball_divide_subset one_le_numeral by blast
lemma cball_divide_subset: "d \<ge> 1 \<Longrightarrow> cball x (e/d) \<subseteq> cball x e"
apply (cases "e < 0")
apply (simp add: divide_simps)
apply (rule subset_cball)
apply (metis div_by_1 frac_le not_le order_refl zero_less_one)
done
lemma cball_divide_subset_numeral: "cball x (e / numeral w) \<subseteq> cball x e"
using cball_divide_subset one_le_numeral by blast
subsection \<open>Boundedness\<close>
(* FIXME: This has to be unified with BSEQ!! *)
definition (in metric_space) bounded :: "'a set \<Rightarrow> bool"
where "bounded S \<longleftrightarrow> (\<exists>x e. \<forall>y\<in>S. dist x y \<le> e)"
lemma bounded_subset_cball: "bounded S \<longleftrightarrow> (\<exists>e x. S \<subseteq> cball x e \<and> 0 \<le> e)"
unfolding bounded_def subset_eq by auto (meson order_trans zero_le_dist)
lemma bounded_any_center: "bounded S \<longleftrightarrow> (\<exists>e. \<forall>y\<in>S. dist a y \<le> e)"
unfolding bounded_def
by auto (metis add.commute add_le_cancel_right dist_commute dist_triangle_le)
lemma bounded_iff: "bounded S \<longleftrightarrow> (\<exists>a. \<forall>x\<in>S. norm x \<le> a)"
unfolding bounded_any_center [where a=0]
by (simp add: dist_norm)
lemma bdd_above_norm: "bdd_above (norm ` X) \<longleftrightarrow> bounded X"
by (simp add: bounded_iff bdd_above_def)
lemma bounded_norm_comp: "bounded ((\<lambda>x. norm (f x)) ` S) = bounded (f ` S)"
by (simp add: bounded_iff)
lemma boundedI:
assumes "\<And>x. x \<in> S \<Longrightarrow> norm x \<le> B"
shows "bounded S"
using assms bounded_iff by blast
lemma bounded_empty [simp]: "bounded {}"
by (simp add: bounded_def)
lemma bounded_subset: "bounded T \<Longrightarrow> S \<subseteq> T \<Longrightarrow> bounded S"
by (metis bounded_def subset_eq)
lemma bounded_interior[intro]: "bounded S \<Longrightarrow> bounded(interior S)"
by (metis bounded_subset interior_subset)
lemma bounded_closure[intro]:
assumes "bounded S"
shows "bounded (closure S)"
proof -
from assms obtain x and a where a: "\<forall>y\<in>S. dist x y \<le> a"
unfolding bounded_def by auto
{
fix y
assume "y \<in> closure S"
then obtain f where f: "\<forall>n. f n \<in> S" "(f \<longlongrightarrow> y) sequentially"
unfolding closure_sequential by auto
have "\<forall>n. f n \<in> S \<longrightarrow> dist x (f n) \<le> a" using a by simp
then have "eventually (\<lambda>n. dist x (f n) \<le> a) sequentially"
by (simp add: f(1))
have "dist x y \<le> a"
apply (rule Lim_dist_ubound [of sequentially f])
apply (rule trivial_limit_sequentially)
apply (rule f(2))
apply fact
done
}
then show ?thesis
unfolding bounded_def by auto
qed
lemma bounded_closure_image: "bounded (f ` closure S) \<Longrightarrow> bounded (f ` S)"
by (simp add: bounded_subset closure_subset image_mono)
lemma bounded_cball[simp,intro]: "bounded (cball x e)"
apply (simp add: bounded_def)
apply (rule_tac x=x in exI)
apply (rule_tac x=e in exI)
apply auto
done
lemma bounded_ball[simp,intro]: "bounded (ball x e)"
by (metis ball_subset_cball bounded_cball bounded_subset)
lemma bounded_Un[simp]: "bounded (S \<union> T) \<longleftrightarrow> bounded S \<and> bounded T"
by (auto simp add: bounded_def) (metis Un_iff bounded_any_center le_max_iff_disj)
lemma bounded_Union[intro]: "finite F \<Longrightarrow> \<forall>S\<in>F. bounded S \<Longrightarrow> bounded (\<Union>F)"
by (induct rule: finite_induct[of F]) auto
lemma bounded_UN [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. bounded (B x) \<Longrightarrow> bounded (\<Union>x\<in>A. B x)"
by (induct set: finite) auto
lemma bounded_insert [simp]: "bounded (insert x S) \<longleftrightarrow> bounded S"
proof -
have "\<forall>y\<in>{x}. dist x y \<le> 0"
by simp
then have "bounded {x}"
unfolding bounded_def by fast
then show ?thesis
by (metis insert_is_Un bounded_Un)
qed
lemma bounded_subset_ballI: "S \<subseteq> ball x r \<Longrightarrow> bounded S"
by (meson bounded_ball bounded_subset)
lemma bounded_subset_ballD:
assumes "bounded S" shows "\<exists>r. 0 < r \<and> S \<subseteq> ball x r"
proof -
obtain e::real and y where "S \<subseteq> cball y e" "0 \<le> e"
using assms by (auto simp: bounded_subset_cball)
then show ?thesis
apply (rule_tac x="dist x y + e + 1" in exI)
apply (simp add: add.commute add_pos_nonneg)
apply (erule subset_trans)
apply (clarsimp simp add: cball_def)
by (metis add_le_cancel_right add_strict_increasing dist_commute dist_triangle_le zero_less_one)
qed
lemma finite_imp_bounded [intro]: "finite S \<Longrightarrow> bounded S"
by (induct set: finite) simp_all
lemma bounded_pos: "bounded S \<longleftrightarrow> (\<exists>b>0. \<forall>x\<in> S. norm x \<le> b)"
apply (simp add: bounded_iff)
apply (subgoal_tac "\<And>x (y::real). 0 < 1 + \<bar>y\<bar> \<and> (x \<le> y \<longrightarrow> x \<le> 1 + \<bar>y\<bar>)")
apply metis
apply arith
done
lemma bounded_pos_less: "bounded S \<longleftrightarrow> (\<exists>b>0. \<forall>x\<in> S. norm x < b)"
apply (simp add: bounded_pos)
apply (safe; rule_tac x="b+1" in exI; force)
done
lemma Bseq_eq_bounded:
fixes f :: "nat \<Rightarrow> 'a::real_normed_vector"
shows "Bseq f \<longleftrightarrow> bounded (range f)"
unfolding Bseq_def bounded_pos by auto
lemma bounded_Int[intro]: "bounded S \<or> bounded T \<Longrightarrow> bounded (S \<inter> T)"
by (metis Int_lower1 Int_lower2 bounded_subset)
lemma bounded_diff[intro]: "bounded S \<Longrightarrow> bounded (S - T)"
by (metis Diff_subset bounded_subset)
lemma not_bounded_UNIV[simp]:
"\<not> bounded (UNIV :: 'a::{real_normed_vector, perfect_space} set)"
proof (auto simp add: bounded_pos not_le)
obtain x :: 'a where "x \<noteq> 0"
using perfect_choose_dist [OF zero_less_one] by fast
fix b :: real
assume b: "b >0"
have b1: "b +1 \<ge> 0"
using b by simp
with \<open>x \<noteq> 0\<close> have "b < norm (scaleR (b + 1) (sgn x))"
by (simp add: norm_sgn)
then show "\<exists>x::'a. b < norm x" ..
qed
corollary cobounded_imp_unbounded:
fixes S :: "'a::{real_normed_vector, perfect_space} set"
shows "bounded (- S) \<Longrightarrow> ~ (bounded S)"
using bounded_Un [of S "-S"] by (simp add: sup_compl_top)
lemma bounded_dist_comp:
assumes "bounded (f ` S)" "bounded (g ` S)"
shows "bounded ((\<lambda>x. dist (f x) (g x)) ` S)"
proof -
from assms obtain M1 M2 where *: "dist (f x) undefined \<le> M1" "dist undefined (g x) \<le> M2" if "x \<in> S" for x
by (auto simp: bounded_any_center[of _ undefined] dist_commute)
have "dist (f x) (g x) \<le> M1 + M2" if "x \<in> S" for x
using *[OF that]
by (rule order_trans[OF dist_triangle add_mono])
then show ?thesis
by (auto intro!: boundedI)
qed
lemma bounded_linear_image:
assumes "bounded S"
and "bounded_linear f"
shows "bounded (f ` S)"
proof -
from assms(1) obtain b where b: "b > 0" "\<forall>x\<in>S. norm x \<le> b"
unfolding bounded_pos by auto
from assms(2) obtain B where B: "B > 0" "\<forall>x. norm (f x) \<le> B * norm x"
using bounded_linear.pos_bounded by (auto simp add: ac_simps)
{
fix x
assume "x \<in> S"
then have "norm x \<le> b"
using b by auto
then have "norm (f x) \<le> B * b"
using B(2)
apply (erule_tac x=x in allE)
apply (metis B(1) B(2) order_trans mult_le_cancel_left_pos)
done
}
then show ?thesis
unfolding bounded_pos
apply (rule_tac x="b*B" in exI)
using b B by (auto simp add: mult.commute)
qed
lemma bounded_scaling:
fixes S :: "'a::real_normed_vector set"
shows "bounded S \<Longrightarrow> bounded ((\<lambda>x. c *\<^sub>R x) ` S)"
apply (rule bounded_linear_image)
apply assumption
apply (rule bounded_linear_scaleR_right)
done
lemma bounded_scaleR_comp:
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
assumes "bounded (f ` S)"
shows "bounded ((\<lambda>x. r *\<^sub>R f x) ` S)"
using bounded_scaling[of "f ` S" r] assms
by (auto simp: image_image)
lemma bounded_translation:
fixes S :: "'a::real_normed_vector set"
assumes "bounded S"
shows "bounded ((\<lambda>x. a + x) ` S)"
proof -
from assms obtain b where b: "b > 0" "\<forall>x\<in>S. norm x \<le> b"
unfolding bounded_pos by auto
{
fix x
assume "x \<in> S"
then have "norm (a + x) \<le> b + norm a"
using norm_triangle_ineq[of a x] b by auto
}
then show ?thesis
unfolding bounded_pos
using norm_ge_zero[of a] b(1) and add_strict_increasing[of b 0 "norm a"]
by (auto intro!: exI[of _ "b + norm a"])
qed
lemma bounded_translation_minus:
fixes S :: "'a::real_normed_vector set"
shows "bounded S \<Longrightarrow> bounded ((\<lambda>x. x - a) ` S)"
using bounded_translation [of S "-a"] by simp
lemma bounded_uminus [simp]:
fixes X :: "'a::real_normed_vector set"
shows "bounded (uminus ` X) \<longleftrightarrow> bounded X"
by (auto simp: bounded_def dist_norm; rule_tac x="-x" in exI; force simp add: add.commute norm_minus_commute)
lemma uminus_bounded_comp [simp]:
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
shows "bounded ((\<lambda>x. - f x) ` S) \<longleftrightarrow> bounded (f ` S)"
using bounded_uminus[of "f ` S"]
by (auto simp: image_image)
lemma bounded_plus_comp:
fixes f g::"'a \<Rightarrow> 'b::real_normed_vector"
assumes "bounded (f ` S)"
assumes "bounded (g ` S)"
shows "bounded ((\<lambda>x. f x + g x) ` S)"
proof -
{
fix B C
assume "\<And>x. x\<in>S \<Longrightarrow> norm (f x) \<le> B" "\<And>x. x\<in>S \<Longrightarrow> norm (g x) \<le> C"
then have "\<And>x. x \<in> S \<Longrightarrow> norm (f x + g x) \<le> B + C"
by (auto intro!: norm_triangle_le add_mono)
} then show ?thesis
using assms by (fastforce simp: bounded_iff)
qed
lemma bounded_minus_comp:
"bounded (f ` S) \<Longrightarrow> bounded (g ` S) \<Longrightarrow> bounded ((\<lambda>x. f x - g x) ` S)"
for f g::"'a \<Rightarrow> 'b::real_normed_vector"
using bounded_plus_comp[of "f" S "\<lambda>x. - g x"]
by (auto simp: )
subsection\<open>Some theorems on sups and infs using the notion "bounded".\<close>
lemma bounded_real: "bounded (S::real set) \<longleftrightarrow> (\<exists>a. \<forall>x\<in>S. \<bar>x\<bar> \<le> a)"
by (simp add: bounded_iff)
lemma bounded_imp_bdd_above: "bounded S \<Longrightarrow> bdd_above (S :: real set)"
by (auto simp: bounded_def bdd_above_def dist_real_def)
(metis abs_le_D1 abs_minus_commute diff_le_eq)
lemma bounded_imp_bdd_below: "bounded S \<Longrightarrow> bdd_below (S :: real set)"
by (auto simp: bounded_def bdd_below_def dist_real_def)
(metis abs_le_D1 add.commute diff_le_eq)
lemma bounded_inner_imp_bdd_above:
assumes "bounded s"
shows "bdd_above ((\<lambda>x. x \<bullet> a) ` s)"
by (simp add: assms bounded_imp_bdd_above bounded_linear_image bounded_linear_inner_left)
lemma bounded_inner_imp_bdd_below:
assumes "bounded s"
shows "bdd_below ((\<lambda>x. x \<bullet> a) ` s)"
by (simp add: assms bounded_imp_bdd_below bounded_linear_image bounded_linear_inner_left)
lemma bounded_has_Sup:
fixes S :: "real set"
assumes "bounded S"
and "S \<noteq> {}"
shows "\<forall>x\<in>S. x \<le> Sup S"
and "\<forall>b. (\<forall>x\<in>S. x \<le> b) \<longrightarrow> Sup S \<le> b"
proof
show "\<forall>b. (\<forall>x\<in>S. x \<le> b) \<longrightarrow> Sup S \<le> b"
using assms by (metis cSup_least)
qed (metis cSup_upper assms(1) bounded_imp_bdd_above)
lemma Sup_insert:
fixes S :: "real set"
shows "bounded S \<Longrightarrow> Sup (insert x S) = (if S = {} then x else max x (Sup S))"
by (auto simp: bounded_imp_bdd_above sup_max cSup_insert_If)
lemma Sup_insert_finite:
fixes S :: "'a::conditionally_complete_linorder set"
shows "finite S \<Longrightarrow> Sup (insert x S) = (if S = {} then x else max x (Sup S))"
by (simp add: cSup_insert sup_max)
lemma bounded_has_Inf:
fixes S :: "real set"
assumes "bounded S"
and "S \<noteq> {}"
shows "\<forall>x\<in>S. x \<ge> Inf S"
and "\<forall>b. (\<forall>x\<in>S. x \<ge> b) \<longrightarrow> Inf S \<ge> b"
proof
show "\<forall>b. (\<forall>x\<in>S. x \<ge> b) \<longrightarrow> Inf S \<ge> b"
using assms by (metis cInf_greatest)
qed (metis cInf_lower assms(1) bounded_imp_bdd_below)
lemma Inf_insert:
fixes S :: "real set"
shows "bounded S \<Longrightarrow> Inf (insert x S) = (if S = {} then x else min x (Inf S))"
by (auto simp: bounded_imp_bdd_below inf_min cInf_insert_If)
lemma Inf_insert_finite:
fixes S :: "'a::conditionally_complete_linorder set"
shows "finite S \<Longrightarrow> Inf (insert x S) = (if S = {} then x else min x (Inf S))"
by (simp add: cInf_eq_Min)
lemma finite_imp_less_Inf:
fixes a :: "'a::conditionally_complete_linorder"
shows "\<lbrakk>finite X; x \<in> X; \<And>x. x\<in>X \<Longrightarrow> a < x\<rbrakk> \<Longrightarrow> a < Inf X"
by (induction X rule: finite_induct) (simp_all add: cInf_eq_Min Inf_insert_finite)
lemma finite_less_Inf_iff:
fixes a :: "'a :: conditionally_complete_linorder"
shows "\<lbrakk>finite X; X \<noteq> {}\<rbrakk> \<Longrightarrow> a < Inf X \<longleftrightarrow> (\<forall>x \<in> X. a < x)"
by (auto simp: cInf_eq_Min)
lemma finite_imp_Sup_less:
fixes a :: "'a::conditionally_complete_linorder"
shows "\<lbrakk>finite X; x \<in> X; \<And>x. x\<in>X \<Longrightarrow> a > x\<rbrakk> \<Longrightarrow> a > Sup X"
by (induction X rule: finite_induct) (simp_all add: cSup_eq_Max Sup_insert_finite)
lemma finite_Sup_less_iff:
fixes a :: "'a :: conditionally_complete_linorder"
shows "\<lbrakk>finite X; X \<noteq> {}\<rbrakk> \<Longrightarrow> a > Sup X \<longleftrightarrow> (\<forall>x \<in> X. a > x)"
by (auto simp: cSup_eq_Max)
subsection \<open>Compactness\<close>
subsubsection \<open>Bolzano-Weierstrass property\<close>
lemma heine_borel_imp_bolzano_weierstrass:
assumes "compact s"
and "infinite t"
and "t \<subseteq> s"
shows "\<exists>x \<in> s. x islimpt t"
proof (rule ccontr)
assume "\<not> (\<exists>x \<in> s. x islimpt t)"
then obtain f where f: "\<forall>x\<in>s. x \<in> f x \<and> open (f x) \<and> (\<forall>y\<in>t. y \<in> f x \<longrightarrow> y = x)"
unfolding islimpt_def
using bchoice[of s "\<lambda> x T. x \<in> T \<and> open T \<and> (\<forall>y\<in>t. y \<in> T \<longrightarrow> y = x)"]
by auto
obtain g where g: "g \<subseteq> {t. \<exists>x. x \<in> s \<and> t = f x}" "finite g" "s \<subseteq> \<Union>g"
using assms(1)[unfolded compact_eq_heine_borel, THEN spec[where x="{t. \<exists>x. x\<in>s \<and> t = f x}"]]
using f by auto
from g(1,3) have g':"\<forall>x\<in>g. \<exists>xa \<in> s. x = f xa"
by auto
{
fix x y
assume "x \<in> t" "y \<in> t" "f x = f y"
then have "x \<in> f x" "y \<in> f x \<longrightarrow> y = x"
using f[THEN bspec[where x=x]] and \<open>t \<subseteq> s\<close> by auto
then have "x = y"
using \<open>f x = f y\<close> and f[THEN bspec[where x=y]] and \<open>y \<in> t\<close> and \<open>t \<subseteq> s\<close>
by auto
}
then have "inj_on f t"
unfolding inj_on_def by simp
then have "infinite (f ` t)"
using assms(2) using finite_imageD by auto
moreover
{
fix x
assume "x \<in> t" "f x \<notin> g"
from g(3) assms(3) \<open>x \<in> t\<close> obtain h where "h \<in> g" and "x \<in> h"
by auto
then obtain y where "y \<in> s" "h = f y"
using g'[THEN bspec[where x=h]] by auto
then have "y = x"
using f[THEN bspec[where x=y]] and \<open>x\<in>t\<close> and \<open>x\<in>h\<close>[unfolded \<open>h = f y\<close>]
by auto
then have False
using \<open>f x \<notin> g\<close> \<open>h \<in> g\<close> unfolding \<open>h = f y\<close>
by auto
}
then have "f ` t \<subseteq> g" by auto
ultimately show False
using g(2) using finite_subset by auto
qed
lemma acc_point_range_imp_convergent_subsequence:
fixes l :: "'a :: first_countable_topology"
assumes l: "\<forall>U. l\<in>U \<longrightarrow> open U \<longrightarrow> infinite (U \<inter> range f)"
shows "\<exists>r::nat\<Rightarrow>nat. strict_mono r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
proof -
from countable_basis_at_decseq[of l]
obtain A where A:
"\<And>i. open (A i)"
"\<And>i. l \<in> A i"
"\<And>S. open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially"
by blast
define s where "s n i = (SOME j. i < j \<and> f j \<in> A (Suc n))" for n i
{
fix n i
have "infinite (A (Suc n) \<inter> range f - f`{.. i})"
using l A by auto
then have "\<exists>x. x \<in> A (Suc n) \<inter> range f - f`{.. i}"
unfolding ex_in_conv by (intro notI) simp
then have "\<exists>j. f j \<in> A (Suc n) \<and> j \<notin> {.. i}"
by auto
then have "\<exists>a. i < a \<and> f a \<in> A (Suc n)"
by (auto simp: not_le)
then have "i < s n i" "f (s n i) \<in> A (Suc n)"
unfolding s_def by (auto intro: someI2_ex)
}
note s = this
define r where "r = rec_nat (s 0 0) s"
have "strict_mono r"
by (auto simp: r_def s strict_mono_Suc_iff)
moreover
have "(\<lambda>n. f (r n)) \<longlonglongrightarrow> l"
proof (rule topological_tendstoI)
fix S
assume "open S" "l \<in> S"
with A(3) have "eventually (\<lambda>i. A i \<subseteq> S) sequentially"
by auto
moreover
{
fix i
assume "Suc 0 \<le> i"
then have "f (r i) \<in> A i"
by (cases i) (simp_all add: r_def s)
}
then have "eventually (\<lambda>i. f (r i) \<in> A i) sequentially"
by (auto simp: eventually_sequentially)
ultimately show "eventually (\<lambda>i. f (r i) \<in> S) sequentially"
by eventually_elim auto
qed
ultimately show "\<exists>r::nat\<Rightarrow>nat. strict_mono r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
by (auto simp: convergent_def comp_def)
qed
lemma sequence_infinite_lemma:
fixes f :: "nat \<Rightarrow> 'a::t1_space"
assumes "\<forall>n. f n \<noteq> l"
and "(f \<longlongrightarrow> l) sequentially"
shows "infinite (range f)"
proof
assume "finite (range f)"
then have "closed (range f)"
by (rule finite_imp_closed)
then have "open (- range f)"
by (rule open_Compl)
from assms(1) have "l \<in> - range f"
by auto
from assms(2) have "eventually (\<lambda>n. f n \<in> - range f) sequentially"
using \<open>open (- range f)\<close> \<open>l \<in> - range f\<close>
by (rule topological_tendstoD)
then show False
unfolding eventually_sequentially
by auto
qed
lemma closure_insert:
fixes x :: "'a::t1_space"
shows "closure (insert x s) = insert x (closure s)"
apply (rule closure_unique)
apply (rule insert_mono [OF closure_subset])
apply (rule closed_insert [OF closed_closure])
apply (simp add: closure_minimal)
done
lemma islimpt_insert:
fixes x :: "'a::t1_space"
shows "x islimpt (insert a s) \<longleftrightarrow> x islimpt s"
proof
assume *: "x islimpt (insert a s)"
show "x islimpt s"
proof (rule islimptI)
fix t
assume t: "x \<in> t" "open t"
show "\<exists>y\<in>s. y \<in> t \<and> y \<noteq> x"
proof (cases "x = a")
case True
obtain y where "y \<in> insert a s" "y \<in> t" "y \<noteq> x"
using * t by (rule islimptE)
with \<open>x = a\<close> show ?thesis by auto
next
case False
with t have t': "x \<in> t - {a}" "open (t - {a})"
by (simp_all add: open_Diff)
obtain y where "y \<in> insert a s" "y \<in> t - {a}" "y \<noteq> x"
using * t' by (rule islimptE)
then show ?thesis by auto
qed
qed
next
assume "x islimpt s"
then show "x islimpt (insert a s)"
by (rule islimpt_subset) auto
qed
lemma islimpt_finite:
fixes x :: "'a::t1_space"
shows "finite s \<Longrightarrow> \<not> x islimpt s"
by (induct set: finite) (simp_all add: islimpt_insert)
lemma islimpt_Un_finite:
fixes x :: "'a::t1_space"
shows "finite s \<Longrightarrow> x islimpt (s \<union> t) \<longleftrightarrow> x islimpt t"
by (simp add: islimpt_Un islimpt_finite)
lemma islimpt_eq_acc_point:
fixes l :: "'a :: t1_space"
shows "l islimpt S \<longleftrightarrow> (\<forall>U. l\<in>U \<longrightarrow> open U \<longrightarrow> infinite (U \<inter> S))"
proof (safe intro!: islimptI)
fix U
assume "l islimpt S" "l \<in> U" "open U" "finite (U \<inter> S)"
then have "l islimpt S" "l \<in> (U - (U \<inter> S - {l}))" "open (U - (U \<inter> S - {l}))"
by (auto intro: finite_imp_closed)
then show False
by (rule islimptE) auto
next
fix T
assume *: "\<forall>U. l\<in>U \<longrightarrow> open U \<longrightarrow> infinite (U \<inter> S)" "l \<in> T" "open T"
then have "infinite (T \<inter> S - {l})"
by auto
then have "\<exists>x. x \<in> (T \<inter> S - {l})"
unfolding ex_in_conv by (intro notI) simp
then show "\<exists>y\<in>S. y \<in> T \<and> y \<noteq> l"
by auto
qed
corollary infinite_openin:
fixes S :: "'a :: t1_space set"
shows "\<lbrakk>openin (subtopology euclidean U) S; x \<in> S; x islimpt U\<rbrakk> \<Longrightarrow> infinite S"
by (clarsimp simp add: openin_open islimpt_eq_acc_point inf_commute)
lemma islimpt_range_imp_convergent_subsequence:
fixes l :: "'a :: {t1_space, first_countable_topology}"
assumes l: "l islimpt (range f)"
shows "\<exists>r::nat\<Rightarrow>nat. strict_mono r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
using l unfolding islimpt_eq_acc_point
by (rule acc_point_range_imp_convergent_subsequence)
lemma islimpt_eq_infinite_ball: "x islimpt S \<longleftrightarrow> (\<forall>e>0. infinite(S \<inter> ball x e))"
apply (simp add: islimpt_eq_acc_point, safe)
apply (metis Int_commute open_ball centre_in_ball)
by (metis open_contains_ball Int_mono finite_subset inf_commute subset_refl)
lemma islimpt_eq_infinite_cball: "x islimpt S \<longleftrightarrow> (\<forall>e>0. infinite(S \<inter> cball x e))"
apply (simp add: islimpt_eq_infinite_ball, safe)
apply (meson Int_mono ball_subset_cball finite_subset order_refl)
by (metis open_ball centre_in_ball finite_Int inf.absorb_iff2 inf_assoc open_contains_cball_eq)
lemma sequence_unique_limpt:
fixes f :: "nat \<Rightarrow> 'a::t2_space"
assumes "(f \<longlongrightarrow> l) sequentially"
and "l' islimpt (range f)"
shows "l' = l"
proof (rule ccontr)
assume "l' \<noteq> l"
obtain s t where "open s" "open t" "l' \<in> s" "l \<in> t" "s \<inter> t = {}"
using hausdorff [OF \<open>l' \<noteq> l\<close>] by auto
have "eventually (\<lambda>n. f n \<in> t) sequentially"
using assms(1) \<open>open t\<close> \<open>l \<in> t\<close> by (rule topological_tendstoD)
then obtain N where "\<forall>n\<ge>N. f n \<in> t"
unfolding eventually_sequentially by auto
have "UNIV = {..<N} \<union> {N..}"
by auto
then have "l' islimpt (f ` ({..<N} \<union> {N..}))"
using assms(2) by simp
then have "l' islimpt (f ` {..<N} \<union> f ` {N..})"
by (simp add: image_Un)
then have "l' islimpt (f ` {N..})"
by (simp add: islimpt_Un_finite)
then obtain y where "y \<in> f ` {N..}" "y \<in> s" "y \<noteq> l'"
using \<open>l' \<in> s\<close> \<open>open s\<close> by (rule islimptE)
then obtain n where "N \<le> n" "f n \<in> s" "f n \<noteq> l'"
by auto
with \<open>\<forall>n\<ge>N. f n \<in> t\<close> have "f n \<in> s \<inter> t"
by simp
with \<open>s \<inter> t = {}\<close> show False
by simp
qed
lemma bolzano_weierstrass_imp_closed:
fixes s :: "'a::{first_countable_topology,t2_space} set"
assumes "\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t)"
shows "closed s"
proof -
{
fix x l
assume as: "\<forall>n::nat. x n \<in> s" "(x \<longlongrightarrow> l) sequentially"
then have "l \<in> s"
proof (cases "\<forall>n. x n \<noteq> l")
case False
then show "l\<in>s" using as(1) by auto
next
case True note cas = this
with as(2) have "infinite (range x)"
using sequence_infinite_lemma[of x l] by auto
then obtain l' where "l'\<in>s" "l' islimpt (range x)"
using assms[THEN spec[where x="range x"]] as(1) by auto
then show "l\<in>s" using sequence_unique_limpt[of x l l']
using as cas by auto
qed
}
then show ?thesis
unfolding closed_sequential_limits by fast
qed
lemma compact_imp_bounded:
assumes "compact U"
shows "bounded U"
proof -
have "compact U" "\<forall>x\<in>U. open (ball x 1)" "U \<subseteq> (\<Union>x\<in>U. ball x 1)"
using assms by auto
then obtain D where D: "D \<subseteq> U" "finite D" "U \<subseteq> (\<Union>x\<in>D. ball x 1)"
by (metis compactE_image)
from \<open>finite D\<close> have "bounded (\<Union>x\<in>D. ball x 1)"
by (simp add: bounded_UN)
then show "bounded U" using \<open>U \<subseteq> (\<Union>x\<in>D. ball x 1)\<close>
by (rule bounded_subset)
qed
text\<open>In particular, some common special cases.\<close>
lemma compact_Un [intro]:
assumes "compact s"
and "compact t"
shows " compact (s \<union> t)"
proof (rule compactI)
fix f
assume *: "Ball f open" "s \<union> t \<subseteq> \<Union>f"
from * \<open>compact s\<close> obtain s' where "s' \<subseteq> f \<and> finite s' \<and> s \<subseteq> \<Union>s'"
unfolding compact_eq_heine_borel by (auto elim!: allE[of _ f])
moreover
from * \<open>compact t\<close> obtain t' where "t' \<subseteq> f \<and> finite t' \<and> t \<subseteq> \<Union>t'"
unfolding compact_eq_heine_borel by (auto elim!: allE[of _ f])
ultimately show "\<exists>f'\<subseteq>f. finite f' \<and> s \<union> t \<subseteq> \<Union>f'"
by (auto intro!: exI[of _ "s' \<union> t'"])
qed
lemma compact_Union [intro]: "finite S \<Longrightarrow> (\<And>T. T \<in> S \<Longrightarrow> compact T) \<Longrightarrow> compact (\<Union>S)"
by (induct set: finite) auto
lemma compact_UN [intro]:
"finite A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> compact (B x)) \<Longrightarrow> compact (\<Union>x\<in>A. B x)"
by (rule compact_Union) auto
lemma closed_Int_compact [intro]:
assumes "closed s"
and "compact t"
shows "compact (s \<inter> t)"
using compact_Int_closed [of t s] assms
by (simp add: Int_commute)
lemma compact_Int [intro]:
fixes s t :: "'a :: t2_space set"
assumes "compact s"
and "compact t"
shows "compact (s \<inter> t)"
using assms by (intro compact_Int_closed compact_imp_closed)
lemma compact_sing [simp]: "compact {a}"
unfolding compact_eq_heine_borel by auto
lemma compact_insert [simp]:
assumes "compact s"
shows "compact (insert x s)"
proof -
have "compact ({x} \<union> s)"
using compact_sing assms by (rule compact_Un)
then show ?thesis by simp
qed
lemma finite_imp_compact: "finite s \<Longrightarrow> compact s"
by (induct set: finite) simp_all
lemma open_delete:
fixes s :: "'a::t1_space set"
shows "open s \<Longrightarrow> open (s - {x})"
by (simp add: open_Diff)
lemma openin_delete:
fixes a :: "'a :: t1_space"
shows "openin (subtopology euclidean u) s
\<Longrightarrow> openin (subtopology euclidean u) (s - {a})"
by (metis Int_Diff open_delete openin_open)
text\<open>Compactness expressed with filters\<close>
lemma closure_iff_nhds_not_empty:
"x \<in> closure X \<longleftrightarrow> (\<forall>A. \<forall>S\<subseteq>A. open S \<longrightarrow> x \<in> S \<longrightarrow> X \<inter> A \<noteq> {})"
proof safe
assume x: "x \<in> closure X"
fix S A
assume "open S" "x \<in> S" "X \<inter> A = {}" "S \<subseteq> A"
then have "x \<notin> closure (-S)"
by (auto simp: closure_complement subset_eq[symmetric] intro: interiorI)
with x have "x \<in> closure X - closure (-S)"
by auto
also have "\<dots> \<subseteq> closure (X \<inter> S)"
using \<open>open S\<close> open_Int_closure_subset[of S X] by (simp add: closed_Compl ac_simps)
finally have "X \<inter> S \<noteq> {}" by auto
then show False using \<open>X \<inter> A = {}\<close> \<open>S \<subseteq> A\<close> by auto
next
assume "\<forall>A S. S \<subseteq> A \<longrightarrow> open S \<longrightarrow> x \<in> S \<longrightarrow> X \<inter> A \<noteq> {}"
from this[THEN spec, of "- X", THEN spec, of "- closure X"]
show "x \<in> closure X"
by (simp add: closure_subset open_Compl)
qed
lemma compact_filter:
"compact U \<longleftrightarrow> (\<forall>F. F \<noteq> bot \<longrightarrow> eventually (\<lambda>x. x \<in> U) F \<longrightarrow> (\<exists>x\<in>U. inf (nhds x) F \<noteq> bot))"
proof (intro allI iffI impI compact_fip[THEN iffD2] notI)
fix F
assume "compact U"
assume F: "F \<noteq> bot" "eventually (\<lambda>x. x \<in> U) F"
then have "U \<noteq> {}"
by (auto simp: eventually_False)
define Z where "Z = closure ` {A. eventually (\<lambda>x. x \<in> A) F}"
then have "\<forall>z\<in>Z. closed z"
by auto
moreover
have ev_Z: "\<And>z. z \<in> Z \<Longrightarrow> eventually (\<lambda>x. x \<in> z) F"
unfolding Z_def by (auto elim: eventually_mono intro: set_mp[OF closure_subset])
have "(\<forall>B \<subseteq> Z. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {})"
proof (intro allI impI)
fix B assume "finite B" "B \<subseteq> Z"
with \<open>finite B\<close> ev_Z F(2) have "eventually (\<lambda>x. x \<in> U \<inter> (\<Inter>B)) F"
by (auto simp: eventually_ball_finite_distrib eventually_conj_iff)
with F show "U \<inter> \<Inter>B \<noteq> {}"
by (intro notI) (simp add: eventually_False)
qed
ultimately have "U \<inter> \<Inter>Z \<noteq> {}"
using \<open>compact U\<close> unfolding compact_fip by blast
then obtain x where "x \<in> U" and x: "\<And>z. z \<in> Z \<Longrightarrow> x \<in> z"
by auto
have "\<And>P. eventually P (inf (nhds x) F) \<Longrightarrow> P \<noteq> bot"
unfolding eventually_inf eventually_nhds
proof safe
fix P Q R S
assume "eventually R F" "open S" "x \<in> S"
with open_Int_closure_eq_empty[of S "{x. R x}"] x[of "closure {x. R x}"]
have "S \<inter> {x. R x} \<noteq> {}" by (auto simp: Z_def)
moreover assume "Ball S Q" "\<forall>x. Q x \<and> R x \<longrightarrow> bot x"
ultimately show False by (auto simp: set_eq_iff)
qed
with \<open>x \<in> U\<close> show "\<exists>x\<in>U. inf (nhds x) F \<noteq> bot"
by (metis eventually_bot)
next
fix A
assume A: "\<forall>a\<in>A. closed a" "\<forall>B\<subseteq>A. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {}" "U \<inter> \<Inter>A = {}"
define F where "F = (INF a:insert U A. principal a)"
have "F \<noteq> bot"
unfolding F_def
proof (rule INF_filter_not_bot)
fix X
assume X: "X \<subseteq> insert U A" "finite X"
with A(2)[THEN spec, of "X - {U}"] have "U \<inter> \<Inter>(X - {U}) \<noteq> {}"
by auto
with X show "(INF a:X. principal a) \<noteq> bot"
by (auto simp add: INF_principal_finite principal_eq_bot_iff)
qed
moreover
have "F \<le> principal U"
unfolding F_def by auto
then have "eventually (\<lambda>x. x \<in> U) F"
by (auto simp: le_filter_def eventually_principal)
moreover
assume "\<forall>F. F \<noteq> bot \<longrightarrow> eventually (\<lambda>x. x \<in> U) F \<longrightarrow> (\<exists>x\<in>U. inf (nhds x) F \<noteq> bot)"
ultimately obtain x where "x \<in> U" and x: "inf (nhds x) F \<noteq> bot"
by auto
{ fix V assume "V \<in> A"
then have "F \<le> principal V"
unfolding F_def by (intro INF_lower2[of V]) auto
then have V: "eventually (\<lambda>x. x \<in> V) F"
by (auto simp: le_filter_def eventually_principal)
have "x \<in> closure V"
unfolding closure_iff_nhds_not_empty
proof (intro impI allI)
fix S A
assume "open S" "x \<in> S" "S \<subseteq> A"
then have "eventually (\<lambda>x. x \<in> A) (nhds x)"
by (auto simp: eventually_nhds)
with V have "eventually (\<lambda>x. x \<in> V \<inter> A) (inf (nhds x) F)"
by (auto simp: eventually_inf)
with x show "V \<inter> A \<noteq> {}"
by (auto simp del: Int_iff simp add: trivial_limit_def)
qed
then have "x \<in> V"
using \<open>V \<in> A\<close> A(1) by simp
}
with \<open>x\<in>U\<close> have "x \<in> U \<inter> \<Inter>A" by auto
with \<open>U \<inter> \<Inter>A = {}\<close> show False by auto
qed
definition "countably_compact U \<longleftrightarrow>
(\<forall>A. countable A \<longrightarrow> (\<forall>a\<in>A. open a) \<longrightarrow> U \<subseteq> \<Union>A \<longrightarrow> (\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T))"
lemma countably_compactE:
assumes "countably_compact s" and "\<forall>t\<in>C. open t" and "s \<subseteq> \<Union>C" "countable C"
obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> \<Union>C'"
using assms unfolding countably_compact_def by metis
lemma countably_compactI:
assumes "\<And>C. \<forall>t\<in>C. open t \<Longrightarrow> s \<subseteq> \<Union>C \<Longrightarrow> countable C \<Longrightarrow> (\<exists>C'\<subseteq>C. finite C' \<and> s \<subseteq> \<Union>C')"
shows "countably_compact s"
using assms unfolding countably_compact_def by metis
lemma compact_imp_countably_compact: "compact U \<Longrightarrow> countably_compact U"
by (auto simp: compact_eq_heine_borel countably_compact_def)
lemma countably_compact_imp_compact:
assumes "countably_compact U"
and ccover: "countable B" "\<forall>b\<in>B. open b"
and basis: "\<And>T x. open T \<Longrightarrow> x \<in> T \<Longrightarrow> x \<in> U \<Longrightarrow> \<exists>b\<in>B. x \<in> b \<and> b \<inter> U \<subseteq> T"
shows "compact U"
using \<open>countably_compact U\<close>
unfolding compact_eq_heine_borel countably_compact_def
proof safe
fix A
assume A: "\<forall>a\<in>A. open a" "U \<subseteq> \<Union>A"
assume *: "\<forall>A. countable A \<longrightarrow> (\<forall>a\<in>A. open a) \<longrightarrow> U \<subseteq> \<Union>A \<longrightarrow> (\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T)"
moreover define C where "C = {b\<in>B. \<exists>a\<in>A. b \<inter> U \<subseteq> a}"
ultimately have "countable C" "\<forall>a\<in>C. open a"
unfolding C_def using ccover by auto
moreover
have "\<Union>A \<inter> U \<subseteq> \<Union>C"
proof safe
fix x a
assume "x \<in> U" "x \<in> a" "a \<in> A"
with basis[of a x] A obtain b where "b \<in> B" "x \<in> b" "b \<inter> U \<subseteq> a"
by blast
with \<open>a \<in> A\<close> show "x \<in> \<Union>C"
unfolding C_def by auto
qed
then have "U \<subseteq> \<Union>C" using \<open>U \<subseteq> \<Union>A\<close> by auto
ultimately obtain T where T: "T\<subseteq>C" "finite T" "U \<subseteq> \<Union>T"
using * by metis
then have "\<forall>t\<in>T. \<exists>a\<in>A. t \<inter> U \<subseteq> a"
by (auto simp: C_def)
then obtain f where "\<forall>t\<in>T. f t \<in> A \<and> t \<inter> U \<subseteq> f t"
unfolding bchoice_iff Bex_def ..
with T show "\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T"
unfolding C_def by (intro exI[of _ "f`T"]) fastforce
qed
lemma countably_compact_imp_compact_second_countable:
"countably_compact U \<Longrightarrow> compact (U :: 'a :: second_countable_topology set)"
proof (rule countably_compact_imp_compact)
fix T and x :: 'a
assume "open T" "x \<in> T"
from topological_basisE[OF is_basis this] obtain b where
"b \<in> (SOME B. countable B \<and> topological_basis B)" "x \<in> b" "b \<subseteq> T" .
then show "\<exists>b\<in>SOME B. countable B \<and> topological_basis B. x \<in> b \<and> b \<inter> U \<subseteq> T"
by blast
qed (insert countable_basis topological_basis_open[OF is_basis], auto)
lemma countably_compact_eq_compact:
"countably_compact U \<longleftrightarrow> compact (U :: 'a :: second_countable_topology set)"
using countably_compact_imp_compact_second_countable compact_imp_countably_compact by blast
subsubsection\<open>Sequential compactness\<close>
definition seq_compact :: "'a::topological_space set \<Rightarrow> bool"
where "seq_compact S \<longleftrightarrow>
(\<forall>f. (\<forall>n. f n \<in> S) \<longrightarrow> (\<exists>l\<in>S. \<exists>r::nat\<Rightarrow>nat. strict_mono r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially))"
lemma seq_compactI:
assumes "\<And>f. \<forall>n. f n \<in> S \<Longrightarrow> \<exists>l\<in>S. \<exists>r::nat\<Rightarrow>nat. strict_mono r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
shows "seq_compact S"
unfolding seq_compact_def using assms by fast
lemma seq_compactE:
assumes "seq_compact S" "\<forall>n. f n \<in> S"
obtains l r where "l \<in> S" "strict_mono (r :: nat \<Rightarrow> nat)" "((f \<circ> r) \<longlongrightarrow> l) sequentially"
using assms unfolding seq_compact_def by fast
lemma closed_sequentially: (* TODO: move upwards *)
assumes "closed s" and "\<forall>n. f n \<in> s" and "f \<longlonglongrightarrow> l"
shows "l \<in> s"
proof (rule ccontr)
assume "l \<notin> s"
with \<open>closed s\<close> and \<open>f \<longlonglongrightarrow> l\<close> have "eventually (\<lambda>n. f n \<in> - s) sequentially"
by (fast intro: topological_tendstoD)
with \<open>\<forall>n. f n \<in> s\<close> show "False"
by simp
qed
lemma seq_compact_Int_closed:
assumes "seq_compact s" and "closed t"
shows "seq_compact (s \<inter> t)"
proof (rule seq_compactI)
fix f assume "\<forall>n::nat. f n \<in> s \<inter> t"
hence "\<forall>n. f n \<in> s" and "\<forall>n. f n \<in> t"
by simp_all
from \<open>seq_compact s\<close> and \<open>\<forall>n. f n \<in> s\<close>
obtain l r where "l \<in> s" and r: "strict_mono r" and l: "(f \<circ> r) \<longlonglongrightarrow> l"
by (rule seq_compactE)
from \<open>\<forall>n. f n \<in> t\<close> have "\<forall>n. (f \<circ> r) n \<in> t"
by simp
from \<open>closed t\<close> and this and l have "l \<in> t"
by (rule closed_sequentially)
with \<open>l \<in> s\<close> and r and l show "\<exists>l\<in>s \<inter> t. \<exists>r. strict_mono r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
by fast
qed
lemma seq_compact_closed_subset:
assumes "closed s" and "s \<subseteq> t" and "seq_compact t"
shows "seq_compact s"
using assms seq_compact_Int_closed [of t s] by (simp add: Int_absorb1)
lemma seq_compact_imp_countably_compact:
fixes U :: "'a :: first_countable_topology set"
assumes "seq_compact U"
shows "countably_compact U"
proof (safe intro!: countably_compactI)
fix A
assume A: "\<forall>a\<in>A. open a" "U \<subseteq> \<Union>A" "countable A"
have subseq: "\<And>X. range X \<subseteq> U \<Longrightarrow> \<exists>r x. x \<in> U \<and> strict_mono (r :: nat \<Rightarrow> nat) \<and> (X \<circ> r) \<longlonglongrightarrow> x"
using \<open>seq_compact U\<close> by (fastforce simp: seq_compact_def subset_eq)
show "\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T"
proof cases
assume "finite A"
with A show ?thesis by auto
next
assume "infinite A"
then have "A \<noteq> {}" by auto
show ?thesis
proof (rule ccontr)
assume "\<not> (\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T)"
then have "\<forall>T. \<exists>x. T \<subseteq> A \<and> finite T \<longrightarrow> (x \<in> U - \<Union>T)"
by auto
then obtain X' where T: "\<And>T. T \<subseteq> A \<Longrightarrow> finite T \<Longrightarrow> X' T \<in> U - \<Union>T"
by metis
define X where "X n = X' (from_nat_into A ` {.. n})" for n
have X: "\<And>n. X n \<in> U - (\<Union>i\<le>n. from_nat_into A i)"
using \<open>A \<noteq> {}\<close> unfolding X_def by (intro T) (auto intro: from_nat_into)
then have "range X \<subseteq> U"
by auto
with subseq[of X] obtain r x where "x \<in> U" and r: "strict_mono r" "(X \<circ> r) \<longlonglongrightarrow> x"
by auto
from \<open>x\<in>U\<close> \<open>U \<subseteq> \<Union>A\<close> from_nat_into_surj[OF \<open>countable A\<close>]
obtain n where "x \<in> from_nat_into A n" by auto
with r(2) A(1) from_nat_into[OF \<open>A \<noteq> {}\<close>, of n]
have "eventually (\<lambda>i. X (r i) \<in> from_nat_into A n) sequentially"
unfolding tendsto_def by (auto simp: comp_def)
then obtain N where "\<And>i. N \<le> i \<Longrightarrow> X (r i) \<in> from_nat_into A n"
by (auto simp: eventually_sequentially)
moreover from X have "\<And>i. n \<le> r i \<Longrightarrow> X (r i) \<notin> from_nat_into A n"
by auto
moreover from \<open>strict_mono r\<close>[THEN seq_suble, of "max n N"] have "\<exists>i. n \<le> r i \<and> N \<le> i"
by (auto intro!: exI[of _ "max n N"])
ultimately show False
by auto
qed
qed
qed
lemma compact_imp_seq_compact:
fixes U :: "'a :: first_countable_topology set"
assumes "compact U"
shows "seq_compact U"
unfolding seq_compact_def
proof safe
fix X :: "nat \<Rightarrow> 'a"
assume "\<forall>n. X n \<in> U"
then have "eventually (\<lambda>x. x \<in> U) (filtermap X sequentially)"
by (auto simp: eventually_filtermap)
moreover
have "filtermap X sequentially \<noteq> bot"
by (simp add: trivial_limit_def eventually_filtermap)
ultimately
obtain x where "x \<in> U" and x: "inf (nhds x) (filtermap X sequentially) \<noteq> bot" (is "?F \<noteq> _")
using \<open>compact U\<close> by (auto simp: compact_filter)
from countable_basis_at_decseq[of x]
obtain A where A:
"\<And>i. open (A i)"
"\<And>i. x \<in> A i"
"\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially"
by blast
define s where "s n i = (SOME j. i < j \<and> X j \<in> A (Suc n))" for n i
{
fix n i
have "\<exists>a. i < a \<and> X a \<in> A (Suc n)"
proof (rule ccontr)
assume "\<not> (\<exists>a>i. X a \<in> A (Suc n))"
then have "\<And>a. Suc i \<le> a \<Longrightarrow> X a \<notin> A (Suc n)"
by auto
then have "eventually (\<lambda>x. x \<notin> A (Suc n)) (filtermap X sequentially)"
by (auto simp: eventually_filtermap eventually_sequentially)
moreover have "eventually (\<lambda>x. x \<in> A (Suc n)) (nhds x)"
using A(1,2)[of "Suc n"] by (auto simp: eventually_nhds)
ultimately have "eventually (\<lambda>x. False) ?F"
by (auto simp add: eventually_inf)
with x show False
by (simp add: eventually_False)
qed
then have "i < s n i" "X (s n i) \<in> A (Suc n)"
unfolding s_def by (auto intro: someI2_ex)
}
note s = this
define r where "r = rec_nat (s 0 0) s"
have "strict_mono r"
by (auto simp: r_def s strict_mono_Suc_iff)
moreover
have "(\<lambda>n. X (r n)) \<longlonglongrightarrow> x"
proof (rule topological_tendstoI)
fix S
assume "open S" "x \<in> S"
with A(3) have "eventually (\<lambda>i. A i \<subseteq> S) sequentially"
by auto
moreover
{
fix i
assume "Suc 0 \<le> i"
then have "X (r i) \<in> A i"
by (cases i) (simp_all add: r_def s)
}
then have "eventually (\<lambda>i. X (r i) \<in> A i) sequentially"
by (auto simp: eventually_sequentially)
ultimately show "eventually (\<lambda>i. X (r i) \<in> S) sequentially"
by eventually_elim auto
qed
ultimately show "\<exists>x \<in> U. \<exists>r. strict_mono r \<and> (X \<circ> r) \<longlonglongrightarrow> x"
using \<open>x \<in> U\<close> by (auto simp: convergent_def comp_def)
qed
lemma countably_compact_imp_acc_point:
assumes "countably_compact s"
and "countable t"
and "infinite t"
and "t \<subseteq> s"
shows "\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t)"
proof (rule ccontr)
define C where "C = (\<lambda>F. interior (F \<union> (- t))) ` {F. finite F \<and> F \<subseteq> t }"
note \<open>countably_compact s\<close>
moreover have "\<forall>t\<in>C. open t"
by (auto simp: C_def)
moreover
assume "\<not> (\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t))"
then have s: "\<And>x. x \<in> s \<Longrightarrow> \<exists>U. x\<in>U \<and> open U \<and> finite (U \<inter> t)" by metis
have "s \<subseteq> \<Union>C"
using \<open>t \<subseteq> s\<close>
unfolding C_def
apply (safe dest!: s)
apply (rule_tac a="U \<inter> t" in UN_I)
apply (auto intro!: interiorI simp add: finite_subset)
done
moreover
from \<open>countable t\<close> have "countable C"
unfolding C_def by (auto intro: countable_Collect_finite_subset)
ultimately
obtain D where "D \<subseteq> C" "finite D" "s \<subseteq> \<Union>D"
by (rule countably_compactE)
then obtain E where E: "E \<subseteq> {F. finite F \<and> F \<subseteq> t }" "finite E"
and s: "s \<subseteq> (\<Union>F\<in>E. interior (F \<union> (- t)))"
by (metis (lifting) finite_subset_image C_def)
from s \<open>t \<subseteq> s\<close> have "t \<subseteq> \<Union>E"
using interior_subset by blast
moreover have "finite (\<Union>E)"
using E by auto
ultimately show False using \<open>infinite t\<close>
by (auto simp: finite_subset)
qed
lemma countable_acc_point_imp_seq_compact:
fixes s :: "'a::first_countable_topology set"
assumes "\<forall>t. infinite t \<and> countable t \<and> t \<subseteq> s \<longrightarrow>
(\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t))"
shows "seq_compact s"
proof -
{
fix f :: "nat \<Rightarrow> 'a"
assume f: "\<forall>n. f n \<in> s"
have "\<exists>l\<in>s. \<exists>r. strict_mono r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
proof (cases "finite (range f)")
case True
obtain l where "infinite {n. f n = f l}"
using pigeonhole_infinite[OF _ True] by auto
then obtain r :: "nat \<Rightarrow> nat" where "strict_mono r" and fr: "\<forall>n. f (r n) = f l"
using infinite_enumerate by blast
then have "strict_mono r \<and> (f \<circ> r) \<longlonglongrightarrow> f l"
by (simp add: fr o_def)
with f show "\<exists>l\<in>s. \<exists>r. strict_mono r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
by auto
next
case False
with f assms have "\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> range f)"
by auto
then obtain l where "l \<in> s" "\<forall>U. l\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> range f)" ..
from this(2) have "\<exists>r. strict_mono r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
using acc_point_range_imp_convergent_subsequence[of l f] by auto
with \<open>l \<in> s\<close> show "\<exists>l\<in>s. \<exists>r. strict_mono r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially" ..
qed
}
then show ?thesis
unfolding seq_compact_def by auto
qed
lemma seq_compact_eq_countably_compact:
fixes U :: "'a :: first_countable_topology set"
shows "seq_compact U \<longleftrightarrow> countably_compact U"
using
countable_acc_point_imp_seq_compact
countably_compact_imp_acc_point
seq_compact_imp_countably_compact
by metis
lemma seq_compact_eq_acc_point:
fixes s :: "'a :: first_countable_topology set"
shows "seq_compact s \<longleftrightarrow>
(\<forall>t. infinite t \<and> countable t \<and> t \<subseteq> s --> (\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t)))"
using
countable_acc_point_imp_seq_compact[of s]
countably_compact_imp_acc_point[of s]
seq_compact_imp_countably_compact[of s]
by metis
lemma seq_compact_eq_compact:
fixes U :: "'a :: second_countable_topology set"
shows "seq_compact U \<longleftrightarrow> compact U"
using seq_compact_eq_countably_compact countably_compact_eq_compact by blast
lemma bolzano_weierstrass_imp_seq_compact:
fixes s :: "'a::{t1_space, first_countable_topology} set"
shows "\<forall>t. infinite t \<and> t \<subseteq> s \<longrightarrow> (\<exists>x \<in> s. x islimpt t) \<Longrightarrow> seq_compact s"
by (rule countable_acc_point_imp_seq_compact) (metis islimpt_eq_acc_point)
subsubsection\<open>Totally bounded\<close>
lemma cauchy_def: "Cauchy s \<longleftrightarrow> (\<forall>e>0. \<exists>N. \<forall>m n. m \<ge> N \<and> n \<ge> N \<longrightarrow> dist (s m) (s n) < e)"
unfolding Cauchy_def by metis
lemma seq_compact_imp_totally_bounded:
assumes "seq_compact s"
shows "\<forall>e>0. \<exists>k. finite k \<and> k \<subseteq> s \<and> s \<subseteq> (\<Union>x\<in>k. ball x e)"
proof -
{ fix e::real assume "e > 0" assume *: "\<And>k. finite k \<Longrightarrow> k \<subseteq> s \<Longrightarrow> \<not> s \<subseteq> (\<Union>x\<in>k. ball x e)"
let ?Q = "\<lambda>x n r. r \<in> s \<and> (\<forall>m < (n::nat). \<not> (dist (x m) r < e))"
have "\<exists>x. \<forall>n::nat. ?Q x n (x n)"
proof (rule dependent_wellorder_choice)
fix n x assume "\<And>y. y < n \<Longrightarrow> ?Q x y (x y)"
then have "\<not> s \<subseteq> (\<Union>x\<in>x ` {0..<n}. ball x e)"
using *[of "x ` {0 ..< n}"] by (auto simp: subset_eq)
then obtain z where z:"z\<in>s" "z \<notin> (\<Union>x\<in>x ` {0..<n}. ball x e)"
unfolding subset_eq by auto
show "\<exists>r. ?Q x n r"
using z by auto
qed simp
then obtain x where "\<forall>n::nat. x n \<in> s" and x:"\<And>n m. m < n \<Longrightarrow> \<not> (dist (x m) (x n) < e)"
by blast
then obtain l r where "l \<in> s" and r:"strict_mono r" and "((x \<circ> r) \<longlongrightarrow> l) sequentially"
using assms by (metis seq_compact_def)
from this(3) have "Cauchy (x \<circ> r)"
using LIMSEQ_imp_Cauchy by auto
then obtain N::nat where "\<And>m n. N \<le> m \<Longrightarrow> N \<le> n \<Longrightarrow> dist ((x \<circ> r) m) ((x \<circ> r) n) < e"
unfolding cauchy_def using \<open>e > 0\<close> by blast
then have False
using x[of "r N" "r (N+1)"] r by (auto simp: strict_mono_def) }
then show ?thesis
by metis
qed
subsubsection\<open>Heine-Borel theorem\<close>
lemma seq_compact_imp_heine_borel:
fixes s :: "'a :: metric_space set"
assumes "seq_compact s"
shows "compact s"
proof -
from seq_compact_imp_totally_bounded[OF \<open>seq_compact s\<close>]
obtain f where f: "\<forall>e>0. finite (f e) \<and> f e \<subseteq> s \<and> s \<subseteq> (\<Union>x\<in>f e. ball x e)"
unfolding choice_iff' ..
define K where "K = (\<lambda>(x, r). ball x r) ` ((\<Union>e \<in> \<rat> \<inter> {0 <..}. f e) \<times> \<rat>)"
have "countably_compact s"
using \<open>seq_compact s\<close> by (rule seq_compact_imp_countably_compact)
then show "compact s"
proof (rule countably_compact_imp_compact)
show "countable K"
unfolding K_def using f
by (auto intro: countable_finite countable_subset countable_rat
intro!: countable_image countable_SIGMA countable_UN)
show "\<forall>b\<in>K. open b" by (auto simp: K_def)
next
fix T x
assume T: "open T" "x \<in> T" and x: "x \<in> s"
from openE[OF T] obtain e where "0 < e" "ball x e \<subseteq> T"
by auto
then have "0 < e / 2" "ball x (e / 2) \<subseteq> T"
by auto
from Rats_dense_in_real[OF \<open>0 < e / 2\<close>] obtain r where "r \<in> \<rat>" "0 < r" "r < e / 2"
by auto
from f[rule_format, of r] \<open>0 < r\<close> \<open>x \<in> s\<close> obtain k where "k \<in> f r" "x \<in> ball k r"
by auto
from \<open>r \<in> \<rat>\<close> \<open>0 < r\<close> \<open>k \<in> f r\<close> have "ball k r \<in> K"
by (auto simp: K_def)
then show "\<exists>b\<in>K. x \<in> b \<and> b \<inter> s \<subseteq> T"
proof (rule bexI[rotated], safe)
fix y
assume "y \<in> ball k r"
with \<open>r < e / 2\<close> \<open>x \<in> ball k r\<close> have "dist x y < e"
by (intro dist_triangle_half_r [of k _ e]) (auto simp: dist_commute)
with \<open>ball x e \<subseteq> T\<close> show "y \<in> T"
by auto
next
show "x \<in> ball k r" by fact
qed
qed
qed
lemma compact_eq_seq_compact_metric:
"compact (s :: 'a::metric_space set) \<longleftrightarrow> seq_compact s"
using compact_imp_seq_compact seq_compact_imp_heine_borel by blast
lemma compact_def: \<comment>\<open>this is the definition of compactness in HOL Light\<close>
"compact (S :: 'a::metric_space set) \<longleftrightarrow>
(\<forall>f. (\<forall>n. f n \<in> S) \<longrightarrow> (\<exists>l\<in>S. \<exists>r::nat\<Rightarrow>nat. strict_mono r \<and> (f \<circ> r) \<longlonglongrightarrow> l))"
unfolding compact_eq_seq_compact_metric seq_compact_def by auto
subsubsection \<open>Complete the chain of compactness variants\<close>
lemma compact_eq_bolzano_weierstrass:
fixes s :: "'a::metric_space set"
shows "compact s \<longleftrightarrow> (\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t))"
(is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
using heine_borel_imp_bolzano_weierstrass[of s] by auto
next
assume ?rhs
then show ?lhs
unfolding compact_eq_seq_compact_metric by (rule bolzano_weierstrass_imp_seq_compact)
qed
lemma bolzano_weierstrass_imp_bounded:
"\<forall>t. infinite t \<and> t \<subseteq> s \<longrightarrow> (\<exists>x \<in> s. x islimpt t) \<Longrightarrow> bounded s"
using compact_imp_bounded unfolding compact_eq_bolzano_weierstrass .
subsection \<open>Metric spaces with the Heine-Borel property\<close>
text \<open>
A metric space (or topological vector space) is said to have the
Heine-Borel property if every closed and bounded subset is compact.
\<close>
class heine_borel = metric_space +
assumes bounded_imp_convergent_subsequence:
"bounded (range f) \<Longrightarrow> \<exists>l r. strict_mono (r::nat\<Rightarrow>nat) \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
lemma bounded_closed_imp_seq_compact:
fixes s::"'a::heine_borel set"
assumes "bounded s"
and "closed s"
shows "seq_compact s"
proof (unfold seq_compact_def, clarify)
fix f :: "nat \<Rightarrow> 'a"
assume f: "\<forall>n. f n \<in> s"
with \<open>bounded s\<close> have "bounded (range f)"
by (auto intro: bounded_subset)
obtain l r where r: "strict_mono (r :: nat \<Rightarrow> nat)" and l: "((f \<circ> r) \<longlongrightarrow> l) sequentially"
using bounded_imp_convergent_subsequence [OF \<open>bounded (range f)\<close>] by auto
from f have fr: "\<forall>n. (f \<circ> r) n \<in> s"
by simp
have "l \<in> s" using \<open>closed s\<close> fr l
by (rule closed_sequentially)
show "\<exists>l\<in>s. \<exists>r. strict_mono r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
using \<open>l \<in> s\<close> r l by blast
qed
lemma compact_eq_bounded_closed:
fixes s :: "'a::heine_borel set"
shows "compact s \<longleftrightarrow> bounded s \<and> closed s"
(is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
using compact_imp_closed compact_imp_bounded
by blast
next
assume ?rhs
then show ?lhs
using bounded_closed_imp_seq_compact[of s]
unfolding compact_eq_seq_compact_metric
by auto
qed
lemma compact_closure [simp]:
fixes S :: "'a::heine_borel set"
shows "compact(closure S) \<longleftrightarrow> bounded S"
by (meson bounded_closure bounded_subset closed_closure closure_subset compact_eq_bounded_closed)
lemma compact_components:
fixes s :: "'a::heine_borel set"
shows "\<lbrakk>compact s; c \<in> components s\<rbrakk> \<Longrightarrow> compact c"
by (meson bounded_subset closed_components in_components_subset compact_eq_bounded_closed)
lemma not_compact_UNIV[simp]:
fixes s :: "'a::{real_normed_vector,perfect_space,heine_borel} set"
shows "~ compact (UNIV::'a set)"
by (simp add: compact_eq_bounded_closed)
instance real :: heine_borel
proof
fix f :: "nat \<Rightarrow> real"
assume f: "bounded (range f)"
obtain r :: "nat \<Rightarrow> nat" where r: "strict_mono r" "monoseq (f \<circ> r)"
unfolding comp_def by (metis seq_monosub)
then have "Bseq (f \<circ> r)"
unfolding Bseq_eq_bounded using f by (force intro: bounded_subset)
with r show "\<exists>l r. strict_mono r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
using Bseq_monoseq_convergent[of "f \<circ> r"] by (auto simp: convergent_def)
qed
lemma compact_lemma_general:
fixes f :: "nat \<Rightarrow> 'a"
fixes proj::"'a \<Rightarrow> 'b \<Rightarrow> 'c::heine_borel" (infixl "proj" 60)
fixes unproj:: "('b \<Rightarrow> 'c) \<Rightarrow> 'a"
assumes finite_basis: "finite basis"
assumes bounded_proj: "\<And>k. k \<in> basis \<Longrightarrow> bounded ((\<lambda>x. x proj k) ` range f)"
assumes proj_unproj: "\<And>e k. k \<in> basis \<Longrightarrow> (unproj e) proj k = e k"
assumes unproj_proj: "\<And>x. unproj (\<lambda>k. x proj k) = x"
shows "\<forall>d\<subseteq>basis. \<exists>l::'a. \<exists> r::nat\<Rightarrow>nat.
strict_mono r \<and> (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) proj i) (l proj i) < e) sequentially)"
proof safe
fix d :: "'b set"
assume d: "d \<subseteq> basis"
with finite_basis have "finite d"
by (blast intro: finite_subset)
from this d show "\<exists>l::'a. \<exists>r::nat\<Rightarrow>nat. strict_mono r \<and>
(\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) proj i) (l proj i) < e) sequentially)"
proof (induct d)
case empty
then show ?case
unfolding strict_mono_def by auto
next
case (insert k d)
have k[intro]: "k \<in> basis"
using insert by auto
have s': "bounded ((\<lambda>x. x proj k) ` range f)"
using k
by (rule bounded_proj)
obtain l1::"'a" and r1 where r1: "strict_mono r1"
and lr1: "\<forall>e > 0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) proj i) (l1 proj i) < e) sequentially"
using insert(3) using insert(4) by auto
have f': "\<forall>n. f (r1 n) proj k \<in> (\<lambda>x. x proj k) ` range f"
by simp
have "bounded (range (\<lambda>i. f (r1 i) proj k))"
by (metis (lifting) bounded_subset f' image_subsetI s')
then obtain l2 r2 where r2:"strict_mono r2" and lr2:"((\<lambda>i. f (r1 (r2 i)) proj k) \<longlongrightarrow> l2) sequentially"
using bounded_imp_convergent_subsequence[of "\<lambda>i. f (r1 i) proj k"]
by (auto simp: o_def)
define r where "r = r1 \<circ> r2"
have r:"strict_mono r"
using r1 and r2 unfolding r_def o_def strict_mono_def by auto
moreover
define l where "l = unproj (\<lambda>i. if i = k then l2 else l1 proj i)"
{
fix e::real
assume "e > 0"
from lr1 \<open>e > 0\<close> have N1: "eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) proj i) (l1 proj i) < e) sequentially"
by blast
from lr2 \<open>e > 0\<close> have N2:"eventually (\<lambda>n. dist (f (r1 (r2 n)) proj k) l2 < e) sequentially"
by (rule tendstoD)
from r2 N1 have N1': "eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 (r2 n)) proj i) (l1 proj i) < e) sequentially"
by (rule eventually_subseq)
have "eventually (\<lambda>n. \<forall>i\<in>(insert k d). dist (f (r n) proj i) (l proj i) < e) sequentially"
using N1' N2
by eventually_elim (insert insert.prems, auto simp: l_def r_def o_def proj_unproj)
}
ultimately show ?case by auto
qed
qed
lemma compact_lemma:
fixes f :: "nat \<Rightarrow> 'a::euclidean_space"
assumes "bounded (range f)"
shows "\<forall>d\<subseteq>Basis. \<exists>l::'a. \<exists> r.
strict_mono r \<and> (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) \<bullet> i) (l \<bullet> i) < e) sequentially)"
by (rule compact_lemma_general[where unproj="\<lambda>e. \<Sum>i\<in>Basis. e i *\<^sub>R i"])
(auto intro!: assms bounded_linear_inner_left bounded_linear_image
simp: euclidean_representation)
instance euclidean_space \<subseteq> heine_borel
proof
fix f :: "nat \<Rightarrow> 'a"
assume f: "bounded (range f)"
then obtain l::'a and r where r: "strict_mono r"
and l: "\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>Basis. dist (f (r n) \<bullet> i) (l \<bullet> i) < e) sequentially"
using compact_lemma [OF f] by blast
{
fix e::real
assume "e > 0"
hence "e / real_of_nat DIM('a) > 0" by (simp add: DIM_positive)
with l have "eventually (\<lambda>n. \<forall>i\<in>Basis. dist (f (r n) \<bullet> i) (l \<bullet> i) < e / (real_of_nat DIM('a))) sequentially"
by simp
moreover
{
fix n
assume n: "\<forall>i\<in>Basis. dist (f (r n) \<bullet> i) (l \<bullet> i) < e / (real_of_nat DIM('a))"
have "dist (f (r n)) l \<le> (\<Sum>i\<in>Basis. dist (f (r n) \<bullet> i) (l \<bullet> i))"
apply (subst euclidean_dist_l2)
using zero_le_dist
apply (rule setL2_le_sum)
done
also have "\<dots> < (\<Sum>i\<in>(Basis::'a set). e / (real_of_nat DIM('a)))"
apply (rule sum_strict_mono)
using n
apply auto
done
finally have "dist (f (r n)) l < e"
by auto
}
ultimately have "eventually (\<lambda>n. dist (f (r n)) l < e) sequentially"
by (rule eventually_mono)
}
then have *: "((f \<circ> r) \<longlongrightarrow> l) sequentially"
unfolding o_def tendsto_iff by simp
with r show "\<exists>l r. strict_mono r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
by auto
qed
lemma bounded_fst: "bounded s \<Longrightarrow> bounded (fst ` s)"
unfolding bounded_def
by (metis (erased, hide_lams) dist_fst_le image_iff order_trans)
lemma bounded_snd: "bounded s \<Longrightarrow> bounded (snd ` s)"
unfolding bounded_def
by (metis (no_types, hide_lams) dist_snd_le image_iff order.trans)
instance prod :: (heine_borel, heine_borel) heine_borel
proof
fix f :: "nat \<Rightarrow> 'a \<times> 'b"
assume f: "bounded (range f)"
then have "bounded (fst ` range f)"
by (rule bounded_fst)
then have s1: "bounded (range (fst \<circ> f))"
by (simp add: image_comp)
obtain l1 r1 where r1: "strict_mono r1" and l1: "(\<lambda>n. fst (f (r1 n))) \<longlonglongrightarrow> l1"
using bounded_imp_convergent_subsequence [OF s1] unfolding o_def by fast
from f have s2: "bounded (range (snd \<circ> f \<circ> r1))"
by (auto simp add: image_comp intro: bounded_snd bounded_subset)
obtain l2 r2 where r2: "strict_mono r2" and l2: "((\<lambda>n. snd (f (r1 (r2 n)))) \<longlongrightarrow> l2) sequentially"
using bounded_imp_convergent_subsequence [OF s2]
unfolding o_def by fast
have l1': "((\<lambda>n. fst (f (r1 (r2 n)))) \<longlongrightarrow> l1) sequentially"
using LIMSEQ_subseq_LIMSEQ [OF l1 r2] unfolding o_def .
have l: "((f \<circ> (r1 \<circ> r2)) \<longlongrightarrow> (l1, l2)) sequentially"
using tendsto_Pair [OF l1' l2] unfolding o_def by simp
have r: "strict_mono (r1 \<circ> r2)"
using r1 r2 unfolding strict_mono_def by simp
show "\<exists>l r. strict_mono r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
using l r by fast
qed
subsubsection \<open>Intersecting chains of compact sets\<close>
proposition bounded_closed_chain:
fixes \<F> :: "'a::heine_borel set set"
assumes "B \<in> \<F>" "bounded B" and \<F>: "\<And>S. S \<in> \<F> \<Longrightarrow> closed S" and "{} \<notin> \<F>"
and chain: "\<And>S T. S \<in> \<F> \<and> T \<in> \<F> \<Longrightarrow> S \<subseteq> T \<or> T \<subseteq> S"
shows "\<Inter>\<F> \<noteq> {}"
proof -
have "B \<inter> \<Inter>\<F> \<noteq> {}"
proof (rule compact_imp_fip)
show "compact B" "\<And>T. T \<in> \<F> \<Longrightarrow> closed T"
by (simp_all add: assms compact_eq_bounded_closed)
show "\<lbrakk>finite \<G>; \<G> \<subseteq> \<F>\<rbrakk> \<Longrightarrow> B \<inter> \<Inter>\<G> \<noteq> {}" for \<G>
proof (induction \<G> rule: finite_induct)
case empty
with assms show ?case by force
next
case (insert U \<G>)
then have "U \<in> \<F>" and ne: "B \<inter> \<Inter>\<G> \<noteq> {}" by auto
then consider "B \<subseteq> U" | "U \<subseteq> B"
using \<open>B \<in> \<F>\<close> chain by blast
then show ?case
proof cases
case 1
then show ?thesis
using Int_left_commute ne by auto
next
case 2
have "U \<noteq> {}"
using \<open>U \<in> \<F>\<close> \<open>{} \<notin> \<F>\<close> by blast
moreover
have False if "\<And>x. x \<in> U \<Longrightarrow> \<exists>Y\<in>\<G>. x \<notin> Y"
proof -
have "\<And>x. x \<in> U \<Longrightarrow> \<exists>Y\<in>\<G>. Y \<subseteq> U"
by (metis chain contra_subsetD insert.prems insert_subset that)
then obtain Y where "Y \<in> \<G>" "Y \<subseteq> U"
by (metis all_not_in_conv \<open>U \<noteq> {}\<close>)
moreover obtain x where "x \<in> \<Inter>\<G>"
by (metis Int_emptyI ne)
ultimately show ?thesis
by (metis Inf_lower subset_eq that)
qed
with 2 show ?thesis
by blast
qed
qed
qed
then show ?thesis by blast
qed
corollary compact_chain:
fixes \<F> :: "'a::heine_borel set set"
assumes "\<And>S. S \<in> \<F> \<Longrightarrow> compact S" "{} \<notin> \<F>"
"\<And>S T. S \<in> \<F> \<and> T \<in> \<F> \<Longrightarrow> S \<subseteq> T \<or> T \<subseteq> S"
shows "\<Inter> \<F> \<noteq> {}"
proof (cases "\<F> = {}")
case True
then show ?thesis by auto
next
case False
show ?thesis
by (metis False all_not_in_conv assms compact_imp_bounded compact_imp_closed bounded_closed_chain)
qed
lemma compact_nest:
fixes F :: "'a::linorder \<Rightarrow> 'b::heine_borel set"
assumes F: "\<And>n. compact(F n)" "\<And>n. F n \<noteq> {}" and mono: "\<And>m n. m \<le> n \<Longrightarrow> F n \<subseteq> F m"
shows "\<Inter>range F \<noteq> {}"
proof -
have *: "\<And>S T. S \<in> range F \<and> T \<in> range F \<Longrightarrow> S \<subseteq> T \<or> T \<subseteq> S"
by (metis mono image_iff le_cases)
show ?thesis
apply (rule compact_chain [OF _ _ *])
using F apply (blast intro: dest: *)+
done
qed
subsubsection \<open>Completeness\<close>
lemma (in metric_space) completeI:
assumes "\<And>f. \<forall>n. f n \<in> s \<Longrightarrow> Cauchy f \<Longrightarrow> \<exists>l\<in>s. f \<longlonglongrightarrow> l"
shows "complete s"
using assms unfolding complete_def by fast
lemma (in metric_space) completeE:
assumes "complete s" and "\<forall>n. f n \<in> s" and "Cauchy f"
obtains l where "l \<in> s" and "f \<longlonglongrightarrow> l"
using assms unfolding complete_def by fast
(* TODO: generalize to uniform spaces *)
lemma compact_imp_complete:
fixes s :: "'a::metric_space set"
assumes "compact s"
shows "complete s"
proof -
{
fix f
assume as: "(\<forall>n::nat. f n \<in> s)" "Cauchy f"
from as(1) obtain l r where lr: "l\<in>s" "strict_mono r" "(f \<circ> r) \<longlonglongrightarrow> l"
using assms unfolding compact_def by blast
note lr' = seq_suble [OF lr(2)]
{
fix e :: real
assume "e > 0"
from as(2) obtain N where N:"\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (f m) (f n) < e/2"
unfolding cauchy_def
using \<open>e > 0\<close>
apply (erule_tac x="e/2" in allE)
apply auto
done
from lr(3)[unfolded lim_sequentially, THEN spec[where x="e/2"]]
obtain M where M:"\<forall>n\<ge>M. dist ((f \<circ> r) n) l < e/2"
using \<open>e > 0\<close> by auto
{
fix n :: nat
assume n: "n \<ge> max N M"
have "dist ((f \<circ> r) n) l < e/2"
using n M by auto
moreover have "r n \<ge> N"
using lr'[of n] n by auto
then have "dist (f n) ((f \<circ> r) n) < e / 2"
using N and n by auto
ultimately have "dist (f n) l < e"
using dist_triangle_half_r[of "f (r n)" "f n" e l]
by (auto simp add: dist_commute)
}
then have "\<exists>N. \<forall>n\<ge>N. dist (f n) l < e" by blast
}
then have "\<exists>l\<in>s. (f \<longlongrightarrow> l) sequentially" using \<open>l\<in>s\<close>
unfolding lim_sequentially by auto
}
then show ?thesis unfolding complete_def by auto
qed
lemma nat_approx_posE:
fixes e::real
assumes "0 < e"
obtains n :: nat where "1 / (Suc n) < e"
proof atomize_elim
have "1 / real (Suc (nat \<lceil>1/e\<rceil>)) < 1 / \<lceil>1/e\<rceil>"
by (rule divide_strict_left_mono) (auto simp: \<open>0 < e\<close>)
also have "1 / \<lceil>1/e\<rceil> \<le> 1 / (1/e)"
by (rule divide_left_mono) (auto simp: \<open>0 < e\<close> ceiling_correct)
also have "\<dots> = e" by simp
finally show "\<exists>n. 1 / real (Suc n) < e" ..
qed
lemma compact_eq_totally_bounded:
"compact s \<longleftrightarrow> complete s \<and> (\<forall>e>0. \<exists>k. finite k \<and> s \<subseteq> (\<Union>x\<in>k. ball x e))"
(is "_ \<longleftrightarrow> ?rhs")
proof
assume assms: "?rhs"
then obtain k where k: "\<And>e. 0 < e \<Longrightarrow> finite (k e)" "\<And>e. 0 < e \<Longrightarrow> s \<subseteq> (\<Union>x\<in>k e. ball x e)"
by (auto simp: choice_iff')
show "compact s"
proof cases
assume "s = {}"
then show "compact s" by (simp add: compact_def)
next
assume "s \<noteq> {}"
show ?thesis
unfolding compact_def
proof safe
fix f :: "nat \<Rightarrow> 'a"
assume f: "\<forall>n. f n \<in> s"
define e where "e n = 1 / (2 * Suc n)" for n
then have [simp]: "\<And>n. 0 < e n" by auto
define B where "B n U = (SOME b. infinite {n. f n \<in> b} \<and> (\<exists>x. b \<subseteq> ball x (e n) \<inter> U))" for n U
{
fix n U
assume "infinite {n. f n \<in> U}"
then have "\<exists>b\<in>k (e n). infinite {i\<in>{n. f n \<in> U}. f i \<in> ball b (e n)}"
using k f by (intro pigeonhole_infinite_rel) (auto simp: subset_eq)
then obtain a where
"a \<in> k (e n)"
"infinite {i \<in> {n. f n \<in> U}. f i \<in> ball a (e n)}" ..
then have "\<exists>b. infinite {i. f i \<in> b} \<and> (\<exists>x. b \<subseteq> ball x (e n) \<inter> U)"
by (intro exI[of _ "ball a (e n) \<inter> U"] exI[of _ a]) (auto simp: ac_simps)
from someI_ex[OF this]
have "infinite {i. f i \<in> B n U}" "\<exists>x. B n U \<subseteq> ball x (e n) \<inter> U"
unfolding B_def by auto
}
note B = this
define F where "F = rec_nat (B 0 UNIV) B"
{
fix n
have "infinite {i. f i \<in> F n}"
by (induct n) (auto simp: F_def B)
}
then have F: "\<And>n. \<exists>x. F (Suc n) \<subseteq> ball x (e n) \<inter> F n"
using B by (simp add: F_def)
then have F_dec: "\<And>m n. m \<le> n \<Longrightarrow> F n \<subseteq> F m"
using decseq_SucI[of F] by (auto simp: decseq_def)
obtain sel where sel: "\<And>k i. i < sel k i" "\<And>k i. f (sel k i) \<in> F k"
proof (atomize_elim, unfold all_conj_distrib[symmetric], intro choice allI)
fix k i
have "infinite ({n. f n \<in> F k} - {.. i})"
using \<open>infinite {n. f n \<in> F k}\<close> by auto
from infinite_imp_nonempty[OF this]
show "\<exists>x>i. f x \<in> F k"
by (simp add: set_eq_iff not_le conj_commute)
qed
define t where "t = rec_nat (sel 0 0) (\<lambda>n i. sel (Suc n) i)"
have "strict_mono t"
unfolding strict_mono_Suc_iff by (simp add: t_def sel)
moreover have "\<forall>i. (f \<circ> t) i \<in> s"
using f by auto
moreover
{
fix n
have "(f \<circ> t) n \<in> F n"
by (cases n) (simp_all add: t_def sel)
}
note t = this
have "Cauchy (f \<circ> t)"
proof (safe intro!: metric_CauchyI exI elim!: nat_approx_posE)
fix r :: real and N n m
assume "1 / Suc N < r" "Suc N \<le> n" "Suc N \<le> m"
then have "(f \<circ> t) n \<in> F (Suc N)" "(f \<circ> t) m \<in> F (Suc N)" "2 * e N < r"
using F_dec t by (auto simp: e_def field_simps of_nat_Suc)
with F[of N] obtain x where "dist x ((f \<circ> t) n) < e N" "dist x ((f \<circ> t) m) < e N"
by (auto simp: subset_eq)
with dist_triangle[of "(f \<circ> t) m" "(f \<circ> t) n" x] \<open>2 * e N < r\<close>
show "dist ((f \<circ> t) m) ((f \<circ> t) n) < r"
by (simp add: dist_commute)
qed
ultimately show "\<exists>l\<in>s. \<exists>r. strict_mono r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
using assms unfolding complete_def by blast
qed
qed
qed (metis compact_imp_complete compact_imp_seq_compact seq_compact_imp_totally_bounded)
lemma cauchy_imp_bounded:
assumes "Cauchy s"
shows "bounded (range s)"
proof -
from assms obtain N :: nat where "\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < 1"
unfolding cauchy_def
apply (erule_tac x= 1 in allE)
apply auto
done
then have N:"\<forall>n. N \<le> n \<longrightarrow> dist (s N) (s n) < 1" by auto
moreover
have "bounded (s ` {0..N})"
using finite_imp_bounded[of "s ` {1..N}"] by auto
then obtain a where a:"\<forall>x\<in>s ` {0..N}. dist (s N) x \<le> a"
unfolding bounded_any_center [where a="s N"] by auto
ultimately show "?thesis"
unfolding bounded_any_center [where a="s N"]
apply (rule_tac x="max a 1" in exI)
apply auto
apply (erule_tac x=y in allE)
apply (erule_tac x=y in ballE)
apply auto
done
qed
instance heine_borel < complete_space
proof
fix f :: "nat \<Rightarrow> 'a" assume "Cauchy f"
then have "bounded (range f)"
by (rule cauchy_imp_bounded)
then have "compact (closure (range f))"
unfolding compact_eq_bounded_closed by auto
then have "complete (closure (range f))"
by (rule compact_imp_complete)
moreover have "\<forall>n. f n \<in> closure (range f)"
using closure_subset [of "range f"] by auto
ultimately have "\<exists>l\<in>closure (range f). (f \<longlongrightarrow> l) sequentially"
using \<open>Cauchy f\<close> unfolding complete_def by auto
then show "convergent f"
unfolding convergent_def by auto
qed
instance euclidean_space \<subseteq> banach ..
lemma complete_UNIV: "complete (UNIV :: ('a::complete_space) set)"
proof (rule completeI)
fix f :: "nat \<Rightarrow> 'a" assume "Cauchy f"
then have "convergent f" by (rule Cauchy_convergent)
then show "\<exists>l\<in>UNIV. f \<longlonglongrightarrow> l" unfolding convergent_def by simp
qed
lemma complete_imp_closed:
fixes S :: "'a::metric_space set"
assumes "complete S"
shows "closed S"
proof (unfold closed_sequential_limits, clarify)
fix f x assume "\<forall>n. f n \<in> S" and "f \<longlonglongrightarrow> x"
from \<open>f \<longlonglongrightarrow> x\<close> have "Cauchy f"
by (rule LIMSEQ_imp_Cauchy)
with \<open>complete S\<close> and \<open>\<forall>n. f n \<in> S\<close> obtain l where "l \<in> S" and "f \<longlonglongrightarrow> l"
by (rule completeE)
from \<open>f \<longlonglongrightarrow> x\<close> and \<open>f \<longlonglongrightarrow> l\<close> have "x = l"
by (rule LIMSEQ_unique)
with \<open>l \<in> S\<close> show "x \<in> S"
by simp
qed
lemma complete_Int_closed:
fixes S :: "'a::metric_space set"
assumes "complete S" and "closed t"
shows "complete (S \<inter> t)"
proof (rule completeI)
fix f assume "\<forall>n. f n \<in> S \<inter> t" and "Cauchy f"
then have "\<forall>n. f n \<in> S" and "\<forall>n. f n \<in> t"
by simp_all
from \<open>complete S\<close> obtain l where "l \<in> S" and "f \<longlonglongrightarrow> l"
using \<open>\<forall>n. f n \<in> S\<close> and \<open>Cauchy f\<close> by (rule completeE)
from \<open>closed t\<close> and \<open>\<forall>n. f n \<in> t\<close> and \<open>f \<longlonglongrightarrow> l\<close> have "l \<in> t"
by (rule closed_sequentially)
with \<open>l \<in> S\<close> and \<open>f \<longlonglongrightarrow> l\<close> show "\<exists>l\<in>S \<inter> t. f \<longlonglongrightarrow> l"
by fast
qed
lemma complete_closed_subset:
fixes S :: "'a::metric_space set"
assumes "closed S" and "S \<subseteq> t" and "complete t"
shows "complete S"
using assms complete_Int_closed [of t S] by (simp add: Int_absorb1)
lemma complete_eq_closed:
fixes S :: "('a::complete_space) set"
shows "complete S \<longleftrightarrow> closed S"
proof
assume "closed S" then show "complete S"
using subset_UNIV complete_UNIV by (rule complete_closed_subset)
next
assume "complete S" then show "closed S"
by (rule complete_imp_closed)
qed
lemma convergent_eq_Cauchy:
fixes S :: "nat \<Rightarrow> 'a::complete_space"
shows "(\<exists>l. (S \<longlongrightarrow> l) sequentially) \<longleftrightarrow> Cauchy S"
unfolding Cauchy_convergent_iff convergent_def ..
lemma convergent_imp_bounded:
fixes S :: "nat \<Rightarrow> 'a::metric_space"
shows "(S \<longlongrightarrow> l) sequentially \<Longrightarrow> bounded (range S)"
by (intro cauchy_imp_bounded LIMSEQ_imp_Cauchy)
lemma compact_cball[simp]:
fixes x :: "'a::heine_borel"
shows "compact (cball x e)"
using compact_eq_bounded_closed bounded_cball closed_cball
by blast
lemma compact_frontier_bounded[intro]:
fixes S :: "'a::heine_borel set"
shows "bounded S \<Longrightarrow> compact (frontier S)"
unfolding frontier_def
using compact_eq_bounded_closed
by blast
lemma compact_frontier[intro]:
fixes S :: "'a::heine_borel set"
shows "compact S \<Longrightarrow> compact (frontier S)"
using compact_eq_bounded_closed compact_frontier_bounded
by blast
corollary compact_sphere [simp]:
fixes a :: "'a::{real_normed_vector,perfect_space,heine_borel}"
shows "compact (sphere a r)"
using compact_frontier [of "cball a r"] by simp
corollary bounded_sphere [simp]:
fixes a :: "'a::{real_normed_vector,perfect_space,heine_borel}"
shows "bounded (sphere a r)"
by (simp add: compact_imp_bounded)
corollary closed_sphere [simp]:
fixes a :: "'a::{real_normed_vector,perfect_space,heine_borel}"
shows "closed (sphere a r)"
by (simp add: compact_imp_closed)
lemma frontier_subset_compact:
fixes S :: "'a::heine_borel set"
shows "compact S \<Longrightarrow> frontier S \<subseteq> S"
using frontier_subset_closed compact_eq_bounded_closed
by blast
subsection\<open>Relations among convergence and absolute convergence for power series.\<close>
lemma summable_imp_bounded:
fixes f :: "nat \<Rightarrow> 'a::real_normed_vector"
shows "summable f \<Longrightarrow> bounded (range f)"
by (frule summable_LIMSEQ_zero) (simp add: convergent_imp_bounded)
lemma summable_imp_sums_bounded:
"summable f \<Longrightarrow> bounded (range (\<lambda>n. sum f {..<n}))"
by (auto simp: summable_def sums_def dest: convergent_imp_bounded)
lemma power_series_conv_imp_absconv_weak:
fixes a:: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}" and w :: 'a
assumes sum: "summable (\<lambda>n. a n * z ^ n)" and no: "norm w < norm z"
shows "summable (\<lambda>n. of_real(norm(a n)) * w ^ n)"
proof -
obtain M where M: "\<And>x. norm (a x * z ^ x) \<le> M"
using summable_imp_bounded [OF sum] by (force simp add: bounded_iff)
then have *: "summable (\<lambda>n. norm (a n) * norm w ^ n)"
by (rule_tac M=M in Abel_lemma) (auto simp: norm_mult norm_power intro: no)
show ?thesis
apply (rule series_comparison_complex [of "(\<lambda>n. of_real(norm(a n) * norm w ^ n))"])
apply (simp only: summable_complex_of_real *)
apply (auto simp: norm_mult norm_power)
done
qed
subsection \<open>Bounded closed nest property (proof does not use Heine-Borel)\<close>
lemma bounded_closed_nest:
fixes s :: "nat \<Rightarrow> ('a::heine_borel) set"
assumes "\<forall>n. closed (s n)"
and "\<forall>n. s n \<noteq> {}"
and "\<forall>m n. m \<le> n \<longrightarrow> s n \<subseteq> s m"
and "bounded (s 0)"
shows "\<exists>a. \<forall>n. a \<in> s n"
proof -
from assms(2) obtain x where x: "\<forall>n. x n \<in> s n"
using choice[of "\<lambda>n x. x \<in> s n"] by auto
from assms(4,1) have "seq_compact (s 0)"
by (simp add: bounded_closed_imp_seq_compact)
then obtain l r where lr: "l \<in> s 0" "strict_mono r" "(x \<circ> r) \<longlonglongrightarrow> l"
using x and assms(3) unfolding seq_compact_def by blast
have "\<forall>n. l \<in> s n"
proof
fix n :: nat
have "closed (s n)"
using assms(1) by simp
moreover have "\<forall>i. (x \<circ> r) i \<in> s i"
using x and assms(3) and lr(2) [THEN seq_suble] by auto
then have "\<forall>i. (x \<circ> r) (i + n) \<in> s n"
using assms(3) by (fast intro!: le_add2)
moreover have "(\<lambda>i. (x \<circ> r) (i + n)) \<longlonglongrightarrow> l"
using lr(3) by (rule LIMSEQ_ignore_initial_segment)
ultimately show "l \<in> s n"
by (rule closed_sequentially)
qed
then show ?thesis ..
qed
text \<open>Decreasing case does not even need compactness, just completeness.\<close>
lemma decreasing_closed_nest:
fixes s :: "nat \<Rightarrow> ('a::complete_space) set"
assumes
"\<forall>n. closed (s n)"
"\<forall>n. s n \<noteq> {}"
"\<forall>m n. m \<le> n \<longrightarrow> s n \<subseteq> s m"
"\<forall>e>0. \<exists>n. \<forall>x\<in>s n. \<forall>y\<in>s n. dist x y < e"
shows "\<exists>a. \<forall>n. a \<in> s n"
proof -
have "\<forall>n. \<exists>x. x \<in> s n"
using assms(2) by auto
then have "\<exists>t. \<forall>n. t n \<in> s n"
using choice[of "\<lambda>n x. x \<in> s n"] by auto
then obtain t where t: "\<forall>n. t n \<in> s n" by auto
{
fix e :: real
assume "e > 0"
then obtain N where N:"\<forall>x\<in>s N. \<forall>y\<in>s N. dist x y < e"
using assms(4) by auto
{
fix m n :: nat
assume "N \<le> m \<and> N \<le> n"
then have "t m \<in> s N" "t n \<in> s N"
using assms(3) t unfolding subset_eq t by blast+
then have "dist (t m) (t n) < e"
using N by auto
}
then have "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (t m) (t n) < e"
by auto
}
then have "Cauchy t"
unfolding cauchy_def by auto
then obtain l where l:"(t \<longlongrightarrow> l) sequentially"
using complete_UNIV unfolding complete_def by auto
{
fix n :: nat
{
fix e :: real
assume "e > 0"
then obtain N :: nat where N: "\<forall>n\<ge>N. dist (t n) l < e"
using l[unfolded lim_sequentially] by auto
have "t (max n N) \<in> s n"
using assms(3)
unfolding subset_eq
apply (erule_tac x=n in allE)
apply (erule_tac x="max n N" in allE)
using t
apply auto
done
then have "\<exists>y\<in>s n. dist y l < e"
apply (rule_tac x="t (max n N)" in bexI)
using N
apply auto
done
}
then have "l \<in> s n"
using closed_approachable[of "s n" l] assms(1) by auto
}
then show ?thesis by auto
qed
text \<open>Strengthen it to the intersection actually being a singleton.\<close>
lemma decreasing_closed_nest_sing:
fixes s :: "nat \<Rightarrow> 'a::complete_space set"
assumes
"\<forall>n. closed(s n)"
"\<forall>n. s n \<noteq> {}"
"\<forall>m n. m \<le> n \<longrightarrow> s n \<subseteq> s m"
"\<forall>e>0. \<exists>n. \<forall>x \<in> (s n). \<forall> y\<in>(s n). dist x y < e"
shows "\<exists>a. \<Inter>(range s) = {a}"
proof -
obtain a where a: "\<forall>n. a \<in> s n"
using decreasing_closed_nest[of s] using assms by auto
{
fix b
assume b: "b \<in> \<Inter>(range s)"
{
fix e :: real
assume "e > 0"
then have "dist a b < e"
using assms(4) and b and a by blast
}
then have "dist a b = 0"
by (metis dist_eq_0_iff dist_nz less_le)
}
with a have "\<Inter>(range s) = {a}"
unfolding image_def by auto
then show ?thesis ..
qed
subsection \<open>Continuity\<close>
text\<open>Derive the epsilon-delta forms, which we often use as "definitions"\<close>
lemma continuous_within_eps_delta:
"continuous (at x within s) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. \<forall>x'\<in> s. dist x' x < d --> dist (f x') (f x) < e)"
unfolding continuous_within and Lim_within
apply auto
apply (metis dist_nz dist_self)
apply blast
done
corollary continuous_at_eps_delta:
"continuous (at x) f \<longleftrightarrow> (\<forall>e > 0. \<exists>d > 0. \<forall>x'. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)"
using continuous_within_eps_delta [of x UNIV f] by simp
lemma continuous_at_right_real_increasing:
fixes f :: "real \<Rightarrow> real"
assumes nondecF: "\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y"
shows "continuous (at_right a) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. f (a + d) - f a < e)"
apply (simp add: greaterThan_def dist_real_def continuous_within Lim_within_le)
apply (intro all_cong ex_cong)
apply safe
apply (erule_tac x="a + d" in allE)
apply simp
apply (simp add: nondecF field_simps)
apply (drule nondecF)
apply simp
done
lemma continuous_at_left_real_increasing:
assumes nondecF: "\<And> x y. x \<le> y \<Longrightarrow> f x \<le> ((f y) :: real)"
shows "(continuous (at_left (a :: real)) f) = (\<forall>e > 0. \<exists>delta > 0. f a - f (a - delta) < e)"
apply (simp add: lessThan_def dist_real_def continuous_within Lim_within_le)
apply (intro all_cong ex_cong)
apply safe
apply (erule_tac x="a - d" in allE)
apply simp
apply (simp add: nondecF field_simps)
apply (cut_tac x="a - d" and y="x" in nondecF)
apply simp_all
done
text\<open>Versions in terms of open balls.\<close>
lemma continuous_within_ball:
"continuous (at x within s) f \<longleftrightarrow>
(\<forall>e > 0. \<exists>d > 0. f ` (ball x d \<inter> s) \<subseteq> ball (f x) e)"
(is "?lhs = ?rhs")
proof
assume ?lhs
{
fix e :: real
assume "e > 0"
then obtain d where d: "d>0" "\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e"
using \<open>?lhs\<close>[unfolded continuous_within Lim_within] by auto
{
fix y
assume "y \<in> f ` (ball x d \<inter> s)"
then have "y \<in> ball (f x) e"
using d(2)
apply (auto simp add: dist_commute)
apply (erule_tac x=xa in ballE)
apply auto
using \<open>e > 0\<close>
apply auto
done
}
then have "\<exists>d>0. f ` (ball x d \<inter> s) \<subseteq> ball (f x) e"
using \<open>d > 0\<close>
unfolding subset_eq ball_def by (auto simp add: dist_commute)
}
then show ?rhs by auto
next
assume ?rhs
then show ?lhs
unfolding continuous_within Lim_within ball_def subset_eq
apply (auto simp add: dist_commute)
apply (erule_tac x=e in allE)
apply auto
done
qed
lemma continuous_at_ball:
"continuous (at x) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. f ` (ball x d) \<subseteq> ball (f x) e)" (is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball
apply auto
apply (erule_tac x=e in allE)
apply auto
apply (rule_tac x=d in exI)
apply auto
apply (erule_tac x=xa in allE)
apply (auto simp add: dist_commute)
done
next
assume ?rhs
then show ?lhs
unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball
apply auto
apply (erule_tac x=e in allE)
apply auto
apply (rule_tac x=d in exI)
apply auto
apply (erule_tac x="f xa" in allE)
apply (auto simp add: dist_commute)
done
qed
text\<open>Define setwise continuity in terms of limits within the set.\<close>
lemma continuous_on_iff:
"continuous_on s f \<longleftrightarrow>
(\<forall>x\<in>s. \<forall>e>0. \<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)"
unfolding continuous_on_def Lim_within
by (metis dist_pos_lt dist_self)
lemma continuous_within_E:
assumes "continuous (at x within s) f" "e>0"
obtains d where "d>0" "\<And>x'. \<lbrakk>x'\<in> s; dist x' x \<le> d\<rbrakk> \<Longrightarrow> dist (f x') (f x) < e"
using assms apply (simp add: continuous_within_eps_delta)
apply (drule spec [of _ e], clarify)
apply (rule_tac d="d/2" in that, auto)
done
lemma continuous_onI [intro?]:
assumes "\<And>x e. \<lbrakk>e > 0; x \<in> s\<rbrakk> \<Longrightarrow> \<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) \<le> e"
shows "continuous_on s f"
apply (simp add: continuous_on_iff, clarify)
apply (rule ex_forward [OF assms [OF half_gt_zero]], auto)
done
text\<open>Some simple consequential lemmas.\<close>
lemma continuous_onE:
assumes "continuous_on s f" "x\<in>s" "e>0"
obtains d where "d>0" "\<And>x'. \<lbrakk>x' \<in> s; dist x' x \<le> d\<rbrakk> \<Longrightarrow> dist (f x') (f x) < e"
using assms
apply (simp add: continuous_on_iff)
apply (elim ballE allE)
apply (auto intro: that [where d="d/2" for d])
done
lemma uniformly_continuous_onE:
assumes "uniformly_continuous_on s f" "0 < e"
obtains d where "d>0" "\<And>x x'. \<lbrakk>x\<in>s; x'\<in>s; dist x' x < d\<rbrakk> \<Longrightarrow> dist (f x') (f x) < e"
using assms
by (auto simp: uniformly_continuous_on_def)
lemma continuous_at_imp_continuous_within:
"continuous (at x) f \<Longrightarrow> continuous (at x within s) f"
unfolding continuous_within continuous_at using Lim_at_imp_Lim_at_within by auto
lemma Lim_trivial_limit: "trivial_limit net \<Longrightarrow> (f \<longlongrightarrow> l) net"
by simp
lemmas continuous_on = continuous_on_def \<comment> "legacy theorem name"
lemma continuous_within_subset:
"continuous (at x within s) f \<Longrightarrow> t \<subseteq> s \<Longrightarrow> continuous (at x within t) f"
unfolding continuous_within by(metis tendsto_within_subset)
lemma continuous_on_interior:
"continuous_on s f \<Longrightarrow> x \<in> interior s \<Longrightarrow> continuous (at x) f"
by (metis continuous_on_eq_continuous_at continuous_on_subset interiorE)
lemma continuous_on_eq:
"\<lbrakk>continuous_on s f; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> continuous_on s g"
unfolding continuous_on_def tendsto_def eventually_at_topological
by simp
text \<open>Characterization of various kinds of continuity in terms of sequences.\<close>
lemma continuous_within_sequentially:
fixes f :: "'a::metric_space \<Rightarrow> 'b::topological_space"
shows "continuous (at a within s) f \<longleftrightarrow>
(\<forall>x. (\<forall>n::nat. x n \<in> s) \<and> (x \<longlongrightarrow> a) sequentially
\<longrightarrow> ((f \<circ> x) \<longlongrightarrow> f a) sequentially)"
(is "?lhs = ?rhs")
proof
assume ?lhs
{
fix x :: "nat \<Rightarrow> 'a"
assume x: "\<forall>n. x n \<in> s" "\<forall>e>0. eventually (\<lambda>n. dist (x n) a < e) sequentially"
fix T :: "'b set"
assume "open T" and "f a \<in> T"
with \<open>?lhs\<close> obtain d where "d>0" and d:"\<forall>x\<in>s. 0 < dist x a \<and> dist x a < d \<longrightarrow> f x \<in> T"
unfolding continuous_within tendsto_def eventually_at by auto
have "eventually (\<lambda>n. dist (x n) a < d) sequentially"
using x(2) \<open>d>0\<close> by simp
then have "eventually (\<lambda>n. (f \<circ> x) n \<in> T) sequentially"
proof eventually_elim
case (elim n)
then show ?case
using d x(1) \<open>f a \<in> T\<close> by auto
qed
}
then show ?rhs
unfolding tendsto_iff tendsto_def by simp
next
assume ?rhs
then show ?lhs
unfolding continuous_within tendsto_def [where l="f a"]
by (simp add: sequentially_imp_eventually_within)
qed
lemma continuous_at_sequentially:
fixes f :: "'a::metric_space \<Rightarrow> 'b::topological_space"
shows "continuous (at a) f \<longleftrightarrow>
(\<forall>x. (x \<longlongrightarrow> a) sequentially --> ((f \<circ> x) \<longlongrightarrow> f a) sequentially)"
using continuous_within_sequentially[of a UNIV f] by simp
lemma continuous_on_sequentially:
fixes f :: "'a::metric_space \<Rightarrow> 'b::topological_space"
shows "continuous_on s f \<longleftrightarrow>
(\<forall>x. \<forall>a \<in> s. (\<forall>n. x(n) \<in> s) \<and> (x \<longlongrightarrow> a) sequentially
--> ((f \<circ> x) \<longlongrightarrow> f a) sequentially)"
(is "?lhs = ?rhs")
proof
assume ?rhs
then show ?lhs
using continuous_within_sequentially[of _ s f]
unfolding continuous_on_eq_continuous_within
by auto
next
assume ?lhs
then show ?rhs
unfolding continuous_on_eq_continuous_within
using continuous_within_sequentially[of _ s f]
by auto
qed
lemma uniformly_continuous_on_sequentially:
"uniformly_continuous_on s f \<longleftrightarrow> (\<forall>x y. (\<forall>n. x n \<in> s) \<and> (\<forall>n. y n \<in> s) \<and>
(\<lambda>n. dist (x n) (y n)) \<longlonglongrightarrow> 0 \<longrightarrow> (\<lambda>n. dist (f(x n)) (f(y n))) \<longlonglongrightarrow> 0)" (is "?lhs = ?rhs")
proof
assume ?lhs
{
fix x y
assume x: "\<forall>n. x n \<in> s"
and y: "\<forall>n. y n \<in> s"
and xy: "((\<lambda>n. dist (x n) (y n)) \<longlongrightarrow> 0) sequentially"
{
fix e :: real
assume "e > 0"
then obtain d where "d > 0" and d: "\<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e"
using \<open>?lhs\<close>[unfolded uniformly_continuous_on_def, THEN spec[where x=e]] by auto
obtain N where N: "\<forall>n\<ge>N. dist (x n) (y n) < d"
using xy[unfolded lim_sequentially dist_norm] and \<open>d>0\<close> by auto
{
fix n
assume "n\<ge>N"
then have "dist (f (x n)) (f (y n)) < e"
using N[THEN spec[where x=n]]
using d[THEN bspec[where x="x n"], THEN bspec[where x="y n"]]
using x and y
by (simp add: dist_commute)
}
then have "\<exists>N. \<forall>n\<ge>N. dist (f (x n)) (f (y n)) < e"
by auto
}
then have "((\<lambda>n. dist (f(x n)) (f(y n))) \<longlongrightarrow> 0) sequentially"
unfolding lim_sequentially and dist_real_def by auto
}
then show ?rhs by auto
next
assume ?rhs
{
assume "\<not> ?lhs"
then obtain e where "e > 0" "\<forall>d>0. \<exists>x\<in>s. \<exists>x'\<in>s. dist x' x < d \<and> \<not> dist (f x') (f x) < e"
unfolding uniformly_continuous_on_def by auto
then obtain fa where fa:
"\<forall>x. 0 < x \<longrightarrow> fst (fa x) \<in> s \<and> snd (fa x) \<in> s \<and> dist (fst (fa x)) (snd (fa x)) < x \<and> \<not> dist (f (fst (fa x))) (f (snd (fa x))) < e"
using choice[of "\<lambda>d x. d>0 \<longrightarrow> fst x \<in> s \<and> snd x \<in> s \<and> dist (snd x) (fst x) < d \<and> \<not> dist (f (snd x)) (f (fst x)) < e"]
unfolding Bex_def
by (auto simp add: dist_commute)
define x where "x n = fst (fa (inverse (real n + 1)))" for n
define y where "y n = snd (fa (inverse (real n + 1)))" for n
have xyn: "\<forall>n. x n \<in> s \<and> y n \<in> s"
and xy0: "\<forall>n. dist (x n) (y n) < inverse (real n + 1)"
and fxy:"\<forall>n. \<not> dist (f (x n)) (f (y n)) < e"
unfolding x_def and y_def using fa
by auto
{
fix e :: real
assume "e > 0"
then obtain N :: nat where "N \<noteq> 0" and N: "0 < inverse (real N) \<and> inverse (real N) < e"
unfolding real_arch_inverse[of e] by auto
{
fix n :: nat
assume "n \<ge> N"
then have "inverse (real n + 1) < inverse (real N)"
using of_nat_0_le_iff and \<open>N\<noteq>0\<close> by auto
also have "\<dots> < e" using N by auto
finally have "inverse (real n + 1) < e" by auto
then have "dist (x n) (y n) < e"
using xy0[THEN spec[where x=n]] by auto
}
then have "\<exists>N. \<forall>n\<ge>N. dist (x n) (y n) < e" by auto
}
then have "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (f (x n)) (f (y n)) < e"
using \<open>?rhs\<close>[THEN spec[where x=x], THEN spec[where x=y]] and xyn
unfolding lim_sequentially dist_real_def by auto
then have False using fxy and \<open>e>0\<close> by auto
}
then show ?lhs
unfolding uniformly_continuous_on_def by blast
qed
lemma continuous_closed_imp_Cauchy_continuous:
fixes S :: "('a::complete_space) set"
shows "\<lbrakk>continuous_on S f; closed S; Cauchy \<sigma>; \<And>n. (\<sigma> n) \<in> S\<rbrakk> \<Longrightarrow> Cauchy(f o \<sigma>)"
apply (simp add: complete_eq_closed [symmetric] continuous_on_sequentially)
by (meson LIMSEQ_imp_Cauchy complete_def)
text\<open>The usual transformation theorems.\<close>
lemma continuous_transform_within:
fixes f g :: "'a::metric_space \<Rightarrow> 'b::topological_space"
assumes "continuous (at x within s) f"
and "0 < d"
and "x \<in> s"
and "\<And>x'. \<lbrakk>x' \<in> s; dist x' x < d\<rbrakk> \<Longrightarrow> f x' = g x'"
shows "continuous (at x within s) g"
using assms
unfolding continuous_within
by (force simp add: intro: Lim_transform_within)
subsubsection \<open>Structural rules for pointwise continuity\<close>
lemma continuous_infdist[continuous_intros]:
assumes "continuous F f"
shows "continuous F (\<lambda>x. infdist (f x) A)"
using assms unfolding continuous_def by (rule tendsto_infdist)
lemma continuous_infnorm[continuous_intros]:
"continuous F f \<Longrightarrow> continuous F (\<lambda>x. infnorm (f x))"
unfolding continuous_def by (rule tendsto_infnorm)
lemma continuous_inner[continuous_intros]:
assumes "continuous F f"
and "continuous F g"
shows "continuous F (\<lambda>x. inner (f x) (g x))"
using assms unfolding continuous_def by (rule tendsto_inner)
lemmas continuous_at_inverse = isCont_inverse
subsubsection \<open>Structural rules for setwise continuity\<close>
lemma continuous_on_infnorm[continuous_intros]:
"continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. infnorm (f x))"
unfolding continuous_on by (fast intro: tendsto_infnorm)
lemma continuous_on_inner[continuous_intros]:
fixes g :: "'a::topological_space \<Rightarrow> 'b::real_inner"
assumes "continuous_on s f"
and "continuous_on s g"
shows "continuous_on s (\<lambda>x. inner (f x) (g x))"
using bounded_bilinear_inner assms
by (rule bounded_bilinear.continuous_on)
subsubsection \<open>Structural rules for uniform continuity\<close>
lemma uniformly_continuous_on_dist[continuous_intros]:
fixes f g :: "'a::metric_space \<Rightarrow> 'b::metric_space"
assumes "uniformly_continuous_on s f"
and "uniformly_continuous_on s g"
shows "uniformly_continuous_on s (\<lambda>x. dist (f x) (g x))"
proof -
{
fix a b c d :: 'b
have "\<bar>dist a b - dist c d\<bar> \<le> dist a c + dist b d"
using dist_triangle2 [of a b c] dist_triangle2 [of b c d]
using dist_triangle3 [of c d a] dist_triangle [of a d b]
by arith
} note le = this
{
fix x y
assume f: "(\<lambda>n. dist (f (x n)) (f (y n))) \<longlonglongrightarrow> 0"
assume g: "(\<lambda>n. dist (g (x n)) (g (y n))) \<longlonglongrightarrow> 0"
have "(\<lambda>n. \<bar>dist (f (x n)) (g (x n)) - dist (f (y n)) (g (y n))\<bar>) \<longlonglongrightarrow> 0"
by (rule Lim_transform_bound [OF _ tendsto_add_zero [OF f g]],
simp add: le)
}
then show ?thesis
using assms unfolding uniformly_continuous_on_sequentially
unfolding dist_real_def by simp
qed
lemma uniformly_continuous_on_norm[continuous_intros]:
fixes f :: "'a :: metric_space \<Rightarrow> 'b :: real_normed_vector"
assumes "uniformly_continuous_on s f"
shows "uniformly_continuous_on s (\<lambda>x. norm (f x))"
unfolding norm_conv_dist using assms
by (intro uniformly_continuous_on_dist uniformly_continuous_on_const)
lemma (in bounded_linear) uniformly_continuous_on[continuous_intros]:
fixes g :: "_::metric_space \<Rightarrow> _"
assumes "uniformly_continuous_on s g"
shows "uniformly_continuous_on s (\<lambda>x. f (g x))"
using assms unfolding uniformly_continuous_on_sequentially
unfolding dist_norm tendsto_norm_zero_iff diff[symmetric]
by (auto intro: tendsto_zero)
lemma uniformly_continuous_on_cmul[continuous_intros]:
fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
assumes "uniformly_continuous_on s f"
shows "uniformly_continuous_on s (\<lambda>x. c *\<^sub>R f(x))"
using bounded_linear_scaleR_right assms
by (rule bounded_linear.uniformly_continuous_on)
lemma dist_minus:
fixes x y :: "'a::real_normed_vector"
shows "dist (- x) (- y) = dist x y"
unfolding dist_norm minus_diff_minus norm_minus_cancel ..
lemma uniformly_continuous_on_minus[continuous_intros]:
fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s (\<lambda>x. - f x)"
unfolding uniformly_continuous_on_def dist_minus .
lemma uniformly_continuous_on_add[continuous_intros]:
fixes f g :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
assumes "uniformly_continuous_on s f"
and "uniformly_continuous_on s g"
shows "uniformly_continuous_on s (\<lambda>x. f x + g x)"
using assms
unfolding uniformly_continuous_on_sequentially
unfolding dist_norm tendsto_norm_zero_iff add_diff_add
by (auto intro: tendsto_add_zero)
lemma uniformly_continuous_on_diff[continuous_intros]:
fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
assumes "uniformly_continuous_on s f"
and "uniformly_continuous_on s g"
shows "uniformly_continuous_on s (\<lambda>x. f x - g x)"
using assms uniformly_continuous_on_add [of s f "- g"]
by (simp add: fun_Compl_def uniformly_continuous_on_minus)
lemmas continuous_at_compose = isCont_o
text \<open>Continuity in terms of open preimages.\<close>
lemma continuous_at_open:
"continuous (at x) f \<longleftrightarrow> (\<forall>t. open t \<and> f x \<in> t --> (\<exists>s. open s \<and> x \<in> s \<and> (\<forall>x' \<in> s. (f x') \<in> t)))"
unfolding continuous_within_topological [of x UNIV f]
unfolding imp_conjL
by (intro all_cong imp_cong ex_cong conj_cong refl) auto
lemma continuous_imp_tendsto:
assumes "continuous (at x0) f"
and "x \<longlonglongrightarrow> x0"
shows "(f \<circ> x) \<longlonglongrightarrow> (f x0)"
proof (rule topological_tendstoI)
fix S
assume "open S" "f x0 \<in> S"
then obtain T where T_def: "open T" "x0 \<in> T" "\<forall>x\<in>T. f x \<in> S"
using assms continuous_at_open by metis
then have "eventually (\<lambda>n. x n \<in> T) sequentially"
using assms T_def by (auto simp: tendsto_def)
then show "eventually (\<lambda>n. (f \<circ> x) n \<in> S) sequentially"
using T_def by (auto elim!: eventually_mono)
qed
lemma continuous_on_open:
"continuous_on s f \<longleftrightarrow>
(\<forall>t. openin (subtopology euclidean (f ` s)) t \<longrightarrow>
openin (subtopology euclidean s) {x \<in> s. f x \<in> t})"
unfolding continuous_on_open_invariant openin_open Int_def vimage_def Int_commute
by (simp add: imp_ex imageI conj_commute eq_commute cong: conj_cong)
lemma continuous_on_open_gen:
fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
assumes "f ` S \<subseteq> T"
shows "continuous_on S f \<longleftrightarrow>
(\<forall>U. openin (subtopology euclidean T) U
\<longrightarrow> openin (subtopology euclidean S) {x \<in> S. f x \<in> U})"
(is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
apply (auto simp: openin_euclidean_subtopology_iff continuous_on_iff)
by (metis assms image_subset_iff)
next
have ope: "openin (subtopology euclidean T) (ball y e \<inter> T)" for y e
by (simp add: Int_commute openin_open_Int)
assume ?rhs
then show ?lhs
apply (clarsimp simp add: continuous_on_iff)
apply (drule_tac x = "ball (f x) e \<inter> T" in spec)
apply (clarsimp simp add: ope openin_euclidean_subtopology_iff [of S])
by (metis (no_types, hide_lams) assms dist_commute dist_self image_subset_iff)
qed
lemma continuous_openin_preimage:
fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
shows
"\<lbrakk>continuous_on S f; f ` S \<subseteq> T; openin (subtopology euclidean T) U\<rbrakk>
\<Longrightarrow> openin (subtopology euclidean S) {x \<in> S. f x \<in> U}"
by (simp add: continuous_on_open_gen)
text \<open>Similarly in terms of closed sets.\<close>
lemma continuous_on_closed:
"continuous_on s f \<longleftrightarrow>
(\<forall>t. closedin (subtopology euclidean (f ` s)) t \<longrightarrow>
closedin (subtopology euclidean s) {x \<in> s. f x \<in> t})"
unfolding continuous_on_closed_invariant closedin_closed Int_def vimage_def Int_commute
by (simp add: imp_ex imageI conj_commute eq_commute cong: conj_cong)
lemma continuous_on_closed_gen:
fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
assumes "f ` S \<subseteq> T"
shows "continuous_on S f \<longleftrightarrow>
(\<forall>U. closedin (subtopology euclidean T) U
\<longrightarrow> closedin (subtopology euclidean S) {x \<in> S. f x \<in> U})"
proof -
have *: "U \<subseteq> T \<Longrightarrow> {x \<in> S. f x \<in> T \<and> f x \<notin> U} = S - {x \<in> S. f x \<in> U}" for U
using assms by blast
show ?thesis
apply (simp add: continuous_on_open_gen [OF assms], safe)
apply (drule_tac [!] x="T-U" in spec)
apply (force simp: closedin_def *)
apply (force simp: openin_closedin_eq *)
done
qed
lemma continuous_closedin_preimage_gen:
fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
assumes "continuous_on S f" "f ` S \<subseteq> T" "closedin (subtopology euclidean T) U"
shows "closedin (subtopology euclidean S) {x \<in> S. f x \<in> U}"
using assms continuous_on_closed_gen by blast
lemma continuous_on_imp_closedin:
assumes "continuous_on S f" "closedin (subtopology euclidean (f ` S)) T"
shows "closedin (subtopology euclidean S) {x. x \<in> S \<and> f x \<in> T}"
using assms continuous_on_closed by blast
subsection \<open>Half-global and completely global cases.\<close>
lemma continuous_openin_preimage_gen:
assumes "continuous_on s f" "open t"
shows "openin (subtopology euclidean s) {x \<in> s. f x \<in> t}"
proof -
have *: "\<forall>x. x \<in> s \<and> f x \<in> t \<longleftrightarrow> x \<in> s \<and> f x \<in> (t \<inter> f ` s)"
by auto
have "openin (subtopology euclidean (f ` s)) (t \<inter> f ` s)"
using openin_open_Int[of t "f ` s", OF assms(2)] unfolding openin_open by auto
then show ?thesis
using assms(1)[unfolded continuous_on_open, THEN spec[where x="t \<inter> f ` s"]]
using * by auto
qed
lemma continuous_closedin_preimage:
assumes "continuous_on s f" and "closed t"
shows "closedin (subtopology euclidean s) {x \<in> s. f x \<in> t}"
proof -
have *: "\<forall>x. x \<in> s \<and> f x \<in> t \<longleftrightarrow> x \<in> s \<and> f x \<in> (t \<inter> f ` s)"
by auto
have "closedin (subtopology euclidean (f ` s)) (t \<inter> f ` s)"
using closedin_closed_Int[of t "f ` s", OF assms(2)]
by (simp add: Int_commute)
then show ?thesis
using assms(1)[unfolded continuous_on_closed, THEN spec[where x="t \<inter> f ` s"]]
using * by auto
qed
lemma continuous_openin_preimage_eq:
"continuous_on S f \<longleftrightarrow>
(\<forall>t. open t \<longrightarrow> openin (subtopology euclidean S) {x. x \<in> S \<and> f x \<in> t})"
apply safe
apply (simp add: continuous_openin_preimage_gen)
apply (fastforce simp add: continuous_on_open openin_open)
done
lemma continuous_closedin_preimage_eq:
"continuous_on S f \<longleftrightarrow>
(\<forall>t. closed t \<longrightarrow> closedin (subtopology euclidean S) {x. x \<in> S \<and> f x \<in> t})"
apply safe
apply (simp add: continuous_closedin_preimage)
apply (fastforce simp add: continuous_on_closed closedin_closed)
done
lemma continuous_open_preimage:
assumes "continuous_on s f"
and "open s"
and "open t"
shows "open {x \<in> s. f x \<in> t}"
proof-
obtain T where T: "open T" "{x \<in> s. f x \<in> t} = s \<inter> T"
using continuous_openin_preimage_gen[OF assms(1,3)] unfolding openin_open by auto
then show ?thesis
using open_Int[of s T, OF assms(2)] by auto
qed
lemma continuous_closed_preimage:
assumes "continuous_on s f"
and "closed s"
and "closed t"
shows "closed {x \<in> s. f x \<in> t}"
proof-
obtain T where "closed T" "{x \<in> s. f x \<in> t} = s \<inter> T"
using continuous_closedin_preimage[OF assms(1,3)]
unfolding closedin_closed by auto
then show ?thesis using closed_Int[of s T, OF assms(2)] by auto
qed
lemma continuous_open_preimage_univ:
"open s \<Longrightarrow> (\<And>x. continuous (at x) f) \<Longrightarrow> open {x. f x \<in> s}"
using continuous_open_preimage[of UNIV f s] open_UNIV continuous_at_imp_continuous_on by auto
lemma continuous_closed_preimage_univ:
"closed s \<Longrightarrow> (\<And>x. continuous (at x) f) \<Longrightarrow> closed {x. f x \<in> s}"
using continuous_closed_preimage[of UNIV f s] closed_UNIV continuous_at_imp_continuous_on by auto
lemma continuous_open_vimage: "open s \<Longrightarrow> (\<And>x. continuous (at x) f) \<Longrightarrow> open (f -` s)"
unfolding vimage_def by (rule continuous_open_preimage_univ)
lemma continuous_closed_vimage: "closed s \<Longrightarrow> (\<And>x. continuous (at x) f) \<Longrightarrow> closed (f -` s)"
unfolding vimage_def by (rule continuous_closed_preimage_univ)
lemma interior_image_subset:
assumes "inj f" "\<And>x. continuous (at x) f"
shows "interior (f ` s) \<subseteq> f ` (interior s)"
proof
fix x assume "x \<in> interior (f ` s)"
then obtain T where as: "open T" "x \<in> T" "T \<subseteq> f ` s" ..
then have "x \<in> f ` s" by auto
then obtain y where y: "y \<in> s" "x = f y" by auto
have "open (vimage f T)"
using assms \<open>open T\<close> by (metis continuous_open_vimage)
moreover have "y \<in> vimage f T"
using \<open>x = f y\<close> \<open>x \<in> T\<close> by simp
moreover have "vimage f T \<subseteq> s"
using \<open>T \<subseteq> image f s\<close> \<open>inj f\<close> unfolding inj_on_def subset_eq by auto
ultimately have "y \<in> interior s" ..
with \<open>x = f y\<close> show "x \<in> f ` interior s" ..
qed
subsection \<open>Equality of continuous functions on closure and related results.\<close>
lemma continuous_closedin_preimage_constant:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
shows "continuous_on s f \<Longrightarrow> closedin (subtopology euclidean s) {x \<in> s. f x = a}"
using continuous_closedin_preimage[of s f "{a}"] by auto
lemma continuous_closed_preimage_constant:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
shows "continuous_on s f \<Longrightarrow> closed s \<Longrightarrow> closed {x \<in> s. f x = a}"
using continuous_closed_preimage[of s f "{a}"] by auto
lemma continuous_constant_on_closure:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
assumes "continuous_on (closure S) f"
and "\<And>x. x \<in> S \<Longrightarrow> f x = a"
and "x \<in> closure S"
shows "f x = a"
using continuous_closed_preimage_constant[of "closure S" f a]
assms closure_minimal[of S "{x \<in> closure S. f x = a}"] closure_subset
unfolding subset_eq
by auto
lemma image_closure_subset:
assumes "continuous_on (closure s) f"
and "closed t"
and "(f ` s) \<subseteq> t"
shows "f ` (closure s) \<subseteq> t"
proof -
have "s \<subseteq> {x \<in> closure s. f x \<in> t}"
using assms(3) closure_subset by auto
moreover have "closed {x \<in> closure s. f x \<in> t}"
using continuous_closed_preimage[OF assms(1)] and assms(2) by auto
ultimately have "closure s = {x \<in> closure s . f x \<in> t}"
using closure_minimal[of s "{x \<in> closure s. f x \<in> t}"] by auto
then show ?thesis by auto
qed
lemma continuous_on_closure_norm_le:
fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
assumes "continuous_on (closure s) f"
and "\<forall>y \<in> s. norm(f y) \<le> b"
and "x \<in> (closure s)"
shows "norm (f x) \<le> b"
proof -
have *: "f ` s \<subseteq> cball 0 b"
using assms(2)[unfolded mem_cball_0[symmetric]] by auto
show ?thesis
using image_closure_subset[OF assms(1) closed_cball[of 0 b] *] assms(3)
unfolding subset_eq
apply (erule_tac x="f x" in ballE)
apply (auto simp add: dist_norm)
done
qed
lemma isCont_indicator:
fixes x :: "'a::t2_space"
shows "isCont (indicator A :: 'a \<Rightarrow> real) x = (x \<notin> frontier A)"
proof auto
fix x
assume cts_at: "isCont (indicator A :: 'a \<Rightarrow> real) x" and fr: "x \<in> frontier A"
with continuous_at_open have 1: "\<forall>V::real set. open V \<and> indicator A x \<in> V \<longrightarrow>
(\<exists>U::'a set. open U \<and> x \<in> U \<and> (\<forall>y\<in>U. indicator A y \<in> V))" by auto
show False
proof (cases "x \<in> A")
assume x: "x \<in> A"
hence "indicator A x \<in> ({0<..<2} :: real set)" by simp
hence "\<exists>U. open U \<and> x \<in> U \<and> (\<forall>y\<in>U. indicator A y \<in> ({0<..<2} :: real set))"
using 1 open_greaterThanLessThan by blast
then guess U .. note U = this
hence "\<forall>y\<in>U. indicator A y > (0::real)"
unfolding greaterThanLessThan_def by auto
hence "U \<subseteq> A" using indicator_eq_0_iff by force
hence "x \<in> interior A" using U interiorI by auto
thus ?thesis using fr unfolding frontier_def by simp
next
assume x: "x \<notin> A"
hence "indicator A x \<in> ({-1<..<1} :: real set)" by simp
hence "\<exists>U. open U \<and> x \<in> U \<and> (\<forall>y\<in>U. indicator A y \<in> ({-1<..<1} :: real set))"
using 1 open_greaterThanLessThan by blast
then guess U .. note U = this
hence "\<forall>y\<in>U. indicator A y < (1::real)"
unfolding greaterThanLessThan_def by auto
hence "U \<subseteq> -A" by auto
hence "x \<in> interior (-A)" using U interiorI by auto
thus ?thesis using fr interior_complement unfolding frontier_def by auto
qed
next
assume nfr: "x \<notin> frontier A"
hence "x \<in> interior A \<or> x \<in> interior (-A)"
by (auto simp: frontier_def closure_interior)
thus "isCont ((indicator A)::'a \<Rightarrow> real) x"
proof
assume int: "x \<in> interior A"
then obtain U where U: "open U" "x \<in> U" "U \<subseteq> A" unfolding interior_def by auto
hence "\<forall>y\<in>U. indicator A y = (1::real)" unfolding indicator_def by auto
hence "continuous_on U (indicator A)" by (simp add: continuous_on_const indicator_eq_1_iff)
thus ?thesis using U continuous_on_eq_continuous_at by auto
next
assume ext: "x \<in> interior (-A)"
then obtain U where U: "open U" "x \<in> U" "U \<subseteq> -A" unfolding interior_def by auto
then have "continuous_on U (indicator A)"
using continuous_on_topological by (auto simp: subset_iff)
thus ?thesis using U continuous_on_eq_continuous_at by auto
qed
qed
subsection\<open> Theorems relating continuity and uniform continuity to closures\<close>
lemma continuous_on_closure:
"continuous_on (closure S) f \<longleftrightarrow>
(\<forall>x e. x \<in> closure S \<and> 0 < e
\<longrightarrow> (\<exists>d. 0 < d \<and> (\<forall>y. y \<in> S \<and> dist y x < d \<longrightarrow> dist (f y) (f x) < e)))"
(is "?lhs = ?rhs")
proof
assume ?lhs then show ?rhs
unfolding continuous_on_iff by (metis Un_iff closure_def)
next
assume R [rule_format]: ?rhs
show ?lhs
proof
fix x and e::real
assume "0 < e" and x: "x \<in> closure S"
obtain \<delta>::real where "\<delta> > 0"
and \<delta>: "\<And>y. \<lbrakk>y \<in> S; dist y x < \<delta>\<rbrakk> \<Longrightarrow> dist (f y) (f x) < e/2"
using R [of x "e/2"] \<open>0 < e\<close> x by auto
have "dist (f y) (f x) \<le> e" if y: "y \<in> closure S" and dyx: "dist y x < \<delta>/2" for y
proof -
obtain \<delta>'::real where "\<delta>' > 0"
and \<delta>': "\<And>z. \<lbrakk>z \<in> S; dist z y < \<delta>'\<rbrakk> \<Longrightarrow> dist (f z) (f y) < e/2"
using R [of y "e/2"] \<open>0 < e\<close> y by auto
obtain z where "z \<in> S" and z: "dist z y < min \<delta>' \<delta> / 2"
using closure_approachable y
by (metis \<open>0 < \<delta>'\<close> \<open>0 < \<delta>\<close> divide_pos_pos min_less_iff_conj zero_less_numeral)
have "dist (f z) (f y) < e/2"
apply (rule \<delta>' [OF \<open>z \<in> S\<close>])
using z \<open>0 < \<delta>'\<close> by linarith
moreover have "dist (f z) (f x) < e/2"
apply (rule \<delta> [OF \<open>z \<in> S\<close>])
using z \<open>0 < \<delta>\<close> dist_commute[of y z] dist_triangle_half_r [of y] dyx by auto
ultimately show ?thesis
by (metis dist_commute dist_triangle_half_l less_imp_le)
qed
then show "\<exists>d>0. \<forall>x'\<in>closure S. dist x' x < d \<longrightarrow> dist (f x') (f x) \<le> e"
by (rule_tac x="\<delta>/2" in exI) (simp add: \<open>\<delta> > 0\<close>)
qed
qed
lemma continuous_on_closure_sequentially:
fixes f :: "'a::metric_space \<Rightarrow> 'b :: metric_space"
shows
"continuous_on (closure S) f \<longleftrightarrow>
(\<forall>x a. a \<in> closure S \<and> (\<forall>n. x n \<in> S) \<and> x \<longlonglongrightarrow> a \<longrightarrow> (f \<circ> x) \<longlonglongrightarrow> f a)"
(is "?lhs = ?rhs")
proof -
have "continuous_on (closure S) f \<longleftrightarrow>
(\<forall>x \<in> closure S. continuous (at x within S) f)"
by (force simp: continuous_on_closure Topology_Euclidean_Space.continuous_within_eps_delta)
also have "... = ?rhs"
by (force simp: continuous_within_sequentially)
finally show ?thesis .
qed
lemma uniformly_continuous_on_closure:
fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
assumes ucont: "uniformly_continuous_on S f"
and cont: "continuous_on (closure S) f"
shows "uniformly_continuous_on (closure S) f"
unfolding uniformly_continuous_on_def
proof (intro allI impI)
fix e::real
assume "0 < e"
then obtain d::real
where "d>0"
and d: "\<And>x x'. \<lbrakk>x\<in>S; x'\<in>S; dist x' x < d\<rbrakk> \<Longrightarrow> dist (f x') (f x) < e/3"
using ucont [unfolded uniformly_continuous_on_def, rule_format, of "e/3"] by auto
show "\<exists>d>0. \<forall>x\<in>closure S. \<forall>x'\<in>closure S. dist x' x < d \<longrightarrow> dist (f x') (f x) < e"
proof (rule exI [where x="d/3"], clarsimp simp: \<open>d > 0\<close>)
fix x y
assume x: "x \<in> closure S" and y: "y \<in> closure S" and dyx: "dist y x * 3 < d"
obtain d1::real where "d1 > 0"
and d1: "\<And>w. \<lbrakk>w \<in> closure S; dist w x < d1\<rbrakk> \<Longrightarrow> dist (f w) (f x) < e/3"
using cont [unfolded continuous_on_iff, rule_format, of "x" "e/3"] \<open>0 < e\<close> x by auto
obtain x' where "x' \<in> S" and x': "dist x' x < min d1 (d / 3)"
using closure_approachable [of x S]
by (metis \<open>0 < d1\<close> \<open>0 < d\<close> divide_pos_pos min_less_iff_conj x zero_less_numeral)
obtain d2::real where "d2 > 0"
and d2: "\<forall>w \<in> closure S. dist w y < d2 \<longrightarrow> dist (f w) (f y) < e/3"
using cont [unfolded continuous_on_iff, rule_format, of "y" "e/3"] \<open>0 < e\<close> y by auto
obtain y' where "y' \<in> S" and y': "dist y' y < min d2 (d / 3)"
using closure_approachable [of y S]
by (metis \<open>0 < d2\<close> \<open>0 < d\<close> divide_pos_pos min_less_iff_conj y zero_less_numeral)
have "dist x' x < d/3" using x' by auto
moreover have "dist x y < d/3"
by (metis dist_commute dyx less_divide_eq_numeral1(1))
moreover have "dist y y' < d/3"
by (metis (no_types) dist_commute min_less_iff_conj y')
ultimately have "dist x' y' < d/3 + d/3 + d/3"
by (meson dist_commute_lessI dist_triangle_lt add_strict_mono)
then have "dist x' y' < d" by simp
then have "dist (f x') (f y') < e/3"
by (rule d [OF \<open>y' \<in> S\<close> \<open>x' \<in> S\<close>])
moreover have "dist (f x') (f x) < e/3" using \<open>x' \<in> S\<close> closure_subset x' d1
by (simp add: closure_def)
moreover have "dist (f y') (f y) < e/3" using \<open>y' \<in> S\<close> closure_subset y' d2
by (simp add: closure_def)
ultimately have "dist (f y) (f x) < e/3 + e/3 + e/3"
by (meson dist_commute_lessI dist_triangle_lt add_strict_mono)
then show "dist (f y) (f x) < e" by simp
qed
qed
lemma uniformly_continuous_on_extension_at_closure:
fixes f::"'a::metric_space \<Rightarrow> 'b::complete_space"
assumes uc: "uniformly_continuous_on X f"
assumes "x \<in> closure X"
obtains l where "(f \<longlongrightarrow> l) (at x within X)"
proof -
from assms obtain xs where xs: "xs \<longlonglongrightarrow> x" "\<And>n. xs n \<in> X"
by (auto simp: closure_sequential)
from uniformly_continuous_on_Cauchy[OF uc LIMSEQ_imp_Cauchy, OF xs]
obtain l where l: "(\<lambda>n. f (xs n)) \<longlonglongrightarrow> l"
by atomize_elim (simp only: convergent_eq_Cauchy)
have "(f \<longlongrightarrow> l) (at x within X)"
proof (safe intro!: Lim_within_LIMSEQ)
fix xs'
assume "\<forall>n. xs' n \<noteq> x \<and> xs' n \<in> X"
and xs': "xs' \<longlonglongrightarrow> x"
then have "xs' n \<noteq> x" "xs' n \<in> X" for n by auto
from uniformly_continuous_on_Cauchy[OF uc LIMSEQ_imp_Cauchy, OF \<open>xs' \<longlonglongrightarrow> x\<close> \<open>xs' _ \<in> X\<close>]
obtain l' where l': "(\<lambda>n. f (xs' n)) \<longlonglongrightarrow> l'"
by atomize_elim (simp only: convergent_eq_Cauchy)
show "(\<lambda>n. f (xs' n)) \<longlonglongrightarrow> l"
proof (rule tendstoI)
fix e::real assume "e > 0"
define e' where "e' \<equiv> e / 2"
have "e' > 0" using \<open>e > 0\<close> by (simp add: e'_def)
have "\<forall>\<^sub>F n in sequentially. dist (f (xs n)) l < e'"
by (simp add: \<open>0 < e'\<close> l tendstoD)
moreover
from uc[unfolded uniformly_continuous_on_def, rule_format, OF \<open>e' > 0\<close>]
obtain d where d: "d > 0" "\<And>x x'. x \<in> X \<Longrightarrow> x' \<in> X \<Longrightarrow> dist x x' < d \<Longrightarrow> dist (f x) (f x') < e'"
by auto
have "\<forall>\<^sub>F n in sequentially. dist (xs n) (xs' n) < d"
by (auto intro!: \<open>0 < d\<close> order_tendstoD tendsto_eq_intros xs xs')
ultimately
show "\<forall>\<^sub>F n in sequentially. dist (f (xs' n)) l < e"
proof eventually_elim
case (elim n)
have "dist (f (xs' n)) l \<le> dist (f (xs n)) (f (xs' n)) + dist (f (xs n)) l"
by (metis dist_triangle dist_commute)
also have "dist (f (xs n)) (f (xs' n)) < e'"
by (auto intro!: d xs \<open>xs' _ \<in> _\<close> elim)
also note \<open>dist (f (xs n)) l < e'\<close>
also have "e' + e' = e" by (simp add: e'_def)
finally show ?case by simp
qed
qed
qed
thus ?thesis ..
qed
lemma uniformly_continuous_on_extension_on_closure:
fixes f::"'a::metric_space \<Rightarrow> 'b::complete_space"
assumes uc: "uniformly_continuous_on X f"
obtains g where "uniformly_continuous_on (closure X) g" "\<And>x. x \<in> X \<Longrightarrow> f x = g x"
"\<And>Y h x. X \<subseteq> Y \<Longrightarrow> Y \<subseteq> closure X \<Longrightarrow> continuous_on Y h \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> f x = h x) \<Longrightarrow> x \<in> Y \<Longrightarrow> h x = g x"
proof -
from uc have cont_f: "continuous_on X f"
by (simp add: uniformly_continuous_imp_continuous)
obtain y where y: "(f \<longlongrightarrow> y x) (at x within X)" if "x \<in> closure X" for x
apply atomize_elim
apply (rule choice)
using uniformly_continuous_on_extension_at_closure[OF assms]
by metis
let ?g = "\<lambda>x. if x \<in> X then f x else y x"
have "uniformly_continuous_on (closure X) ?g"
unfolding uniformly_continuous_on_def
proof safe
fix e::real assume "e > 0"
define e' where "e' \<equiv> e / 3"
have "e' > 0" using \<open>e > 0\<close> by (simp add: e'_def)
from uc[unfolded uniformly_continuous_on_def, rule_format, OF \<open>0 < e'\<close>]
obtain d where "d > 0" and d: "\<And>x x'. x \<in> X \<Longrightarrow> x' \<in> X \<Longrightarrow> dist x' x < d \<Longrightarrow> dist (f x') (f x) < e'"
by auto
define d' where "d' = d / 3"
have "d' > 0" using \<open>d > 0\<close> by (simp add: d'_def)
show "\<exists>d>0. \<forall>x\<in>closure X. \<forall>x'\<in>closure X. dist x' x < d \<longrightarrow> dist (?g x') (?g x) < e"
proof (safe intro!: exI[where x=d'] \<open>d' > 0\<close>)
fix x x' assume x: "x \<in> closure X" and x': "x' \<in> closure X" and dist: "dist x' x < d'"
then obtain xs xs' where xs: "xs \<longlonglongrightarrow> x" "\<And>n. xs n \<in> X"
and xs': "xs' \<longlonglongrightarrow> x'" "\<And>n. xs' n \<in> X"
by (auto simp: closure_sequential)
have "\<forall>\<^sub>F n in sequentially. dist (xs' n) x' < d'"
and "\<forall>\<^sub>F n in sequentially. dist (xs n) x < d'"
by (auto intro!: \<open>0 < d'\<close> order_tendstoD tendsto_eq_intros xs xs')
moreover
have "(\<lambda>x. f (xs x)) \<longlonglongrightarrow> y x" if "x \<in> closure X" "x \<notin> X" "xs \<longlonglongrightarrow> x" "\<And>n. xs n \<in> X" for xs x
using that not_eventuallyD
by (force intro!: filterlim_compose[OF y[OF \<open>x \<in> closure X\<close>]] simp: filterlim_at)
then have "(\<lambda>x. f (xs' x)) \<longlonglongrightarrow> ?g x'" "(\<lambda>x. f (xs x)) \<longlonglongrightarrow> ?g x"
using x x'
by (auto intro!: continuous_on_tendsto_compose[OF cont_f] simp: xs' xs)
then have "\<forall>\<^sub>F n in sequentially. dist (f (xs' n)) (?g x') < e'"
"\<forall>\<^sub>F n in sequentially. dist (f (xs n)) (?g x) < e'"
by (auto intro!: \<open>0 < e'\<close> order_tendstoD tendsto_eq_intros)
ultimately
have "\<forall>\<^sub>F n in sequentially. dist (?g x') (?g x) < e"
proof eventually_elim
case (elim n)
have "dist (?g x') (?g x) \<le>
dist (f (xs' n)) (?g x') + dist (f (xs' n)) (f (xs n)) + dist (f (xs n)) (?g x)"
by (metis add.commute add_le_cancel_left dist_commute dist_triangle dist_triangle_le)
also
{
have "dist (xs' n) (xs n) \<le> dist (xs' n) x' + dist x' x + dist (xs n) x"
by (metis add.commute add_le_cancel_left dist_triangle dist_triangle_le)
also note \<open>dist (xs' n) x' < d'\<close>
also note \<open>dist x' x < d'\<close>
also note \<open>dist (xs n) x < d'\<close>
finally have "dist (xs' n) (xs n) < d" by (simp add: d'_def)
}
with \<open>xs _ \<in> X\<close> \<open>xs' _ \<in> X\<close> have "dist (f (xs' n)) (f (xs n)) < e'"
by (rule d)
also note \<open>dist (f (xs' n)) (?g x') < e'\<close>
also note \<open>dist (f (xs n)) (?g x) < e'\<close>
finally show ?case by (simp add: e'_def)
qed
then show "dist (?g x') (?g x) < e" by simp
qed
qed
moreover have "f x = ?g x" if "x \<in> X" for x using that by simp
moreover
{
fix Y h x
assume Y: "x \<in> Y" "X \<subseteq> Y" "Y \<subseteq> closure X" and cont_h: "continuous_on Y h"
and extension: "(\<And>x. x \<in> X \<Longrightarrow> f x = h x)"
{
assume "x \<notin> X"
have "x \<in> closure X" using Y by auto
then obtain xs where xs: "xs \<longlonglongrightarrow> x" "\<And>n. xs n \<in> X"
by (auto simp: closure_sequential)
from continuous_on_tendsto_compose[OF cont_h xs(1)] xs(2) Y
have hx: "(\<lambda>x. f (xs x)) \<longlonglongrightarrow> h x"
by (auto simp: set_mp extension)
then have "(\<lambda>x. f (xs x)) \<longlonglongrightarrow> y x"
using \<open>x \<notin> X\<close> not_eventuallyD xs(2)
by (force intro!: filterlim_compose[OF y[OF \<open>x \<in> closure X\<close>]] simp: filterlim_at xs)
with hx have "h x = y x" by (rule LIMSEQ_unique)
} then
have "h x = ?g x"
using extension by auto
}
ultimately show ?thesis ..
qed
lemma bounded_uniformly_continuous_image:
fixes f :: "'a :: heine_borel \<Rightarrow> 'b :: heine_borel"
assumes "uniformly_continuous_on S f" "bounded S"
shows "bounded(image f S)"
by (metis (no_types, lifting) assms bounded_closure_image compact_closure compact_continuous_image compact_eq_bounded_closed image_cong uniformly_continuous_imp_continuous uniformly_continuous_on_extension_on_closure)
subsection\<open>Quotient maps\<close>
lemma quotient_map_imp_continuous_open:
assumes t: "f ` s \<subseteq> t"
and ope: "\<And>u. u \<subseteq> t
\<Longrightarrow> (openin (subtopology euclidean s) {x. x \<in> s \<and> f x \<in> u} \<longleftrightarrow>
openin (subtopology euclidean t) u)"
shows "continuous_on s f"
proof -
have [simp]: "{x \<in> s. f x \<in> f ` s} = s" by auto
show ?thesis
using ope [OF t]
apply (simp add: continuous_on_open)
by (metis (no_types, lifting) "ope" openin_imp_subset openin_trans)
qed
lemma quotient_map_imp_continuous_closed:
assumes t: "f ` s \<subseteq> t"
and ope: "\<And>u. u \<subseteq> t
\<Longrightarrow> (closedin (subtopology euclidean s) {x. x \<in> s \<and> f x \<in> u} \<longleftrightarrow>
closedin (subtopology euclidean t) u)"
shows "continuous_on s f"
proof -
have [simp]: "{x \<in> s. f x \<in> f ` s} = s" by auto
show ?thesis
using ope [OF t]
apply (simp add: continuous_on_closed)
by (metis (no_types, lifting) "ope" closedin_imp_subset closedin_subtopology_refl closedin_trans openin_subtopology_refl openin_subtopology_self)
qed
lemma open_map_imp_quotient_map:
assumes contf: "continuous_on s f"
and t: "t \<subseteq> f ` s"
and ope: "\<And>t. openin (subtopology euclidean s) t
\<Longrightarrow> openin (subtopology euclidean (f ` s)) (f ` t)"
shows "openin (subtopology euclidean s) {x \<in> s. f x \<in> t} =
openin (subtopology euclidean (f ` s)) t"
proof -
have "t = image f {x. x \<in> s \<and> f x \<in> t}"
using t by blast
then show ?thesis
using "ope" contf continuous_on_open by fastforce
qed
lemma closed_map_imp_quotient_map:
assumes contf: "continuous_on s f"
and t: "t \<subseteq> f ` s"
and ope: "\<And>t. closedin (subtopology euclidean s) t
\<Longrightarrow> closedin (subtopology euclidean (f ` s)) (f ` t)"
shows "openin (subtopology euclidean s) {x \<in> s. f x \<in> t} \<longleftrightarrow>
openin (subtopology euclidean (f ` s)) t"
(is "?lhs = ?rhs")
proof
assume ?lhs
then have *: "closedin (subtopology euclidean s) (s - {x \<in> s. f x \<in> t})"
using closedin_diff by fastforce
have [simp]: "(f ` s - f ` (s - {x \<in> s. f x \<in> t})) = t"
using t by blast
show ?rhs
using ope [OF *, unfolded closedin_def] by auto
next
assume ?rhs
with contf show ?lhs
by (auto simp: continuous_on_open)
qed
lemma continuous_right_inverse_imp_quotient_map:
assumes contf: "continuous_on s f" and imf: "f ` s \<subseteq> t"
and contg: "continuous_on t g" and img: "g ` t \<subseteq> s"
and fg [simp]: "\<And>y. y \<in> t \<Longrightarrow> f(g y) = y"
and u: "u \<subseteq> t"
shows "openin (subtopology euclidean s) {x. x \<in> s \<and> f x \<in> u} \<longleftrightarrow>
openin (subtopology euclidean t) u"
(is "?lhs = ?rhs")
proof -
have f: "\<And>z. openin (subtopology euclidean (f ` s)) z \<Longrightarrow>
openin (subtopology euclidean s) {x \<in> s. f x \<in> z}"
and g: "\<And>z. openin (subtopology euclidean (g ` t)) z \<Longrightarrow>
openin (subtopology euclidean t) {x \<in> t. g x \<in> z}"
using contf contg by (auto simp: continuous_on_open)
show ?thesis
proof
have "{x \<in> t. g x \<in> g ` t \<and> g x \<in> s \<and> f (g x) \<in> u} = {x \<in> t. f (g x) \<in> u}"
using imf img by blast
also have "... = u"
using u by auto
finally have [simp]: "{x \<in> t. g x \<in> g ` t \<and> g x \<in> s \<and> f (g x) \<in> u} = u" .
assume ?lhs
then have *: "openin (subtopology euclidean (g ` t)) (g ` t \<inter> {x \<in> s. f x \<in> u})"
by (meson img openin_Int openin_subtopology_Int_subset openin_subtopology_self)
show ?rhs
using g [OF *] by simp
next
assume rhs: ?rhs
show ?lhs
apply (rule f)
by (metis fg image_eqI image_subset_iff imf img openin_subopen openin_subtopology_self openin_trans rhs)
qed
qed
lemma continuous_left_inverse_imp_quotient_map:
assumes "continuous_on s f"
and "continuous_on (f ` s) g"
and "\<And>x. x \<in> s \<Longrightarrow> g(f x) = x"
and "u \<subseteq> f ` s"
shows "openin (subtopology euclidean s) {x. x \<in> s \<and> f x \<in> u} \<longleftrightarrow>
openin (subtopology euclidean (f ` s)) u"
apply (rule continuous_right_inverse_imp_quotient_map)
using assms
apply force+
done
subsection \<open>A function constant on a set\<close>
definition constant_on (infixl "(constant'_on)" 50)
where "f constant_on A \<equiv> \<exists>y. \<forall>x\<in>A. f x = y"
lemma constant_on_subset: "\<lbrakk>f constant_on A; B \<subseteq> A\<rbrakk> \<Longrightarrow> f constant_on B"
unfolding constant_on_def by blast
lemma injective_not_constant:
fixes S :: "'a::{perfect_space} set"
shows "\<lbrakk>open S; inj_on f S; f constant_on S\<rbrakk> \<Longrightarrow> S = {}"
unfolding constant_on_def
by (metis equals0I inj_on_contraD islimpt_UNIV islimpt_def)
lemma constant_on_closureI:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
assumes cof: "f constant_on S" and contf: "continuous_on (closure S) f"
shows "f constant_on (closure S)"
using continuous_constant_on_closure [OF contf] cof unfolding constant_on_def
by metis
text \<open>Making a continuous function avoid some value in a neighbourhood.\<close>
lemma continuous_within_avoid:
fixes f :: "'a::metric_space \<Rightarrow> 'b::t1_space"
assumes "continuous (at x within s) f"
and "f x \<noteq> a"
shows "\<exists>e>0. \<forall>y \<in> s. dist x y < e --> f y \<noteq> a"
proof -
obtain U where "open U" and "f x \<in> U" and "a \<notin> U"
using t1_space [OF \<open>f x \<noteq> a\<close>] by fast
have "(f \<longlongrightarrow> f x) (at x within s)"
using assms(1) by (simp add: continuous_within)
then have "eventually (\<lambda>y. f y \<in> U) (at x within s)"
using \<open>open U\<close> and \<open>f x \<in> U\<close>
unfolding tendsto_def by fast
then have "eventually (\<lambda>y. f y \<noteq> a) (at x within s)"
using \<open>a \<notin> U\<close> by (fast elim: eventually_mono)
then show ?thesis
using \<open>f x \<noteq> a\<close> by (auto simp: dist_commute zero_less_dist_iff eventually_at)
qed
lemma continuous_at_avoid:
fixes f :: "'a::metric_space \<Rightarrow> 'b::t1_space"
assumes "continuous (at x) f"
and "f x \<noteq> a"
shows "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> f y \<noteq> a"
using assms continuous_within_avoid[of x UNIV f a] by simp
lemma continuous_on_avoid:
fixes f :: "'a::metric_space \<Rightarrow> 'b::t1_space"
assumes "continuous_on s f"
and "x \<in> s"
and "f x \<noteq> a"
shows "\<exists>e>0. \<forall>y \<in> s. dist x y < e \<longrightarrow> f y \<noteq> a"
using assms(1)[unfolded continuous_on_eq_continuous_within, THEN bspec[where x=x],
OF assms(2)] continuous_within_avoid[of x s f a]
using assms(3)
by auto
lemma continuous_on_open_avoid:
fixes f :: "'a::metric_space \<Rightarrow> 'b::t1_space"
assumes "continuous_on s f"
and "open s"
and "x \<in> s"
and "f x \<noteq> a"
shows "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> f y \<noteq> a"
using assms(1)[unfolded continuous_on_eq_continuous_at[OF assms(2)], THEN bspec[where x=x], OF assms(3)]
using continuous_at_avoid[of x f a] assms(4)
by auto
text \<open>Proving a function is constant by proving open-ness of level set.\<close>
lemma continuous_levelset_openin_cases:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
shows "connected s \<Longrightarrow> continuous_on s f \<Longrightarrow>
openin (subtopology euclidean s) {x \<in> s. f x = a}
\<Longrightarrow> (\<forall>x \<in> s. f x \<noteq> a) \<or> (\<forall>x \<in> s. f x = a)"
unfolding connected_clopen
using continuous_closedin_preimage_constant by auto
lemma continuous_levelset_openin:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
shows "connected s \<Longrightarrow> continuous_on s f \<Longrightarrow>
openin (subtopology euclidean s) {x \<in> s. f x = a} \<Longrightarrow>
(\<exists>x \<in> s. f x = a) \<Longrightarrow> (\<forall>x \<in> s. f x = a)"
using continuous_levelset_openin_cases[of s f ]
by meson
lemma continuous_levelset_open:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
assumes "connected s"
and "continuous_on s f"
and "open {x \<in> s. f x = a}"
and "\<exists>x \<in> s. f x = a"
shows "\<forall>x \<in> s. f x = a"
using continuous_levelset_openin[OF assms(1,2), of a, unfolded openin_open]
using assms (3,4)
by fast
text \<open>Some arithmetical combinations (more to prove).\<close>
lemma open_scaling[intro]:
fixes s :: "'a::real_normed_vector set"
assumes "c \<noteq> 0"
and "open s"
shows "open((\<lambda>x. c *\<^sub>R x) ` s)"
proof -
{
fix x
assume "x \<in> s"
then obtain e where "e>0"
and e:"\<forall>x'. dist x' x < e \<longrightarrow> x' \<in> s" using assms(2)[unfolded open_dist, THEN bspec[where x=x]]
by auto
have "e * \<bar>c\<bar> > 0"
using assms(1)[unfolded zero_less_abs_iff[symmetric]] \<open>e>0\<close> by auto
moreover
{
fix y
assume "dist y (c *\<^sub>R x) < e * \<bar>c\<bar>"
then have "norm ((1 / c) *\<^sub>R y - x) < e"
unfolding dist_norm
using norm_scaleR[of c "(1 / c) *\<^sub>R y - x", unfolded scaleR_right_diff_distrib, unfolded scaleR_scaleR] assms(1)
assms(1)[unfolded zero_less_abs_iff[symmetric]] by (simp del:zero_less_abs_iff)
then have "y \<in> op *\<^sub>R c ` s"
using rev_image_eqI[of "(1 / c) *\<^sub>R y" s y "op *\<^sub>R c"]
using e[THEN spec[where x="(1 / c) *\<^sub>R y"]]
using assms(1)
unfolding dist_norm scaleR_scaleR
by auto
}
ultimately have "\<exists>e>0. \<forall>x'. dist x' (c *\<^sub>R x) < e \<longrightarrow> x' \<in> op *\<^sub>R c ` s"
apply (rule_tac x="e * \<bar>c\<bar>" in exI)
apply auto
done
}
then show ?thesis unfolding open_dist by auto
qed
lemma minus_image_eq_vimage:
fixes A :: "'a::ab_group_add set"
shows "(\<lambda>x. - x) ` A = (\<lambda>x. - x) -` A"
by (auto intro!: image_eqI [where f="\<lambda>x. - x"])
lemma open_negations:
fixes S :: "'a::real_normed_vector set"
shows "open S \<Longrightarrow> open ((\<lambda>x. - x) ` S)"
using open_scaling [of "- 1" S] by simp
lemma open_translation:
fixes S :: "'a::real_normed_vector set"
assumes "open S"
shows "open((\<lambda>x. a + x) ` S)"
proof -
{
fix x
have "continuous (at x) (\<lambda>x. x - a)"
by (intro continuous_diff continuous_ident continuous_const)
}
moreover have "{x. x - a \<in> S} = op + a ` S"
by force
ultimately show ?thesis
by (metis assms continuous_open_vimage vimage_def)
qed
lemma open_affinity:
fixes S :: "'a::real_normed_vector set"
assumes "open S" "c \<noteq> 0"
shows "open ((\<lambda>x. a + c *\<^sub>R x) ` S)"
proof -
have *: "(\<lambda>x. a + c *\<^sub>R x) = (\<lambda>x. a + x) \<circ> (\<lambda>x. c *\<^sub>R x)"
unfolding o_def ..
have "op + a ` op *\<^sub>R c ` S = (op + a \<circ> op *\<^sub>R c) ` S"
by auto
then show ?thesis
using assms open_translation[of "op *\<^sub>R c ` S" a]
unfolding *
by auto
qed
lemma interior_translation:
fixes S :: "'a::real_normed_vector set"
shows "interior ((\<lambda>x. a + x) ` S) = (\<lambda>x. a + x) ` (interior S)"
proof (rule set_eqI, rule)
fix x
assume "x \<in> interior (op + a ` S)"
then obtain e where "e > 0" and e: "ball x e \<subseteq> op + a ` S"
unfolding mem_interior by auto
then have "ball (x - a) e \<subseteq> S"
unfolding subset_eq Ball_def mem_ball dist_norm
by (auto simp add: diff_diff_eq)
then show "x \<in> op + a ` interior S"
unfolding image_iff
apply (rule_tac x="x - a" in bexI)
unfolding mem_interior
using \<open>e > 0\<close>
apply auto
done
next
fix x
assume "x \<in> op + a ` interior S"
then obtain y e where "e > 0" and e: "ball y e \<subseteq> S" and y: "x = a + y"
unfolding image_iff Bex_def mem_interior by auto
{
fix z
have *: "a + y - z = y + a - z" by auto
assume "z \<in> ball x e"
then have "z - a \<in> S"
using e[unfolded subset_eq, THEN bspec[where x="z - a"]]
unfolding mem_ball dist_norm y group_add_class.diff_diff_eq2 *
by auto
then have "z \<in> op + a ` S"
unfolding image_iff by (auto intro!: bexI[where x="z - a"])
}
then have "ball x e \<subseteq> op + a ` S"
unfolding subset_eq by auto
then show "x \<in> interior (op + a ` S)"
unfolding mem_interior using \<open>e > 0\<close> by auto
qed
subsection \<open>Topological properties of linear functions.\<close>
lemma linear_lim_0:
assumes "bounded_linear f"
shows "(f \<longlongrightarrow> 0) (at (0))"
proof -
interpret f: bounded_linear f by fact
have "(f \<longlongrightarrow> f 0) (at 0)"
using tendsto_ident_at by (rule f.tendsto)
then show ?thesis unfolding f.zero .
qed
lemma linear_continuous_at:
assumes "bounded_linear f"
shows "continuous (at a) f"
unfolding continuous_at using assms
apply (rule bounded_linear.tendsto)
apply (rule tendsto_ident_at)
done
lemma linear_continuous_within:
"bounded_linear f \<Longrightarrow> continuous (at x within s) f"
using continuous_at_imp_continuous_within[of x f s] using linear_continuous_at[of f] by auto
lemma linear_continuous_on:
"bounded_linear f \<Longrightarrow> continuous_on s f"
using continuous_at_imp_continuous_on[of s f] using linear_continuous_at[of f] by auto
subsubsection\<open>Relating linear images to open/closed/interior/closure.\<close>
proposition open_surjective_linear_image:
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::euclidean_space"
assumes "open A" "linear f" "surj f"
shows "open(f ` A)"
unfolding open_dist
proof clarify
fix x
assume "x \<in> A"
have "bounded (inv f ` Basis)"
by (simp add: finite_imp_bounded)
with bounded_pos obtain B where "B > 0" and B: "\<And>x. x \<in> inv f ` Basis \<Longrightarrow> norm x \<le> B"
by metis
obtain e where "e > 0" and e: "\<And>z. dist z x < e \<Longrightarrow> z \<in> A"
by (metis open_dist \<open>x \<in> A\<close> \<open>open A\<close>)
define \<delta> where "\<delta> \<equiv> e / B / DIM('b)"
show "\<exists>e>0. \<forall>y. dist y (f x) < e \<longrightarrow> y \<in> f ` A"
proof (intro exI conjI)
show "\<delta> > 0"
using \<open>e > 0\<close> \<open>B > 0\<close> by (simp add: \<delta>_def divide_simps)
have "y \<in> f ` A" if "dist y (f x) * (B * real DIM('b)) < e" for y
proof -
define u where "u \<equiv> y - f x"
show ?thesis
proof (rule image_eqI)
show "y = f (x + (\<Sum>i\<in>Basis. (u \<bullet> i) *\<^sub>R inv f i))"
apply (simp add: linear_add linear_sum linear.scaleR \<open>linear f\<close> surj_f_inv_f \<open>surj f\<close>)
apply (simp add: euclidean_representation u_def)
done
have "dist (x + (\<Sum>i\<in>Basis. (u \<bullet> i) *\<^sub>R inv f i)) x \<le> (\<Sum>i\<in>Basis. norm ((u \<bullet> i) *\<^sub>R inv f i))"
by (simp add: dist_norm sum_norm_le)
also have "... = (\<Sum>i\<in>Basis. \<bar>u \<bullet> i\<bar> * norm (inv f i))"
by (simp add: )
also have "... \<le> (\<Sum>i\<in>Basis. \<bar>u \<bullet> i\<bar>) * B"
by (simp add: B sum_distrib_right sum_mono mult_left_mono)
also have "... \<le> DIM('b) * dist y (f x) * B"
apply (rule mult_right_mono [OF sum_bounded_above])
using \<open>0 < B\<close> by (auto simp add: Basis_le_norm dist_norm u_def)
also have "... < e"
by (metis mult.commute mult.left_commute that)
finally show "x + (\<Sum>i\<in>Basis. (u \<bullet> i) *\<^sub>R inv f i) \<in> A"
by (rule e)
qed
qed
then show "\<forall>y. dist y (f x) < \<delta> \<longrightarrow> y \<in> f ` A"
using \<open>e > 0\<close> \<open>B > 0\<close>
by (auto simp: \<delta>_def divide_simps mult_less_0_iff)
qed
qed
corollary open_bijective_linear_image_eq:
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
assumes "linear f" "bij f"
shows "open(f ` A) \<longleftrightarrow> open A"
proof
assume "open(f ` A)"
then have "open(f -` (f ` A))"
using assms by (force simp add: linear_continuous_at linear_conv_bounded_linear continuous_open_vimage)
then show "open A"
by (simp add: assms bij_is_inj inj_vimage_image_eq)
next
assume "open A"
then show "open(f ` A)"
by (simp add: assms bij_is_surj open_surjective_linear_image)
qed
corollary interior_bijective_linear_image:
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
assumes "linear f" "bij f"
shows "interior (f ` S) = f ` interior S" (is "?lhs = ?rhs")
proof safe
fix x
assume x: "x \<in> ?lhs"
then obtain T where "open T" and "x \<in> T" and "T \<subseteq> f ` S"
by (metis interiorE)
then show "x \<in> ?rhs"
by (metis (no_types, hide_lams) assms subsetD interior_maximal open_bijective_linear_image_eq subset_image_iff)
next
fix x
assume x: "x \<in> interior S"
then show "f x \<in> interior (f ` S)"
by (meson assms imageI image_mono interiorI interior_subset open_bijective_linear_image_eq open_interior)
qed
lemma interior_injective_linear_image:
fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
assumes "linear f" "inj f"
shows "interior(f ` S) = f ` (interior S)"
by (simp add: linear_injective_imp_surjective assms bijI interior_bijective_linear_image)
lemma interior_surjective_linear_image:
fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
assumes "linear f" "surj f"
shows "interior(f ` S) = f ` (interior S)"
by (simp add: assms interior_injective_linear_image linear_surjective_imp_injective)
lemma interior_negations:
fixes S :: "'a::euclidean_space set"
shows "interior(uminus ` S) = image uminus (interior S)"
by (simp add: bij_uminus interior_bijective_linear_image linear_uminus)
text \<open>Also bilinear functions, in composition form.\<close>
lemma bilinear_continuous_at_compose:
"continuous (at x) f \<Longrightarrow> continuous (at x) g \<Longrightarrow> bounded_bilinear h \<Longrightarrow>
continuous (at x) (\<lambda>x. h (f x) (g x))"
unfolding continuous_at
using Lim_bilinear[of f "f x" "(at x)" g "g x" h]
by auto
lemma bilinear_continuous_within_compose:
"continuous (at x within s) f \<Longrightarrow> continuous (at x within s) g \<Longrightarrow> bounded_bilinear h \<Longrightarrow>
continuous (at x within s) (\<lambda>x. h (f x) (g x))"
by (rule Limits.bounded_bilinear.continuous)
lemma bilinear_continuous_on_compose:
"continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> bounded_bilinear h \<Longrightarrow>
continuous_on s (\<lambda>x. h (f x) (g x))"
by (rule Limits.bounded_bilinear.continuous_on)
text \<open>Preservation of compactness and connectedness under continuous function.\<close>
lemma compact_eq_openin_cover:
"compact S \<longleftrightarrow>
(\<forall>C. (\<forall>c\<in>C. openin (subtopology euclidean S) c) \<and> S \<subseteq> \<Union>C \<longrightarrow>
(\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D))"
proof safe
fix C
assume "compact S" and "\<forall>c\<in>C. openin (subtopology euclidean S) c" and "S \<subseteq> \<Union>C"
then have "\<forall>c\<in>{T. open T \<and> S \<inter> T \<in> C}. open c" and "S \<subseteq> \<Union>{T. open T \<and> S \<inter> T \<in> C}"
unfolding openin_open by force+
with \<open>compact S\<close> obtain D where "D \<subseteq> {T. open T \<and> S \<inter> T \<in> C}" and "finite D" and "S \<subseteq> \<Union>D"
by (meson compactE)
then have "image (\<lambda>T. S \<inter> T) D \<subseteq> C \<and> finite (image (\<lambda>T. S \<inter> T) D) \<and> S \<subseteq> \<Union>(image (\<lambda>T. S \<inter> T) D)"
by auto
then show "\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D" ..
next
assume 1: "\<forall>C. (\<forall>c\<in>C. openin (subtopology euclidean S) c) \<and> S \<subseteq> \<Union>C \<longrightarrow>
(\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D)"
show "compact S"
proof (rule compactI)
fix C
let ?C = "image (\<lambda>T. S \<inter> T) C"
assume "\<forall>t\<in>C. open t" and "S \<subseteq> \<Union>C"
then have "(\<forall>c\<in>?C. openin (subtopology euclidean S) c) \<and> S \<subseteq> \<Union>?C"
unfolding openin_open by auto
with 1 obtain D where "D \<subseteq> ?C" and "finite D" and "S \<subseteq> \<Union>D"
by metis
let ?D = "inv_into C (\<lambda>T. S \<inter> T) ` D"
have "?D \<subseteq> C \<and> finite ?D \<and> S \<subseteq> \<Union>?D"
proof (intro conjI)
from \<open>D \<subseteq> ?C\<close> show "?D \<subseteq> C"
by (fast intro: inv_into_into)
from \<open>finite D\<close> show "finite ?D"
by (rule finite_imageI)
from \<open>S \<subseteq> \<Union>D\<close> show "S \<subseteq> \<Union>?D"
apply (rule subset_trans)
apply clarsimp
apply (frule subsetD [OF \<open>D \<subseteq> ?C\<close>, THEN f_inv_into_f])
apply (erule rev_bexI, fast)
done
qed
then show "\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D" ..
qed
qed
lemma connected_continuous_image:
assumes "continuous_on s f"
and "connected s"
shows "connected(f ` s)"
proof -
{
fix T
assume as:
"T \<noteq> {}"
"T \<noteq> f ` s"
"openin (subtopology euclidean (f ` s)) T"
"closedin (subtopology euclidean (f ` s)) T"
have "{x \<in> s. f x \<in> T} = {} \<or> {x \<in> s. f x \<in> T} = s"
using assms(1)[unfolded continuous_on_open, THEN spec[where x=T]]
using assms(1)[unfolded continuous_on_closed, THEN spec[where x=T]]
using assms(2)[unfolded connected_clopen, THEN spec[where x="{x \<in> s. f x \<in> T}"]] as(3,4) by auto
then have False using as(1,2)
using as(4)[unfolded closedin_def topspace_euclidean_subtopology] by auto
}
then show ?thesis
unfolding connected_clopen by auto
qed
lemma connected_linear_image:
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
assumes "linear f" and "connected s"
shows "connected (f ` s)"
using connected_continuous_image assms linear_continuous_on linear_conv_bounded_linear by blast
text \<open>Continuity implies uniform continuity on a compact domain.\<close>
subsection \<open>Continuity implies uniform continuity on a compact domain.\<close>
text\<open>From the proof of the Heine-Borel theorem: Lemma 2 in section 3.7, page 69 of
J. C. Burkill and H. Burkill. A Second Course in Mathematical Analysis (CUP, 2002)\<close>
lemma Heine_Borel_lemma:
assumes "compact S" and Ssub: "S \<subseteq> \<Union>\<G>" and op: "\<And>G. G \<in> \<G> \<Longrightarrow> open G"
obtains e where "0 < e" "\<And>x. x \<in> S \<Longrightarrow> \<exists>G \<in> \<G>. ball x e \<subseteq> G"
proof -
have False if neg: "\<And>e. 0 < e \<Longrightarrow> \<exists>x \<in> S. \<forall>G \<in> \<G>. \<not> ball x e \<subseteq> G"
proof -
have "\<exists>x \<in> S. \<forall>G \<in> \<G>. \<not> ball x (1 / Suc n) \<subseteq> G" for n
using neg by simp
then obtain f where "\<And>n. f n \<in> S" and fG: "\<And>G n. G \<in> \<G> \<Longrightarrow> \<not> ball (f n) (1 / Suc n) \<subseteq> G"
by metis
then obtain l r where "l \<in> S" "strict_mono r" and to_l: "(f \<circ> r) \<longlonglongrightarrow> l"
using \<open>compact S\<close> compact_def that by metis
then obtain G where "l \<in> G" "G \<in> \<G>"
using Ssub by auto
then obtain e where "0 < e" and e: "\<And>z. dist z l < e \<Longrightarrow> z \<in> G"
using op open_dist by blast
obtain N1 where N1: "\<And>n. n \<ge> N1 \<Longrightarrow> dist (f (r n)) l < e/2"
using to_l apply (simp add: lim_sequentially)
using \<open>0 < e\<close> half_gt_zero that by blast
obtain N2 where N2: "of_nat N2 > 2/e"
using reals_Archimedean2 by blast
obtain x where "x \<in> ball (f (r (max N1 N2))) (1 / real (Suc (r (max N1 N2))))" and "x \<notin> G"
using fG [OF \<open>G \<in> \<G>\<close>, of "r (max N1 N2)"] by blast
then have "dist (f (r (max N1 N2))) x < 1 / real (Suc (r (max N1 N2)))"
by simp
also have "... \<le> 1 / real (Suc (max N1 N2))"
apply (simp add: divide_simps del: max.bounded_iff)
using \<open>strict_mono r\<close> seq_suble by blast
also have "... \<le> 1 / real (Suc N2)"
by (simp add: field_simps)
also have "... < e/2"
using N2 \<open>0 < e\<close> by (simp add: field_simps)
finally have "dist (f (r (max N1 N2))) x < e / 2" .
moreover have "dist (f (r (max N1 N2))) l < e/2"
using N1 max.cobounded1 by blast
ultimately have "dist x l < e"
using dist_triangle_half_r by blast
then show ?thesis
using e \<open>x \<notin> G\<close> by blast
qed
then show ?thesis
by (meson that)
qed
lemma compact_uniformly_equicontinuous:
assumes "compact S"
and cont: "\<And>x e. \<lbrakk>x \<in> S; 0 < e\<rbrakk>
\<Longrightarrow> \<exists>d. 0 < d \<and>
(\<forall>f \<in> \<F>. \<forall>x' \<in> S. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)"
and "0 < e"
obtains d where "0 < d"
"\<And>f x x'. \<lbrakk>f \<in> \<F>; x \<in> S; x' \<in> S; dist x' x < d\<rbrakk> \<Longrightarrow> dist (f x') (f x) < e"
proof -
obtain d where d_pos: "\<And>x e. \<lbrakk>x \<in> S; 0 < e\<rbrakk> \<Longrightarrow> 0 < d x e"
and d_dist : "\<And>x x' e f. \<lbrakk>dist x' x < d x e; x \<in> S; x' \<in> S; 0 < e; f \<in> \<F>\<rbrakk> \<Longrightarrow> dist (f x') (f x) < e"
using cont by metis
let ?\<G> = "((\<lambda>x. ball x (d x (e / 2))) ` S)"
have Ssub: "S \<subseteq> \<Union> ?\<G>"
by clarsimp (metis d_pos \<open>0 < e\<close> dist_self half_gt_zero_iff)
then obtain k where "0 < k" and k: "\<And>x. x \<in> S \<Longrightarrow> \<exists>G \<in> ?\<G>. ball x k \<subseteq> G"
by (rule Heine_Borel_lemma [OF \<open>compact S\<close>]) auto
moreover have "dist (f v) (f u) < e" if "f \<in> \<F>" "u \<in> S" "v \<in> S" "dist v u < k" for f u v
proof -
obtain G where "G \<in> ?\<G>" "u \<in> G" "v \<in> G"
using k that
by (metis \<open>dist v u < k\<close> \<open>u \<in> S\<close> \<open>0 < k\<close> centre_in_ball subsetD dist_commute mem_ball)
then obtain w where w: "dist w u < d w (e / 2)" "dist w v < d w (e / 2)" "w \<in> S"
by auto
with that d_dist have "dist (f w) (f v) < e/2"
by (metis \<open>0 < e\<close> dist_commute half_gt_zero)
moreover
have "dist (f w) (f u) < e/2"
using that d_dist w by (metis \<open>0 < e\<close> dist_commute divide_pos_pos zero_less_numeral)
ultimately show ?thesis
using dist_triangle_half_r by blast
qed
ultimately show ?thesis using that by blast
qed
corollary compact_uniformly_continuous:
fixes f :: "'a :: metric_space \<Rightarrow> 'b :: metric_space"
assumes f: "continuous_on S f" and S: "compact S"
shows "uniformly_continuous_on S f"
using f
unfolding continuous_on_iff uniformly_continuous_on_def
by (force intro: compact_uniformly_equicontinuous [OF S, of "{f}"])
subsection \<open>Topological stuff about the set of Reals\<close>
lemma open_real:
fixes s :: "real set"
shows "open s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>e>0. \<forall>x'. \<bar>x' - x\<bar> < e --> x' \<in> s)"
unfolding open_dist dist_norm by simp
lemma islimpt_approachable_real:
fixes s :: "real set"
shows "x islimpt s \<longleftrightarrow> (\<forall>e>0. \<exists>x'\<in> s. x' \<noteq> x \<and> \<bar>x' - x\<bar> < e)"
unfolding islimpt_approachable dist_norm by simp
lemma closed_real:
fixes s :: "real set"
shows "closed s \<longleftrightarrow> (\<forall>x. (\<forall>e>0. \<exists>x' \<in> s. x' \<noteq> x \<and> \<bar>x' - x\<bar> < e) \<longrightarrow> x \<in> s)"
unfolding closed_limpt islimpt_approachable dist_norm by simp
lemma continuous_at_real_range:
fixes f :: "'a::real_normed_vector \<Rightarrow> real"
shows "continuous (at x) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. \<forall>x'. norm(x' - x) < d --> \<bar>f x' - f x\<bar> < e)"
unfolding continuous_at
unfolding Lim_at
unfolding dist_norm
apply auto
apply (erule_tac x=e in allE)
apply auto
apply (rule_tac x=d in exI)
apply auto
apply (erule_tac x=x' in allE)
apply auto
apply (erule_tac x=e in allE)
apply auto
done
lemma continuous_on_real_range:
fixes f :: "'a::real_normed_vector \<Rightarrow> real"
shows "continuous_on s f \<longleftrightarrow>
(\<forall>x \<in> s. \<forall>e>0. \<exists>d>0. (\<forall>x' \<in> s. norm(x' - x) < d \<longrightarrow> \<bar>f x' - f x\<bar> < e))"
unfolding continuous_on_iff dist_norm by simp
text \<open>Hence some handy theorems on distance, diameter etc. of/from a set.\<close>
lemma distance_attains_sup:
assumes "compact s" "s \<noteq> {}"
shows "\<exists>x\<in>s. \<forall>y\<in>s. dist a y \<le> dist a x"
proof (rule continuous_attains_sup [OF assms])
{
fix x
assume "x\<in>s"
have "(dist a \<longlongrightarrow> dist a x) (at x within s)"
by (intro tendsto_dist tendsto_const tendsto_ident_at)
}
then show "continuous_on s (dist a)"
unfolding continuous_on ..
qed
text \<open>For \emph{minimal} distance, we only need closure, not compactness.\<close>
lemma distance_attains_inf:
fixes a :: "'a::heine_borel"
assumes "closed s" and "s \<noteq> {}"
obtains x where "x\<in>s" "\<And>y. y \<in> s \<Longrightarrow> dist a x \<le> dist a y"
proof -
from assms obtain b where "b \<in> s" by auto
let ?B = "s \<inter> cball a (dist b a)"
have "?B \<noteq> {}" using \<open>b \<in> s\<close>
by (auto simp: dist_commute)
moreover have "continuous_on ?B (dist a)"
by (auto intro!: continuous_at_imp_continuous_on continuous_dist continuous_ident continuous_const)
moreover have "compact ?B"
by (intro closed_Int_compact \<open>closed s\<close> compact_cball)
ultimately obtain x where "x \<in> ?B" "\<forall>y\<in>?B. dist a x \<le> dist a y"
by (metis continuous_attains_inf)
with that show ?thesis by fastforce
qed
subsection \<open>Cartesian products\<close>
lemma bounded_Times:
assumes "bounded s" "bounded t"
shows "bounded (s \<times> t)"
proof -
obtain x y a b where "\<forall>z\<in>s. dist x z \<le> a" "\<forall>z\<in>t. dist y z \<le> b"
using assms [unfolded bounded_def] by auto
then have "\<forall>z\<in>s \<times> t. dist (x, y) z \<le> sqrt (a\<^sup>2 + b\<^sup>2)"
by (auto simp add: dist_Pair_Pair real_sqrt_le_mono add_mono power_mono)
then show ?thesis unfolding bounded_any_center [where a="(x, y)"] by auto
qed
lemma mem_Times_iff: "x \<in> A \<times> B \<longleftrightarrow> fst x \<in> A \<and> snd x \<in> B"
by (induct x) simp
lemma seq_compact_Times: "seq_compact s \<Longrightarrow> seq_compact t \<Longrightarrow> seq_compact (s \<times> t)"
unfolding seq_compact_def
apply clarify
apply (drule_tac x="fst \<circ> f" in spec)
apply (drule mp, simp add: mem_Times_iff)
apply (clarify, rename_tac l1 r1)
apply (drule_tac x="snd \<circ> f \<circ> r1" in spec)
apply (drule mp, simp add: mem_Times_iff)
apply (clarify, rename_tac l2 r2)
apply (rule_tac x="(l1, l2)" in rev_bexI, simp)
apply (rule_tac x="r1 \<circ> r2" in exI)
apply (rule conjI, simp add: strict_mono_def)
apply (drule_tac f=r2 in LIMSEQ_subseq_LIMSEQ, assumption)
apply (drule (1) tendsto_Pair) back
apply (simp add: o_def)
done
lemma compact_Times:
assumes "compact s" "compact t"
shows "compact (s \<times> t)"
proof (rule compactI)
fix C
assume C: "\<forall>t\<in>C. open t" "s \<times> t \<subseteq> \<Union>C"
have "\<forall>x\<in>s. \<exists>a. open a \<and> x \<in> a \<and> (\<exists>d\<subseteq>C. finite d \<and> a \<times> t \<subseteq> \<Union>d)"
proof
fix x
assume "x \<in> s"
have "\<forall>y\<in>t. \<exists>a b c. c \<in> C \<and> open a \<and> open b \<and> x \<in> a \<and> y \<in> b \<and> a \<times> b \<subseteq> c" (is "\<forall>y\<in>t. ?P y")
proof
fix y
assume "y \<in> t"
with \<open>x \<in> s\<close> C obtain c where "c \<in> C" "(x, y) \<in> c" "open c" by auto
then show "?P y" by (auto elim!: open_prod_elim)
qed
then obtain a b c where b: "\<And>y. y \<in> t \<Longrightarrow> open (b y)"
and c: "\<And>y. y \<in> t \<Longrightarrow> c y \<in> C \<and> open (a y) \<and> open (b y) \<and> x \<in> a y \<and> y \<in> b y \<and> a y \<times> b y \<subseteq> c y"
by metis
then have "\<forall>y\<in>t. open (b y)" "t \<subseteq> (\<Union>y\<in>t. b y)" by auto
with compactE_image[OF \<open>compact t\<close>] obtain D where D: "D \<subseteq> t" "finite D" "t \<subseteq> (\<Union>y\<in>D. b y)"
by metis
moreover from D c have "(\<Inter>y\<in>D. a y) \<times> t \<subseteq> (\<Union>y\<in>D. c y)"
by (fastforce simp: subset_eq)
ultimately show "\<exists>a. open a \<and> x \<in> a \<and> (\<exists>d\<subseteq>C. finite d \<and> a \<times> t \<subseteq> \<Union>d)"
using c by (intro exI[of _ "c`D"] exI[of _ "\<Inter>(a`D)"] conjI) (auto intro!: open_INT)
qed
then obtain a d where a: "\<And>x. x\<in>s \<Longrightarrow> open (a x)" "s \<subseteq> (\<Union>x\<in>s. a x)"
and d: "\<And>x. x \<in> s \<Longrightarrow> d x \<subseteq> C \<and> finite (d x) \<and> a x \<times> t \<subseteq> \<Union>d x"
unfolding subset_eq UN_iff by metis
moreover
from compactE_image[OF \<open>compact s\<close> a]
obtain e where e: "e \<subseteq> s" "finite e" and s: "s \<subseteq> (\<Union>x\<in>e. a x)"
by auto
moreover
{
from s have "s \<times> t \<subseteq> (\<Union>x\<in>e. a x \<times> t)"
by auto
also have "\<dots> \<subseteq> (\<Union>x\<in>e. \<Union>d x)"
using d \<open>e \<subseteq> s\<close> by (intro UN_mono) auto
finally have "s \<times> t \<subseteq> (\<Union>x\<in>e. \<Union>d x)" .
}
ultimately show "\<exists>C'\<subseteq>C. finite C' \<and> s \<times> t \<subseteq> \<Union>C'"
by (intro exI[of _ "(\<Union>x\<in>e. d x)"]) (auto simp add: subset_eq)
qed
text\<open>Hence some useful properties follow quite easily.\<close>
lemma compact_scaling:
fixes s :: "'a::real_normed_vector set"
assumes "compact s"
shows "compact ((\<lambda>x. c *\<^sub>R x) ` s)"
proof -
let ?f = "\<lambda>x. scaleR c x"
have *: "bounded_linear ?f" by (rule bounded_linear_scaleR_right)
show ?thesis
using compact_continuous_image[of s ?f] continuous_at_imp_continuous_on[of s ?f]
using linear_continuous_at[OF *] assms
by auto
qed
lemma compact_negations:
fixes s :: "'a::real_normed_vector set"
assumes "compact s"
shows "compact ((\<lambda>x. - x) ` s)"
using compact_scaling [OF assms, of "- 1"] by auto
lemma compact_sums:
fixes s t :: "'a::real_normed_vector set"
assumes "compact s"
and "compact t"
shows "compact {x + y | x y. x \<in> s \<and> y \<in> t}"
proof -
have *: "{x + y | x y. x \<in> s \<and> y \<in> t} = (\<lambda>z. fst z + snd z) ` (s \<times> t)"
apply auto
unfolding image_iff
apply (rule_tac x="(xa, y)" in bexI)
apply auto
done
have "continuous_on (s \<times> t) (\<lambda>z. fst z + snd z)"
unfolding continuous_on by (rule ballI) (intro tendsto_intros)
then show ?thesis
unfolding * using compact_continuous_image compact_Times [OF assms] by auto
qed
lemma compact_differences:
fixes s t :: "'a::real_normed_vector set"
assumes "compact s"
and "compact t"
shows "compact {x - y | x y. x \<in> s \<and> y \<in> t}"
proof-
have "{x - y | x y. x\<in>s \<and> y \<in> t} = {x + y | x y. x \<in> s \<and> y \<in> (uminus ` t)}"
apply auto
apply (rule_tac x= xa in exI)
apply auto
done
then show ?thesis
using compact_sums[OF assms(1) compact_negations[OF assms(2)]] by auto
qed
lemma compact_translation:
fixes s :: "'a::real_normed_vector set"
assumes "compact s"
shows "compact ((\<lambda>x. a + x) ` s)"
proof -
have "{x + y |x y. x \<in> s \<and> y \<in> {a}} = (\<lambda>x. a + x) ` s"
by auto
then show ?thesis
using compact_sums[OF assms compact_sing[of a]] by auto
qed
lemma compact_affinity:
fixes s :: "'a::real_normed_vector set"
assumes "compact s"
shows "compact ((\<lambda>x. a + c *\<^sub>R x) ` s)"
proof -
have "op + a ` op *\<^sub>R c ` s = (\<lambda>x. a + c *\<^sub>R x) ` s"
by auto
then show ?thesis
using compact_translation[OF compact_scaling[OF assms], of a c] by auto
qed
text \<open>Hence we get the following.\<close>
lemma compact_sup_maxdistance:
fixes s :: "'a::metric_space set"
assumes "compact s"
and "s \<noteq> {}"
shows "\<exists>x\<in>s. \<exists>y\<in>s. \<forall>u\<in>s. \<forall>v\<in>s. dist u v \<le> dist x y"
proof -
have "compact (s \<times> s)"
using \<open>compact s\<close> by (intro compact_Times)
moreover have "s \<times> s \<noteq> {}"
using \<open>s \<noteq> {}\<close> by auto
moreover have "continuous_on (s \<times> s) (\<lambda>x. dist (fst x) (snd x))"
by (intro continuous_at_imp_continuous_on ballI continuous_intros)
ultimately show ?thesis
using continuous_attains_sup[of "s \<times> s" "\<lambda>x. dist (fst x) (snd x)"] by auto
qed
subsection \<open>The diameter of a set.\<close>
definition diameter :: "'a::metric_space set \<Rightarrow> real" where
"diameter S = (if S = {} then 0 else SUP (x,y):S\<times>S. dist x y)"
lemma diameter_empty [simp]: "diameter{} = 0"
by (auto simp: diameter_def)
lemma diameter_singleton [simp]: "diameter{x} = 0"
by (auto simp: diameter_def)
lemma diameter_le:
assumes "S \<noteq> {} \<or> 0 \<le> d"
and no: "\<And>x y. \<lbrakk>x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> norm(x - y) \<le> d"
shows "diameter S \<le> d"
using assms
by (auto simp: dist_norm diameter_def intro: cSUP_least)
lemma diameter_bounded_bound:
fixes s :: "'a :: metric_space set"
assumes s: "bounded s" "x \<in> s" "y \<in> s"
shows "dist x y \<le> diameter s"
proof -
from s obtain z d where z: "\<And>x. x \<in> s \<Longrightarrow> dist z x \<le> d"
unfolding bounded_def by auto
have "bdd_above (case_prod dist ` (s\<times>s))"
proof (intro bdd_aboveI, safe)
fix a b
assume "a \<in> s" "b \<in> s"
with z[of a] z[of b] dist_triangle[of a b z]
show "dist a b \<le> 2 * d"
by (simp add: dist_commute)
qed
moreover have "(x,y) \<in> s\<times>s" using s by auto
ultimately have "dist x y \<le> (SUP (x,y):s\<times>s. dist x y)"
by (rule cSUP_upper2) simp
with \<open>x \<in> s\<close> show ?thesis
by (auto simp add: diameter_def)
qed
lemma diameter_lower_bounded:
fixes s :: "'a :: metric_space set"
assumes s: "bounded s"
and d: "0 < d" "d < diameter s"
shows "\<exists>x\<in>s. \<exists>y\<in>s. d < dist x y"
proof (rule ccontr)
assume contr: "\<not> ?thesis"
moreover have "s \<noteq> {}"
using d by (auto simp add: diameter_def)
ultimately have "diameter s \<le> d"
by (auto simp: not_less diameter_def intro!: cSUP_least)
with \<open>d < diameter s\<close> show False by auto
qed
lemma diameter_bounded:
assumes "bounded s"
shows "\<forall>x\<in>s. \<forall>y\<in>s. dist x y \<le> diameter s"
and "\<forall>d>0. d < diameter s \<longrightarrow> (\<exists>x\<in>s. \<exists>y\<in>s. dist x y > d)"
using diameter_bounded_bound[of s] diameter_lower_bounded[of s] assms
by auto
lemma diameter_compact_attained:
assumes "compact s"
and "s \<noteq> {}"
shows "\<exists>x\<in>s. \<exists>y\<in>s. dist x y = diameter s"
proof -
have b: "bounded s" using assms(1)
by (rule compact_imp_bounded)
then obtain x y where xys: "x\<in>s" "y\<in>s"
and xy: "\<forall>u\<in>s. \<forall>v\<in>s. dist u v \<le> dist x y"
using compact_sup_maxdistance[OF assms] by auto
then have "diameter s \<le> dist x y"
unfolding diameter_def
apply clarsimp
apply (rule cSUP_least)
apply fast+
done
then show ?thesis
by (metis b diameter_bounded_bound order_antisym xys)
qed
lemma diameter_ge_0:
assumes "bounded S" shows "0 \<le> diameter S"
by (metis all_not_in_conv assms diameter_bounded_bound diameter_empty dist_self order_refl)
lemma diameter_subset:
assumes "S \<subseteq> T" "bounded T"
shows "diameter S \<le> diameter T"
proof (cases "S = {} \<or> T = {}")
case True
with assms show ?thesis
by (force simp: diameter_ge_0)
next
case False
then have "bdd_above ((\<lambda>x. case x of (x, xa) \<Rightarrow> dist x xa) ` (T \<times> T))"
using \<open>bounded T\<close> diameter_bounded_bound by (force simp: bdd_above_def)
with False \<open>S \<subseteq> T\<close> show ?thesis
apply (simp add: diameter_def)
apply (rule cSUP_subset_mono, auto)
done
qed
lemma diameter_closure:
assumes "bounded S"
shows "diameter(closure S) = diameter S"
proof (rule order_antisym)
have "False" if "diameter S < diameter (closure S)"
proof -
define d where "d = diameter(closure S) - diameter(S)"
have "d > 0"
using that by (simp add: d_def)
then have "diameter(closure(S)) - d / 2 < diameter(closure(S))"
by simp
have dd: "diameter (closure S) - d / 2 = (diameter(closure(S)) + diameter(S)) / 2"
by (simp add: d_def divide_simps)
have bocl: "bounded (closure S)"
using assms by blast
moreover have "0 \<le> diameter S"
using assms diameter_ge_0 by blast
ultimately obtain x y where "x \<in> closure S" "y \<in> closure S" and xy: "diameter(closure(S)) - d / 2 < dist x y"
using diameter_bounded(2) [OF bocl, rule_format, of "diameter(closure(S)) - d / 2"] \<open>d > 0\<close> d_def by auto
then obtain x' y' where x'y': "x' \<in> S" "dist x' x < d/4" "y' \<in> S" "dist y' y < d/4"
using closure_approachable
by (metis \<open>0 < d\<close> zero_less_divide_iff zero_less_numeral)
then have "dist x' y' \<le> diameter S"
using assms diameter_bounded_bound by blast
with x'y' have "dist x y \<le> d / 4 + diameter S + d / 4"
by (meson add_mono_thms_linordered_semiring(1) dist_triangle dist_triangle3 less_eq_real_def order_trans)
then show ?thesis
using xy d_def by linarith
qed
then show "diameter (closure S) \<le> diameter S"
by fastforce
next
show "diameter S \<le> diameter (closure S)"
by (simp add: assms bounded_closure closure_subset diameter_subset)
qed
lemma diameter_cball [simp]:
fixes a :: "'a::euclidean_space"
shows "diameter(cball a r) = (if r < 0 then 0 else 2*r)"
proof -
have "diameter(cball a r) = 2*r" if "r \<ge> 0"
proof (rule order_antisym)
show "diameter (cball a r) \<le> 2*r"
proof (rule diameter_le)
fix x y assume "x \<in> cball a r" "y \<in> cball a r"
then have "norm (x - a) \<le> r" "norm (a - y) \<le> r"
by (auto simp: dist_norm norm_minus_commute)
then have "norm (x - y) \<le> r+r"
using norm_diff_triangle_le by blast
then show "norm (x - y) \<le> 2*r" by simp
qed (simp add: that)
have "2*r = dist (a + r *\<^sub>R (SOME i. i \<in> Basis)) (a - r *\<^sub>R (SOME i. i \<in> Basis))"
apply (simp add: dist_norm)
by (metis abs_of_nonneg mult.right_neutral norm_numeral norm_scaleR norm_some_Basis real_norm_def scaleR_2 that)
also have "... \<le> diameter (cball a r)"
apply (rule diameter_bounded_bound)
using that by (auto simp: dist_norm)
finally show "2*r \<le> diameter (cball a r)" .
qed
then show ?thesis by simp
qed
lemma diameter_ball [simp]:
fixes a :: "'a::euclidean_space"
shows "diameter(ball a r) = (if r < 0 then 0 else 2*r)"
proof -
have "diameter(ball a r) = 2*r" if "r > 0"
by (metis bounded_ball diameter_closure closure_ball diameter_cball less_eq_real_def linorder_not_less that)
then show ?thesis
by (simp add: diameter_def)
qed
lemma diameter_closed_interval [simp]: "diameter {a..b} = (if b < a then 0 else b-a)"
proof -
have "{a .. b} = cball ((a+b)/2) ((b-a)/2)"
by (auto simp: dist_norm abs_if divide_simps split: if_split_asm)
then show ?thesis
by simp
qed
lemma diameter_open_interval [simp]: "diameter {a<..<b} = (if b < a then 0 else b-a)"
proof -
have "{a <..< b} = ball ((a+b)/2) ((b-a)/2)"
by (auto simp: dist_norm abs_if divide_simps split: if_split_asm)
then show ?thesis
by simp
qed
proposition Lebesgue_number_lemma:
assumes "compact S" "\<C> \<noteq> {}" "S \<subseteq> \<Union>\<C>" and ope: "\<And>B. B \<in> \<C> \<Longrightarrow> open B"
obtains \<delta> where "0 < \<delta>" "\<And>T. \<lbrakk>T \<subseteq> S; diameter T < \<delta>\<rbrakk> \<Longrightarrow> \<exists>B \<in> \<C>. T \<subseteq> B"
proof (cases "S = {}")
case True
then show ?thesis
by (metis \<open>\<C> \<noteq> {}\<close> zero_less_one empty_subsetI equals0I subset_trans that)
next
case False
{ fix x assume "x \<in> S"
then obtain C where C: "x \<in> C" "C \<in> \<C>"
using \<open>S \<subseteq> \<Union>\<C>\<close> by blast
then obtain r where r: "r>0" "ball x (2*r) \<subseteq> C"
by (metis mult.commute mult_2_right not_le ope openE real_sum_of_halves zero_le_numeral zero_less_mult_iff)
then have "\<exists>r C. r > 0 \<and> ball x (2*r) \<subseteq> C \<and> C \<in> \<C>"
using C by blast
}
then obtain r where r: "\<And>x. x \<in> S \<Longrightarrow> r x > 0 \<and> (\<exists>C \<in> \<C>. ball x (2*r x) \<subseteq> C)"
by metis
then have "S \<subseteq> (\<Union>x \<in> S. ball x (r x))"
by auto
then obtain \<T> where "finite \<T>" "S \<subseteq> \<Union>\<T>" and \<T>: "\<T> \<subseteq> (\<lambda>x. ball x (r x)) ` S"
by (rule compactE [OF \<open>compact S\<close>]) auto
then obtain S0 where "S0 \<subseteq> S" "finite S0" and S0: "\<T> = (\<lambda>x. ball x (r x)) ` S0"
by (meson finite_subset_image)
then have "S0 \<noteq> {}"
using False \<open>S \<subseteq> \<Union>\<T>\<close> by auto
define \<delta> where "\<delta> = Inf (r ` S0)"
have "\<delta> > 0"
using \<open>finite S0\<close> \<open>S0 \<subseteq> S\<close> \<open>S0 \<noteq> {}\<close> r by (auto simp: \<delta>_def finite_less_Inf_iff)
show ?thesis
proof
show "0 < \<delta>"
by (simp add: \<open>0 < \<delta>\<close>)
show "\<exists>B \<in> \<C>. T \<subseteq> B" if "T \<subseteq> S" and dia: "diameter T < \<delta>" for T
proof (cases "T = {}")
case True
then show ?thesis
using \<open>\<C> \<noteq> {}\<close> by blast
next
case False
then obtain y where "y \<in> T" by blast
then have "y \<in> S"
using \<open>T \<subseteq> S\<close> by auto
then obtain x where "x \<in> S0" and x: "y \<in> ball x (r x)"
using \<open>S \<subseteq> \<Union>\<T>\<close> S0 that by blast
have "ball y \<delta> \<subseteq> ball y (r x)"
by (metis \<delta>_def \<open>S0 \<noteq> {}\<close> \<open>finite S0\<close> \<open>x \<in> S0\<close> empty_is_image finite_imageI finite_less_Inf_iff imageI less_irrefl not_le subset_ball)
also have "... \<subseteq> ball x (2*r x)"
by clarsimp (metis dist_commute dist_triangle_less_add mem_ball mult_2 x)
finally obtain C where "C \<in> \<C>" "ball y \<delta> \<subseteq> C"
by (meson r \<open>S0 \<subseteq> S\<close> \<open>x \<in> S0\<close> dual_order.trans subsetCE)
have "bounded T"
using \<open>compact S\<close> bounded_subset compact_imp_bounded \<open>T \<subseteq> S\<close> by blast
then have "T \<subseteq> ball y \<delta>"
using \<open>y \<in> T\<close> dia diameter_bounded_bound by fastforce
then show ?thesis
apply (rule_tac x=C in bexI)
using \<open>ball y \<delta> \<subseteq> C\<close> \<open>C \<in> \<C>\<close> by auto
qed
qed
qed
subsection \<open>Compact sets and the closure operation.\<close>
lemma closed_scaling:
fixes S :: "'a::real_normed_vector set"
assumes "closed S"
shows "closed ((\<lambda>x. c *\<^sub>R x) ` S)"
proof (cases "c = 0")
case True then show ?thesis
by (auto simp add: image_constant_conv)
next
case False
from assms have "closed ((\<lambda>x. inverse c *\<^sub>R x) -` S)"
by (simp add: continuous_closed_vimage)
also have "(\<lambda>x. inverse c *\<^sub>R x) -` S = (\<lambda>x. c *\<^sub>R x) ` S"
using \<open>c \<noteq> 0\<close> by (auto elim: image_eqI [rotated])
finally show ?thesis .
qed
lemma closed_negations:
fixes S :: "'a::real_normed_vector set"
assumes "closed S"
shows "closed ((\<lambda>x. -x) ` S)"
using closed_scaling[OF assms, of "- 1"] by simp
lemma compact_closed_sums:
fixes S :: "'a::real_normed_vector set"
assumes "compact S" and "closed T"
shows "closed (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})"
proof -
let ?S = "{x + y |x y. x \<in> S \<and> y \<in> T}"
{
fix x l
assume as: "\<forall>n. x n \<in> ?S" "(x \<longlongrightarrow> l) sequentially"
from as(1) obtain f where f: "\<forall>n. x n = fst (f n) + snd (f n)" "\<forall>n. fst (f n) \<in> S" "\<forall>n. snd (f n) \<in> T"
using choice[of "\<lambda>n y. x n = (fst y) + (snd y) \<and> fst y \<in> S \<and> snd y \<in> T"] by auto
obtain l' r where "l'\<in>S" and r: "strict_mono r" and lr: "(((\<lambda>n. fst (f n)) \<circ> r) \<longlongrightarrow> l') sequentially"
using assms(1)[unfolded compact_def, THEN spec[where x="\<lambda> n. fst (f n)"]] using f(2) by auto
have "((\<lambda>n. snd (f (r n))) \<longlongrightarrow> l - l') sequentially"
using tendsto_diff[OF LIMSEQ_subseq_LIMSEQ[OF as(2) r] lr] and f(1)
unfolding o_def
by auto
then have "l - l' \<in> T"
using assms(2)[unfolded closed_sequential_limits,
THEN spec[where x="\<lambda> n. snd (f (r n))"],
THEN spec[where x="l - l'"]]
using f(3)
by auto
then have "l \<in> ?S"
using \<open>l' \<in> S\<close>
apply auto
apply (rule_tac x=l' in exI)
apply (rule_tac x="l - l'" in exI)
apply auto
done
}
moreover have "?S = (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})"
by force
ultimately show ?thesis
unfolding closed_sequential_limits
by (metis (no_types, lifting))
qed
lemma closed_compact_sums:
fixes S T :: "'a::real_normed_vector set"
assumes "closed S" "compact T"
shows "closed (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})"
proof -
have "(\<Union>x\<in> T. \<Union>y \<in> S. {x + y}) = (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})"
by auto
then show ?thesis
using compact_closed_sums[OF assms(2,1)] by simp
qed
lemma compact_closed_differences:
fixes S T :: "'a::real_normed_vector set"
assumes "compact S" "closed T"
shows "closed (\<Union>x\<in> S. \<Union>y \<in> T. {x - y})"
proof -
have "(\<Union>x\<in> S. \<Union>y \<in> uminus ` T. {x + y}) = (\<Union>x\<in> S. \<Union>y \<in> T. {x - y})"
by force
then show ?thesis
using compact_closed_sums[OF assms(1) closed_negations[OF assms(2)]] by auto
qed
lemma closed_compact_differences:
fixes S T :: "'a::real_normed_vector set"
assumes "closed S" "compact T"
shows "closed (\<Union>x\<in> S. \<Union>y \<in> T. {x - y})"
proof -
have "(\<Union>x\<in> S. \<Union>y \<in> uminus ` T. {x + y}) = {x - y |x y. x \<in> S \<and> y \<in> T}"
by auto
then show ?thesis
using closed_compact_sums[OF assms(1) compact_negations[OF assms(2)]] by simp
qed
lemma closed_translation:
fixes a :: "'a::real_normed_vector"
assumes "closed S"
shows "closed ((\<lambda>x. a + x) ` S)"
proof -
have "(\<Union>x\<in> {a}. \<Union>y \<in> S. {x + y}) = (op + a ` S)" by auto
then show ?thesis
using compact_closed_sums[OF compact_sing[of a] assms] by auto
qed
lemma translation_Compl:
fixes a :: "'a::ab_group_add"
shows "(\<lambda>x. a + x) ` (- t) = - ((\<lambda>x. a + x) ` t)"
apply (auto simp add: image_iff)
apply (rule_tac x="x - a" in bexI)
apply auto
done
lemma translation_UNIV:
fixes a :: "'a::ab_group_add"
shows "range (\<lambda>x. a + x) = UNIV"
apply (auto simp add: image_iff)
apply (rule_tac x="x - a" in exI)
apply auto
done
lemma translation_diff:
fixes a :: "'a::ab_group_add"
shows "(\<lambda>x. a + x) ` (s - t) = ((\<lambda>x. a + x) ` s) - ((\<lambda>x. a + x) ` t)"
by auto
lemma translation_Int:
fixes a :: "'a::ab_group_add"
shows "(\<lambda>x. a + x) ` (s \<inter> t) = ((\<lambda>x. a + x) ` s) \<inter> ((\<lambda>x. a + x) ` t)"
by auto
lemma closure_translation:
fixes a :: "'a::real_normed_vector"
shows "closure ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (closure s)"
proof -
have *: "op + a ` (- s) = - op + a ` s"
apply auto
unfolding image_iff
apply (rule_tac x="x - a" in bexI)
apply auto
done
show ?thesis
unfolding closure_interior translation_Compl
using interior_translation[of a "- s"]
unfolding *
by auto
qed
lemma frontier_translation:
fixes a :: "'a::real_normed_vector"
shows "frontier((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (frontier s)"
unfolding frontier_def translation_diff interior_translation closure_translation
by auto
lemma sphere_translation:
fixes a :: "'n::euclidean_space"
shows "sphere (a+c) r = op+a ` sphere c r"
apply safe
apply (rule_tac x="x-a" in image_eqI)
apply (auto simp: dist_norm algebra_simps)
done
lemma cball_translation:
fixes a :: "'n::euclidean_space"
shows "cball (a+c) r = op+a ` cball c r"
apply safe
apply (rule_tac x="x-a" in image_eqI)
apply (auto simp: dist_norm algebra_simps)
done
lemma ball_translation:
fixes a :: "'n::euclidean_space"
shows "ball (a+c) r = op+a ` ball c r"
apply safe
apply (rule_tac x="x-a" in image_eqI)
apply (auto simp: dist_norm algebra_simps)
done
subsection \<open>Separation between points and sets\<close>
lemma separate_point_closed:
fixes s :: "'a::heine_borel set"
assumes "closed s" and "a \<notin> s"
shows "\<exists>d>0. \<forall>x\<in>s. d \<le> dist a x"
proof (cases "s = {}")
case True
then show ?thesis by(auto intro!: exI[where x=1])
next
case False
from assms obtain x where "x\<in>s" "\<forall>y\<in>s. dist a x \<le> dist a y"
using \<open>s \<noteq> {}\<close> by (blast intro: distance_attains_inf [of s a])
with \<open>x\<in>s\<close> show ?thesis using dist_pos_lt[of a x] and\<open>a \<notin> s\<close>
by blast
qed
lemma separate_compact_closed:
fixes s t :: "'a::heine_borel set"
assumes "compact s"
and t: "closed t" "s \<inter> t = {}"
shows "\<exists>d>0. \<forall>x\<in>s. \<forall>y\<in>t. d \<le> dist x y"
proof cases
assume "s \<noteq> {} \<and> t \<noteq> {}"
then have "s \<noteq> {}" "t \<noteq> {}" by auto
let ?inf = "\<lambda>x. infdist x t"
have "continuous_on s ?inf"
by (auto intro!: continuous_at_imp_continuous_on continuous_infdist continuous_ident)
then obtain x where x: "x \<in> s" "\<forall>y\<in>s. ?inf x \<le> ?inf y"
using continuous_attains_inf[OF \<open>compact s\<close> \<open>s \<noteq> {}\<close>] by auto
then have "0 < ?inf x"
using t \<open>t \<noteq> {}\<close> in_closed_iff_infdist_zero by (auto simp: less_le infdist_nonneg)
moreover have "\<forall>x'\<in>s. \<forall>y\<in>t. ?inf x \<le> dist x' y"
using x by (auto intro: order_trans infdist_le)
ultimately show ?thesis by auto
qed (auto intro!: exI[of _ 1])
lemma separate_closed_compact:
fixes s t :: "'a::heine_borel set"
assumes "closed s"
and "compact t"
and "s \<inter> t = {}"
shows "\<exists>d>0. \<forall>x\<in>s. \<forall>y\<in>t. d \<le> dist x y"
proof -
have *: "t \<inter> s = {}"
using assms(3) by auto
show ?thesis
using separate_compact_closed[OF assms(2,1) *]
apply auto
apply (rule_tac x=d in exI)
apply auto
apply (erule_tac x=y in ballE)
apply (auto simp add: dist_commute)
done
qed
subsection \<open>Closure of halfspaces and hyperplanes\<close>
lemma isCont_open_vimage:
assumes "\<And>x. isCont f x"
and "open s"
shows "open (f -` s)"
proof -
from assms(1) have "continuous_on UNIV f"
unfolding isCont_def continuous_on_def by simp
then have "open {x \<in> UNIV. f x \<in> s}"
using open_UNIV \<open>open s\<close> by (rule continuous_open_preimage)
then show "open (f -` s)"
by (simp add: vimage_def)
qed
lemma isCont_closed_vimage:
assumes "\<And>x. isCont f x"
and "closed s"
shows "closed (f -` s)"
using assms unfolding closed_def vimage_Compl [symmetric]
by (rule isCont_open_vimage)
lemma continuous_on_closed_Collect_le:
fixes f g :: "'a::t2_space \<Rightarrow> real"
assumes f: "continuous_on s f" and g: "continuous_on s g" and s: "closed s"
shows "closed {x \<in> s. f x \<le> g x}"
proof -
have "closed ((\<lambda>x. g x - f x) -` {0..} \<inter> s)"
using closed_real_atLeast continuous_on_diff [OF g f]
by (simp add: continuous_on_closed_vimage [OF s])
also have "((\<lambda>x. g x - f x) -` {0..} \<inter> s) = {x\<in>s. f x \<le> g x}"
by auto
finally show ?thesis .
qed
lemma continuous_at_inner: "continuous (at x) (inner a)"
unfolding continuous_at by (intro tendsto_intros)
lemma closed_halfspace_le: "closed {x. inner a x \<le> b}"
by (simp add: closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
lemma closed_halfspace_ge: "closed {x. inner a x \<ge> b}"
by (simp add: closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
lemma closed_hyperplane: "closed {x. inner a x = b}"
by (simp add: closed_Collect_eq continuous_on_inner continuous_on_const continuous_on_id)
lemma closed_halfspace_component_le: "closed {x::'a::euclidean_space. x\<bullet>i \<le> a}"
by (simp add: closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
lemma closed_halfspace_component_ge: "closed {x::'a::euclidean_space. x\<bullet>i \<ge> a}"
by (simp add: closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
lemma closed_interval_left:
fixes b :: "'a::euclidean_space"
shows "closed {x::'a. \<forall>i\<in>Basis. x\<bullet>i \<le> b\<bullet>i}"
by (simp add: Collect_ball_eq closed_INT closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
lemma closed_interval_right:
fixes a :: "'a::euclidean_space"
shows "closed {x::'a. \<forall>i\<in>Basis. a\<bullet>i \<le> x\<bullet>i}"
by (simp add: Collect_ball_eq closed_INT closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
lemma continuous_le_on_closure:
fixes a::real
assumes f: "continuous_on (closure s) f"
and x: "x \<in> closure(s)"
and xlo: "\<And>x. x \<in> s ==> f(x) \<le> a"
shows "f(x) \<le> a"
using image_closure_subset [OF f]
using image_closure_subset [OF f] closed_halfspace_le [of "1::real" a] assms
by force
lemma continuous_ge_on_closure:
fixes a::real
assumes f: "continuous_on (closure s) f"
and x: "x \<in> closure(s)"
and xlo: "\<And>x. x \<in> s ==> f(x) \<ge> a"
shows "f(x) \<ge> a"
using image_closure_subset [OF f] closed_halfspace_ge [of a "1::real"] assms
by force
text \<open>Openness of halfspaces.\<close>
lemma open_halfspace_lt: "open {x. inner a x < b}"
by (simp add: open_Collect_less continuous_on_inner continuous_on_const continuous_on_id)
lemma open_halfspace_gt: "open {x. inner a x > b}"
by (simp add: open_Collect_less continuous_on_inner continuous_on_const continuous_on_id)
lemma open_halfspace_component_lt: "open {x::'a::euclidean_space. x\<bullet>i < a}"
by (simp add: open_Collect_less continuous_on_inner continuous_on_const continuous_on_id)
lemma open_halfspace_component_gt: "open {x::'a::euclidean_space. x\<bullet>i > a}"
by (simp add: open_Collect_less continuous_on_inner continuous_on_const continuous_on_id)
text \<open>This gives a simple derivation of limit component bounds.\<close>
lemma Lim_component_le:
fixes f :: "'a \<Rightarrow> 'b::euclidean_space"
assumes "(f \<longlongrightarrow> l) net"
and "\<not> (trivial_limit net)"
and "eventually (\<lambda>x. f(x)\<bullet>i \<le> b) net"
shows "l\<bullet>i \<le> b"
by (rule tendsto_le[OF assms(2) tendsto_const tendsto_inner[OF assms(1) tendsto_const] assms(3)])
lemma Lim_component_ge:
fixes f :: "'a \<Rightarrow> 'b::euclidean_space"
assumes "(f \<longlongrightarrow> l) net"
and "\<not> (trivial_limit net)"
and "eventually (\<lambda>x. b \<le> (f x)\<bullet>i) net"
shows "b \<le> l\<bullet>i"
by (rule tendsto_le[OF assms(2) tendsto_inner[OF assms(1) tendsto_const] tendsto_const assms(3)])
lemma Lim_component_eq:
fixes f :: "'a \<Rightarrow> 'b::euclidean_space"
assumes net: "(f \<longlongrightarrow> l) net" "\<not> trivial_limit net"
and ev:"eventually (\<lambda>x. f(x)\<bullet>i = b) net"
shows "l\<bullet>i = b"
using ev[unfolded order_eq_iff eventually_conj_iff]
using Lim_component_ge[OF net, of b i]
using Lim_component_le[OF net, of i b]
by auto
text \<open>Limits relative to a union.\<close>
lemma eventually_within_Un:
"eventually P (at x within (s \<union> t)) \<longleftrightarrow>
eventually P (at x within s) \<and> eventually P (at x within t)"
unfolding eventually_at_filter
by (auto elim!: eventually_rev_mp)
lemma Lim_within_union:
"(f \<longlongrightarrow> l) (at x within (s \<union> t)) \<longleftrightarrow>
(f \<longlongrightarrow> l) (at x within s) \<and> (f \<longlongrightarrow> l) (at x within t)"
unfolding tendsto_def
by (auto simp add: eventually_within_Un)
lemma Lim_topological:
"(f \<longlongrightarrow> l) net \<longleftrightarrow>
trivial_limit net \<or> (\<forall>S. open S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net)"
unfolding tendsto_def trivial_limit_eq by auto
text \<open>Continuity relative to a union.\<close>
lemma continuous_on_Un_local:
"\<lbrakk>closedin (subtopology euclidean (s \<union> t)) s; closedin (subtopology euclidean (s \<union> t)) t;
continuous_on s f; continuous_on t f\<rbrakk>
\<Longrightarrow> continuous_on (s \<union> t) f"
unfolding continuous_on closedin_limpt
by (metis Lim_trivial_limit Lim_within_union Un_iff trivial_limit_within)
lemma continuous_on_cases_local:
"\<lbrakk>closedin (subtopology euclidean (s \<union> t)) s; closedin (subtopology euclidean (s \<union> t)) t;
continuous_on s f; continuous_on t g;
\<And>x. \<lbrakk>x \<in> s \<and> ~P x \<or> x \<in> t \<and> P x\<rbrakk> \<Longrightarrow> f x = g x\<rbrakk>
\<Longrightarrow> continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)"
by (rule continuous_on_Un_local) (auto intro: continuous_on_eq)
lemma continuous_on_cases_le:
fixes h :: "'a :: topological_space \<Rightarrow> real"
assumes "continuous_on {t \<in> s. h t \<le> a} f"
and "continuous_on {t \<in> s. a \<le> h t} g"
and h: "continuous_on s h"
and "\<And>t. \<lbrakk>t \<in> s; h t = a\<rbrakk> \<Longrightarrow> f t = g t"
shows "continuous_on s (\<lambda>t. if h t \<le> a then f(t) else g(t))"
proof -
have s: "s = {t \<in> s. h t \<in> atMost a} \<union> {t \<in> s. h t \<in> atLeast a}"
by force
have 1: "closedin (subtopology euclidean s) {t \<in> s. h t \<in> atMost a}"
by (rule continuous_closedin_preimage [OF h closed_atMost])
have 2: "closedin (subtopology euclidean s) {t \<in> s. h t \<in> atLeast a}"
by (rule continuous_closedin_preimage [OF h closed_atLeast])
show ?thesis
apply (rule continuous_on_subset [of s, OF _ order_refl])
apply (subst s)
apply (rule continuous_on_cases_local)
using 1 2 s assms apply auto
done
qed
lemma continuous_on_cases_1:
fixes s :: "real set"
assumes "continuous_on {t \<in> s. t \<le> a} f"
and "continuous_on {t \<in> s. a \<le> t} g"
and "a \<in> s \<Longrightarrow> f a = g a"
shows "continuous_on s (\<lambda>t. if t \<le> a then f(t) else g(t))"
using assms
by (auto simp: continuous_on_id intro: continuous_on_cases_le [where h = id, simplified])
text\<open>Some more convenient intermediate-value theorem formulations.\<close>
lemma connected_ivt_hyperplane:
assumes "connected s"
and "x \<in> s"
and "y \<in> s"
and "inner a x \<le> b"
and "b \<le> inner a y"
shows "\<exists>z \<in> s. inner a z = b"
proof (rule ccontr)
assume as:"\<not> (\<exists>z\<in>s. inner a z = b)"
let ?A = "{x. inner a x < b}"
let ?B = "{x. inner a x > b}"
have "open ?A" "open ?B"
using open_halfspace_lt and open_halfspace_gt by auto
moreover
have "?A \<inter> ?B = {}" by auto
moreover
have "s \<subseteq> ?A \<union> ?B" using as by auto
ultimately
show False
using assms(1)[unfolded connected_def not_ex,
THEN spec[where x="?A"], THEN spec[where x="?B"]]
using assms(2-5)
by auto
qed
lemma connected_ivt_component:
fixes x::"'a::euclidean_space"
shows "connected s \<Longrightarrow>
x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow>
x\<bullet>k \<le> a \<Longrightarrow> a \<le> y\<bullet>k \<Longrightarrow> (\<exists>z\<in>s. z\<bullet>k = a)"
using connected_ivt_hyperplane[of s x y "k::'a" a]
by (auto simp: inner_commute)
subsection \<open>Intervals\<close>
lemma open_box[intro]: "open (box a b)"
proof -
have "open (\<Inter>i\<in>Basis. (op \<bullet> i) -` {a \<bullet> i <..< b \<bullet> i})"
by (auto intro!: continuous_open_vimage continuous_inner continuous_ident continuous_const)
also have "(\<Inter>i\<in>Basis. (op \<bullet> i) -` {a \<bullet> i <..< b \<bullet> i}) = box a b"
by (auto simp add: box_def inner_commute)
finally show ?thesis .
qed
instance euclidean_space \<subseteq> second_countable_topology
proof
define a where "a f = (\<Sum>i\<in>Basis. fst (f i) *\<^sub>R i)" for f :: "'a \<Rightarrow> real \<times> real"
then have a: "\<And>f. (\<Sum>i\<in>Basis. fst (f i) *\<^sub>R i) = a f"
by simp
define b where "b f = (\<Sum>i\<in>Basis. snd (f i) *\<^sub>R i)" for f :: "'a \<Rightarrow> real \<times> real"
then have b: "\<And>f. (\<Sum>i\<in>Basis. snd (f i) *\<^sub>R i) = b f"
by simp
define B where "B = (\<lambda>f. box (a f) (b f)) ` (Basis \<rightarrow>\<^sub>E (\<rat> \<times> \<rat>))"
have "Ball B open" by (simp add: B_def open_box)
moreover have "(\<forall>A. open A \<longrightarrow> (\<exists>B'\<subseteq>B. \<Union>B' = A))"
proof safe
fix A::"'a set"
assume "open A"
show "\<exists>B'\<subseteq>B. \<Union>B' = A"
apply (rule exI[of _ "{b\<in>B. b \<subseteq> A}"])
apply (subst (3) open_UNION_box[OF \<open>open A\<close>])
apply (auto simp add: a b B_def)
done
qed
ultimately
have "topological_basis B"
unfolding topological_basis_def by blast
moreover
have "countable B"
unfolding B_def
by (intro countable_image countable_PiE finite_Basis countable_SIGMA countable_rat)
ultimately show "\<exists>B::'a set set. countable B \<and> open = generate_topology B"
by (blast intro: topological_basis_imp_subbasis)
qed
instance euclidean_space \<subseteq> polish_space ..
lemma closed_cbox[intro]:
fixes a b :: "'a::euclidean_space"
shows "closed (cbox a b)"
proof -
have "closed (\<Inter>i\<in>Basis. (\<lambda>x. x\<bullet>i) -` {a\<bullet>i .. b\<bullet>i})"
by (intro closed_INT ballI continuous_closed_vimage allI
linear_continuous_at closed_real_atLeastAtMost finite_Basis bounded_linear_inner_left)
also have "(\<Inter>i\<in>Basis. (\<lambda>x. x\<bullet>i) -` {a\<bullet>i .. b\<bullet>i}) = cbox a b"
by (auto simp add: cbox_def)
finally show "closed (cbox a b)" .
qed
lemma interior_cbox [simp]:
fixes a b :: "'a::euclidean_space"
shows "interior (cbox a b) = box a b" (is "?L = ?R")
proof(rule subset_antisym)
show "?R \<subseteq> ?L"
using box_subset_cbox open_box
by (rule interior_maximal)
{
fix x
assume "x \<in> interior (cbox a b)"
then obtain s where s: "open s" "x \<in> s" "s \<subseteq> cbox a b" ..
then obtain e where "e>0" and e:"\<forall>x'. dist x' x < e \<longrightarrow> x' \<in> cbox a b"
unfolding open_dist and subset_eq by auto
{
fix i :: 'a
assume i: "i \<in> Basis"
have "dist (x - (e / 2) *\<^sub>R i) x < e"
and "dist (x + (e / 2) *\<^sub>R i) x < e"
unfolding dist_norm
apply auto
unfolding norm_minus_cancel
using norm_Basis[OF i] \<open>e>0\<close>
apply auto
done
then have "a \<bullet> i \<le> (x - (e / 2) *\<^sub>R i) \<bullet> i" and "(x + (e / 2) *\<^sub>R i) \<bullet> i \<le> b \<bullet> i"
using e[THEN spec[where x="x - (e/2) *\<^sub>R i"]]
and e[THEN spec[where x="x + (e/2) *\<^sub>R i"]]
unfolding mem_box
using i
by blast+
then have "a \<bullet> i < x \<bullet> i" and "x \<bullet> i < b \<bullet> i"
using \<open>e>0\<close> i
by (auto simp: inner_diff_left inner_Basis inner_add_left)
}
then have "x \<in> box a b"
unfolding mem_box by auto
}
then show "?L \<subseteq> ?R" ..
qed
lemma bounded_cbox [simp]:
fixes a :: "'a::euclidean_space"
shows "bounded (cbox a b)"
proof -
let ?b = "\<Sum>i\<in>Basis. \<bar>a\<bullet>i\<bar> + \<bar>b\<bullet>i\<bar>"
{
fix x :: "'a"
assume x: "\<forall>i\<in>Basis. a \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> b \<bullet> i"
{
fix i :: 'a
assume "i \<in> Basis"
then have "\<bar>x\<bullet>i\<bar> \<le> \<bar>a\<bullet>i\<bar> + \<bar>b\<bullet>i\<bar>"
using x[THEN bspec[where x=i]] by auto
}
then have "(\<Sum>i\<in>Basis. \<bar>x \<bullet> i\<bar>) \<le> ?b"
apply -
apply (rule sum_mono)
apply auto
done
then have "norm x \<le> ?b"
using norm_le_l1[of x] by auto
}
then show ?thesis
unfolding cbox_def bounded_iff by auto
qed
lemma bounded_box [simp]:
fixes a :: "'a::euclidean_space"
shows "bounded (box a b)"
using bounded_cbox[of a b]
using box_subset_cbox[of a b]
using bounded_subset[of "cbox a b" "box a b"]
by simp
lemma not_interval_UNIV [simp]:
fixes a :: "'a::euclidean_space"
shows "cbox a b \<noteq> UNIV" "box a b \<noteq> UNIV"
using bounded_box[of a b] bounded_cbox[of a b] by force+
lemma not_interval_UNIV2 [simp]:
fixes a :: "'a::euclidean_space"
shows "UNIV \<noteq> cbox a b" "UNIV \<noteq> box a b"
using bounded_box[of a b] bounded_cbox[of a b] by force+
lemma compact_cbox [simp]:
fixes a :: "'a::euclidean_space"
shows "compact (cbox a b)"
using bounded_closed_imp_seq_compact[of "cbox a b"] using bounded_cbox[of a b]
by (auto simp: compact_eq_seq_compact_metric)
proposition is_interval_compact:
"is_interval S \<and> compact S \<longleftrightarrow> (\<exists>a b. S = cbox a b)" (is "?lhs = ?rhs")
proof (cases "S = {}")
case True
with empty_as_interval show ?thesis by auto
next
case False
show ?thesis
proof
assume L: ?lhs
then have "is_interval S" "compact S" by auto
define a where "a \<equiv> \<Sum>i\<in>Basis. (INF x:S. x \<bullet> i) *\<^sub>R i"
define b where "b \<equiv> \<Sum>i\<in>Basis. (SUP x:S. x \<bullet> i) *\<^sub>R i"
have 1: "\<And>x i. \<lbrakk>x \<in> S; i \<in> Basis\<rbrakk> \<Longrightarrow> (INF x:S. x \<bullet> i) \<le> x \<bullet> i"
by (simp add: cInf_lower bounded_inner_imp_bdd_below compact_imp_bounded L)
have 2: "\<And>x i. \<lbrakk>x \<in> S; i \<in> Basis\<rbrakk> \<Longrightarrow> x \<bullet> i \<le> (SUP x:S. x \<bullet> i)"
by (simp add: cSup_upper bounded_inner_imp_bdd_above compact_imp_bounded L)
have 3: "x \<in> S" if inf: "\<And>i. i \<in> Basis \<Longrightarrow> (INF x:S. x \<bullet> i) \<le> x \<bullet> i"
and sup: "\<And>i. i \<in> Basis \<Longrightarrow> x \<bullet> i \<le> (SUP x:S. x \<bullet> i)" for x
proof (rule mem_box_componentwiseI [OF \<open>is_interval S\<close>])
fix i::'a
assume i: "i \<in> Basis"
have cont: "continuous_on S (\<lambda>x. x \<bullet> i)"
by (intro continuous_intros)
obtain a where "a \<in> S" and a: "\<And>y. y\<in>S \<Longrightarrow> a \<bullet> i \<le> y \<bullet> i"
using continuous_attains_inf [OF \<open>compact S\<close> False cont] by blast
obtain b where "b \<in> S" and b: "\<And>y. y\<in>S \<Longrightarrow> y \<bullet> i \<le> b \<bullet> i"
using continuous_attains_sup [OF \<open>compact S\<close> False cont] by blast
have "a \<bullet> i \<le> (INF x:S. x \<bullet> i)"
by (simp add: False a cINF_greatest)
also have "\<dots> \<le> x \<bullet> i"
by (simp add: i inf)
finally have ai: "a \<bullet> i \<le> x \<bullet> i" .
have "x \<bullet> i \<le> (SUP x:S. x \<bullet> i)"
by (simp add: i sup)
also have "(SUP x:S. x \<bullet> i) \<le> b \<bullet> i"
by (simp add: False b cSUP_least)
finally have bi: "x \<bullet> i \<le> b \<bullet> i" .
show "x \<bullet> i \<in> (\<lambda>x. x \<bullet> i) ` S"
apply (rule_tac x="\<Sum>j\<in>Basis. (if j = i then x \<bullet> i else a \<bullet> j) *\<^sub>R j" in image_eqI)
apply (simp add: i)
apply (rule mem_is_intervalI [OF \<open>is_interval S\<close> \<open>a \<in> S\<close> \<open>b \<in> S\<close>])
using i ai bi apply force
done
qed
have "S = cbox a b"
by (auto simp: a_def b_def mem_box intro: 1 2 3)
then show ?rhs
by blast
next
assume R: ?rhs
then show ?lhs
using compact_cbox is_interval_cbox by blast
qed
qed
lemma box_midpoint:
fixes a :: "'a::euclidean_space"
assumes "box a b \<noteq> {}"
shows "((1/2) *\<^sub>R (a + b)) \<in> box a b"
proof -
{
fix i :: 'a
assume "i \<in> Basis"
then have "a \<bullet> i < ((1 / 2) *\<^sub>R (a + b)) \<bullet> i \<and> ((1 / 2) *\<^sub>R (a + b)) \<bullet> i < b \<bullet> i"
using assms[unfolded box_ne_empty, THEN bspec[where x=i]] by (auto simp: inner_add_left)
}
then show ?thesis unfolding mem_box by auto
qed
lemma open_cbox_convex:
fixes x :: "'a::euclidean_space"
assumes x: "x \<in> box a b"
and y: "y \<in> cbox a b"
and e: "0 < e" "e \<le> 1"
shows "(e *\<^sub>R x + (1 - e) *\<^sub>R y) \<in> box a b"
proof -
{
fix i :: 'a
assume i: "i \<in> Basis"
have "a \<bullet> i = e * (a \<bullet> i) + (1 - e) * (a \<bullet> i)"
unfolding left_diff_distrib by simp
also have "\<dots> < e * (x \<bullet> i) + (1 - e) * (y \<bullet> i)"
apply (rule add_less_le_mono)
using e unfolding mult_less_cancel_left and mult_le_cancel_left
apply simp_all
using x unfolding mem_box using i
apply simp
using y unfolding mem_box using i
apply simp
done
finally have "a \<bullet> i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) \<bullet> i"
unfolding inner_simps by auto
moreover
{
have "b \<bullet> i = e * (b\<bullet>i) + (1 - e) * (b\<bullet>i)"
unfolding left_diff_distrib by simp
also have "\<dots> > e * (x \<bullet> i) + (1 - e) * (y \<bullet> i)"
apply (rule add_less_le_mono)
using e unfolding mult_less_cancel_left and mult_le_cancel_left
apply simp_all
using x
unfolding mem_box
using i
apply simp
using y
unfolding mem_box
using i
apply simp
done
finally have "(e *\<^sub>R x + (1 - e) *\<^sub>R y) \<bullet> i < b \<bullet> i"
unfolding inner_simps by auto
}
ultimately have "a \<bullet> i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) \<bullet> i \<and> (e *\<^sub>R x + (1 - e) *\<^sub>R y) \<bullet> i < b \<bullet> i"
by auto
}
then show ?thesis
unfolding mem_box by auto
qed
lemma closure_cbox [simp]: "closure (cbox a b) = cbox a b"
by (simp add: closed_cbox)
lemma closure_box [simp]:
fixes a :: "'a::euclidean_space"
assumes "box a b \<noteq> {}"
shows "closure (box a b) = cbox a b"
proof -
have ab: "a <e b"
using assms by (simp add: eucl_less_def box_ne_empty)
let ?c = "(1 / 2) *\<^sub>R (a + b)"
{
fix x
assume as:"x \<in> cbox a b"
define f where [abs_def]: "f n = x + (inverse (real n + 1)) *\<^sub>R (?c - x)" for n
{
fix n
assume fn: "f n <e b \<longrightarrow> a <e f n \<longrightarrow> f n = x" and xc: "x \<noteq> ?c"
have *: "0 < inverse (real n + 1)" "inverse (real n + 1) \<le> 1"
unfolding inverse_le_1_iff by auto
have "(inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b)) + (1 - inverse (real n + 1)) *\<^sub>R x =
x + (inverse (real n + 1)) *\<^sub>R (((1 / 2) *\<^sub>R (a + b)) - x)"
by (auto simp add: algebra_simps)
then have "f n <e b" and "a <e f n"
using open_cbox_convex[OF box_midpoint[OF assms] as *]
unfolding f_def by (auto simp: box_def eucl_less_def)
then have False
using fn unfolding f_def using xc by auto
}
moreover
{
assume "\<not> (f \<longlongrightarrow> x) sequentially"
{
fix e :: real
assume "e > 0"
then have "\<exists>N::nat. inverse (real (N + 1)) < e"
using real_arch_inverse[of e]
apply (auto simp add: Suc_pred')
apply (metis Suc_pred' of_nat_Suc)
done
then obtain N :: nat where N: "inverse (real (N + 1)) < e"
by auto
have "inverse (real n + 1) < e" if "N \<le> n" for n
by (auto intro!: that le_less_trans [OF _ N])
then have "\<exists>N::nat. \<forall>n\<ge>N. inverse (real n + 1) < e" by auto
}
then have "((\<lambda>n. inverse (real n + 1)) \<longlongrightarrow> 0) sequentially"
unfolding lim_sequentially by(auto simp add: dist_norm)
then have "(f \<longlongrightarrow> x) sequentially"
unfolding f_def
using tendsto_add[OF tendsto_const, of "\<lambda>n::nat. (inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b) - x)" 0 sequentially x]
using tendsto_scaleR [OF _ tendsto_const, of "\<lambda>n::nat. inverse (real n + 1)" 0 sequentially "((1 / 2) *\<^sub>R (a + b) - x)"]
by auto
}
ultimately have "x \<in> closure (box a b)"
using as and box_midpoint[OF assms]
unfolding closure_def
unfolding islimpt_sequential
by (cases "x=?c") (auto simp: in_box_eucl_less)
}
then show ?thesis
using closure_minimal[OF box_subset_cbox, of a b] by blast
qed
lemma bounded_subset_box_symmetric:
fixes s::"('a::euclidean_space) set"
assumes "bounded s"
shows "\<exists>a. s \<subseteq> box (-a) a"
proof -
obtain b where "b>0" and b: "\<forall>x\<in>s. norm x \<le> b"
using assms[unfolded bounded_pos] by auto
define a :: 'a where "a = (\<Sum>i\<in>Basis. (b + 1) *\<^sub>R i)"
{
fix x
assume "x \<in> s"
fix i :: 'a
assume i: "i \<in> Basis"
then have "(-a)\<bullet>i < x\<bullet>i" and "x\<bullet>i < a\<bullet>i"
using b[THEN bspec[where x=x], OF \<open>x\<in>s\<close>]
using Basis_le_norm[OF i, of x]
unfolding inner_simps and a_def
by auto
}
then show ?thesis
by (auto intro: exI[where x=a] simp add: box_def)
qed
lemma bounded_subset_open_interval:
fixes s :: "('a::euclidean_space) set"
shows "bounded s \<Longrightarrow> (\<exists>a b. s \<subseteq> box a b)"
by (auto dest!: bounded_subset_box_symmetric)
lemma bounded_subset_cbox_symmetric:
fixes s :: "('a::euclidean_space) set"
assumes "bounded s"
shows "\<exists>a. s \<subseteq> cbox (-a) a"
proof -
obtain a where "s \<subseteq> box (-a) a"
using bounded_subset_box_symmetric[OF assms] by auto
then show ?thesis
using box_subset_cbox[of "-a" a] by auto
qed
lemma bounded_subset_cbox:
fixes s :: "('a::euclidean_space) set"
shows "bounded s \<Longrightarrow> \<exists>a b. s \<subseteq> cbox a b"
using bounded_subset_cbox_symmetric[of s] by auto
lemma frontier_cbox:
fixes a b :: "'a::euclidean_space"
shows "frontier (cbox a b) = cbox a b - box a b"
unfolding frontier_def unfolding interior_cbox and closure_closed[OF closed_cbox] ..
lemma frontier_box:
fixes a b :: "'a::euclidean_space"
shows "frontier (box a b) = (if box a b = {} then {} else cbox a b - box a b)"
proof (cases "box a b = {}")
case True
then show ?thesis
using frontier_empty by auto
next
case False
then show ?thesis
unfolding frontier_def and closure_box[OF False] and interior_open[OF open_box]
by auto
qed
lemma inter_interval_mixed_eq_empty:
fixes a :: "'a::euclidean_space"
assumes "box c d \<noteq> {}"
shows "box a b \<inter> cbox c d = {} \<longleftrightarrow> box a b \<inter> box c d = {}"
unfolding closure_box[OF assms, symmetric]
unfolding open_Int_closure_eq_empty[OF open_box] ..
lemma diameter_cbox:
fixes a b::"'a::euclidean_space"
shows "(\<forall>i \<in> Basis. a \<bullet> i \<le> b \<bullet> i) \<Longrightarrow> diameter (cbox a b) = dist a b"
by (force simp add: diameter_def intro!: cSup_eq_maximum setL2_mono
simp: euclidean_dist_l2[where 'a='a] cbox_def dist_norm)
lemma eucl_less_eq_halfspaces:
fixes a :: "'a::euclidean_space"
shows "{x. x <e a} = (\<Inter>i\<in>Basis. {x. x \<bullet> i < a \<bullet> i})"
"{x. a <e x} = (\<Inter>i\<in>Basis. {x. a \<bullet> i < x \<bullet> i})"
by (auto simp: eucl_less_def)
lemma eucl_le_eq_halfspaces:
fixes a :: "'a::euclidean_space"
shows "{x. \<forall>i\<in>Basis. x \<bullet> i \<le> a \<bullet> i} = (\<Inter>i\<in>Basis. {x. x \<bullet> i \<le> a \<bullet> i})"
"{x. \<forall>i\<in>Basis. a \<bullet> i \<le> x \<bullet> i} = (\<Inter>i\<in>Basis. {x. a \<bullet> i \<le> x \<bullet> i})"
by auto
lemma open_Collect_eucl_less[simp, intro]:
fixes a :: "'a::euclidean_space"
shows "open {x. x <e a}"
"open {x. a <e x}"
by (auto simp: eucl_less_eq_halfspaces open_halfspace_component_lt open_halfspace_component_gt)
lemma closed_Collect_eucl_le[simp, intro]:
fixes a :: "'a::euclidean_space"
shows "closed {x. \<forall>i\<in>Basis. a \<bullet> i \<le> x \<bullet> i}"
"closed {x. \<forall>i\<in>Basis. x \<bullet> i \<le> a \<bullet> i}"
unfolding eucl_le_eq_halfspaces
by (simp_all add: closed_INT closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
lemma image_affinity_cbox: fixes m::real
fixes a b c :: "'a::euclidean_space"
shows "(\<lambda>x. m *\<^sub>R x + c) ` cbox a b =
(if cbox a b = {} then {}
else (if 0 \<le> m then cbox (m *\<^sub>R a + c) (m *\<^sub>R b + c)
else cbox (m *\<^sub>R b + c) (m *\<^sub>R a + c)))"
proof (cases "m = 0")
case True
{
fix x
assume "\<forall>i\<in>Basis. x \<bullet> i \<le> c \<bullet> i" "\<forall>i\<in>Basis. c \<bullet> i \<le> x \<bullet> i"
then have "x = c"
apply -
apply (subst euclidean_eq_iff)
apply (auto intro: order_antisym)
done
}
moreover have "c \<in> cbox (m *\<^sub>R a + c) (m *\<^sub>R b + c)"
unfolding True by (auto simp add: cbox_sing)
ultimately show ?thesis using True by (auto simp: cbox_def)
next
case False
{
fix y
assume "\<forall>i\<in>Basis. a \<bullet> i \<le> y \<bullet> i" "\<forall>i\<in>Basis. y \<bullet> i \<le> b \<bullet> i" "m > 0"
then have "\<forall>i\<in>Basis. (m *\<^sub>R a + c) \<bullet> i \<le> (m *\<^sub>R y + c) \<bullet> i" and "\<forall>i\<in>Basis. (m *\<^sub>R y + c) \<bullet> i \<le> (m *\<^sub>R b + c) \<bullet> i"
by (auto simp: inner_distrib)
}
moreover
{
fix y
assume "\<forall>i\<in>Basis. a \<bullet> i \<le> y \<bullet> i" "\<forall>i\<in>Basis. y \<bullet> i \<le> b \<bullet> i" "m < 0"
then have "\<forall>i\<in>Basis. (m *\<^sub>R b + c) \<bullet> i \<le> (m *\<^sub>R y + c) \<bullet> i" and "\<forall>i\<in>Basis. (m *\<^sub>R y + c) \<bullet> i \<le> (m *\<^sub>R a + c) \<bullet> i"
by (auto simp add: mult_left_mono_neg inner_distrib)
}
moreover
{
fix y
assume "m > 0" and "\<forall>i\<in>Basis. (m *\<^sub>R a + c) \<bullet> i \<le> y \<bullet> i" and "\<forall>i\<in>Basis. y \<bullet> i \<le> (m *\<^sub>R b + c) \<bullet> i"
then have "y \<in> (\<lambda>x. m *\<^sub>R x + c) ` cbox a b"
unfolding image_iff Bex_def mem_box
apply (intro exI[where x="(1 / m) *\<^sub>R (y - c)"])
apply (auto simp add: pos_le_divide_eq pos_divide_le_eq mult.commute inner_distrib inner_diff_left)
done
}
moreover
{
fix y
assume "\<forall>i\<in>Basis. (m *\<^sub>R b + c) \<bullet> i \<le> y \<bullet> i" "\<forall>i\<in>Basis. y \<bullet> i \<le> (m *\<^sub>R a + c) \<bullet> i" "m < 0"
then have "y \<in> (\<lambda>x. m *\<^sub>R x + c) ` cbox a b"
unfolding image_iff Bex_def mem_box
apply (intro exI[where x="(1 / m) *\<^sub>R (y - c)"])
apply (auto simp add: neg_le_divide_eq neg_divide_le_eq mult.commute inner_distrib inner_diff_left)
done
}
ultimately show ?thesis using False by (auto simp: cbox_def)
qed
lemma image_smult_cbox:"(\<lambda>x. m *\<^sub>R (x::_::euclidean_space)) ` cbox a b =
(if cbox a b = {} then {} else if 0 \<le> m then cbox (m *\<^sub>R a) (m *\<^sub>R b) else cbox (m *\<^sub>R b) (m *\<^sub>R a))"
using image_affinity_cbox[of m 0 a b] by auto
lemma islimpt_greaterThanLessThan1:
fixes a b::"'a::{linorder_topology, dense_order}"
assumes "a < b"
shows "a islimpt {a<..<b}"
proof (rule islimptI)
fix T
assume "open T" "a \<in> T"
from open_right[OF this \<open>a < b\<close>]
obtain c where c: "a < c" "{a..<c} \<subseteq> T" by auto
with assms dense[of a "min c b"]
show "\<exists>y\<in>{a<..<b}. y \<in> T \<and> y \<noteq> a"
by (metis atLeastLessThan_iff greaterThanLessThan_iff min_less_iff_conj
not_le order.strict_implies_order subset_eq)
qed
lemma islimpt_greaterThanLessThan2:
fixes a b::"'a::{linorder_topology, dense_order}"
assumes "a < b"
shows "b islimpt {a<..<b}"
proof (rule islimptI)
fix T
assume "open T" "b \<in> T"
from open_left[OF this \<open>a < b\<close>]
obtain c where c: "c < b" "{c<..b} \<subseteq> T" by auto
with assms dense[of "max a c" b]
show "\<exists>y\<in>{a<..<b}. y \<in> T \<and> y \<noteq> b"
by (metis greaterThanAtMost_iff greaterThanLessThan_iff max_less_iff_conj
not_le order.strict_implies_order subset_eq)
qed
lemma closure_greaterThanLessThan[simp]:
fixes a b::"'a::{linorder_topology, dense_order}"
shows "a < b \<Longrightarrow> closure {a <..< b} = {a .. b}" (is "_ \<Longrightarrow> ?l = ?r")
proof
have "?l \<subseteq> closure ?r"
by (rule closure_mono) auto
thus "closure {a<..<b} \<subseteq> {a..b}" by simp
qed (auto simp: closure_def order.order_iff_strict islimpt_greaterThanLessThan1
islimpt_greaterThanLessThan2)
lemma closure_greaterThan[simp]:
fixes a b::"'a::{no_top, linorder_topology, dense_order}"
shows "closure {a<..} = {a..}"
proof -
from gt_ex obtain b where "a < b" by auto
hence "{a<..} = {a<..<b} \<union> {b..}" by auto
also have "closure \<dots> = {a..}" using \<open>a < b\<close> unfolding closure_Un
by auto
finally show ?thesis .
qed
lemma closure_lessThan[simp]:
fixes b::"'a::{no_bot, linorder_topology, dense_order}"
shows "closure {..<b} = {..b}"
proof -
from lt_ex obtain a where "a < b" by auto
hence "{..<b} = {a<..<b} \<union> {..a}" by auto
also have "closure \<dots> = {..b}" using \<open>a < b\<close> unfolding closure_Un
by auto
finally show ?thesis .
qed
lemma closure_atLeastLessThan[simp]:
fixes a b::"'a::{linorder_topology, dense_order}"
assumes "a < b"
shows "closure {a ..< b} = {a .. b}"
proof -
from assms have "{a ..< b} = {a} \<union> {a <..< b}" by auto
also have "closure \<dots> = {a .. b}" unfolding closure_Un
by (auto simp add: assms less_imp_le)
finally show ?thesis .
qed
lemma closure_greaterThanAtMost[simp]:
fixes a b::"'a::{linorder_topology, dense_order}"
assumes "a < b"
shows "closure {a <.. b} = {a .. b}"
proof -
from assms have "{a <.. b} = {b} \<union> {a <..< b}" by auto
also have "closure \<dots> = {a .. b}" unfolding closure_Un
by (auto simp add: assms less_imp_le)
finally show ?thesis .
qed
subsection \<open>Homeomorphisms\<close>
definition "homeomorphism s t f g \<longleftrightarrow>
(\<forall>x\<in>s. (g(f x) = x)) \<and> (f ` s = t) \<and> continuous_on s f \<and>
(\<forall>y\<in>t. (f(g y) = y)) \<and> (g ` t = s) \<and> continuous_on t g"
lemma homeomorphismI [intro?]:
assumes "continuous_on S f" "continuous_on T g"
"f ` S \<subseteq> T" "g ` T \<subseteq> S" "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x" "\<And>y. y \<in> T \<Longrightarrow> f(g y) = y"
shows "homeomorphism S T f g"
using assms by (force simp: homeomorphism_def)
lemma homeomorphism_translation:
fixes a :: "'a :: real_normed_vector"
shows "homeomorphism (op + a ` S) S (op + (- a)) (op + a)"
unfolding homeomorphism_def by (auto simp: algebra_simps continuous_intros)
lemma homeomorphism_ident: "homeomorphism T T (\<lambda>a. a) (\<lambda>a. a)"
by (rule homeomorphismI) (auto simp: continuous_on_id)
lemma homeomorphism_compose:
assumes "homeomorphism S T f g" "homeomorphism T U h k"
shows "homeomorphism S U (h o f) (g o k)"
using assms
unfolding homeomorphism_def
by (intro conjI ballI continuous_on_compose) (auto simp: image_comp [symmetric])
lemma homeomorphism_symD: "homeomorphism S t f g \<Longrightarrow> homeomorphism t S g f"
by (simp add: homeomorphism_def)
lemma homeomorphism_sym: "homeomorphism S t f g = homeomorphism t S g f"
by (force simp: homeomorphism_def)
definition homeomorphic :: "'a::topological_space set \<Rightarrow> 'b::topological_space set \<Rightarrow> bool"
(infixr "homeomorphic" 60)
where "s homeomorphic t \<equiv> (\<exists>f g. homeomorphism s t f g)"
lemma homeomorphic_empty [iff]:
"S homeomorphic {} \<longleftrightarrow> S = {}" "{} homeomorphic S \<longleftrightarrow> S = {}"
by (auto simp add: homeomorphic_def homeomorphism_def)
lemma homeomorphic_refl: "s homeomorphic s"
unfolding homeomorphic_def homeomorphism_def
using continuous_on_id
apply (rule_tac x = "(\<lambda>x. x)" in exI)
apply (rule_tac x = "(\<lambda>x. x)" in exI)
apply blast
done
lemma homeomorphic_sym: "s homeomorphic t \<longleftrightarrow> t homeomorphic s"
unfolding homeomorphic_def homeomorphism_def
by blast
lemma homeomorphic_trans [trans]:
assumes "S homeomorphic T"
and "T homeomorphic U"
shows "S homeomorphic U"
using assms
unfolding homeomorphic_def
by (metis homeomorphism_compose)
lemma homeomorphic_minimal:
"s homeomorphic t \<longleftrightarrow>
(\<exists>f g. (\<forall>x\<in>s. f(x) \<in> t \<and> (g(f(x)) = x)) \<and>
(\<forall>y\<in>t. g(y) \<in> s \<and> (f(g(y)) = y)) \<and>
continuous_on s f \<and> continuous_on t g)"
(is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
by (fastforce simp: homeomorphic_def homeomorphism_def)
next
assume ?rhs
then show ?lhs
apply clarify
unfolding homeomorphic_def homeomorphism_def
by (metis equalityI image_subset_iff subsetI)
qed
lemma homeomorphicI [intro?]:
"\<lbrakk>f ` S = T; g ` T = S;
continuous_on S f; continuous_on T g;
\<And>x. x \<in> S \<Longrightarrow> g(f(x)) = x;
\<And>y. y \<in> T \<Longrightarrow> f(g(y)) = y\<rbrakk> \<Longrightarrow> S homeomorphic T"
unfolding homeomorphic_def homeomorphism_def by metis
lemma homeomorphism_of_subsets:
"\<lbrakk>homeomorphism S T f g; S' \<subseteq> S; T'' \<subseteq> T; f ` S' = T'\<rbrakk>
\<Longrightarrow> homeomorphism S' T' f g"
apply (auto simp: homeomorphism_def elim!: continuous_on_subset)
by (metis subsetD imageI)
lemma homeomorphism_apply1: "\<lbrakk>homeomorphism S T f g; x \<in> S\<rbrakk> \<Longrightarrow> g(f x) = x"
by (simp add: homeomorphism_def)
lemma homeomorphism_apply2: "\<lbrakk>homeomorphism S T f g; x \<in> T\<rbrakk> \<Longrightarrow> f(g x) = x"
by (simp add: homeomorphism_def)
lemma homeomorphism_image1: "homeomorphism S T f g \<Longrightarrow> f ` S = T"
by (simp add: homeomorphism_def)
lemma homeomorphism_image2: "homeomorphism S T f g \<Longrightarrow> g ` T = S"
by (simp add: homeomorphism_def)
lemma homeomorphism_cont1: "homeomorphism S T f g \<Longrightarrow> continuous_on S f"
by (simp add: homeomorphism_def)
lemma homeomorphism_cont2: "homeomorphism S T f g \<Longrightarrow> continuous_on T g"
by (simp add: homeomorphism_def)
lemma continuous_on_no_limpt:
"(\<And>x. \<not> x islimpt S) \<Longrightarrow> continuous_on S f"
unfolding continuous_on_def
by (metis UNIV_I empty_iff eventually_at_topological islimptE open_UNIV tendsto_def trivial_limit_within)
lemma continuous_on_finite:
fixes S :: "'a::t1_space set"
shows "finite S \<Longrightarrow> continuous_on S f"
by (metis continuous_on_no_limpt islimpt_finite)
lemma homeomorphic_finite:
fixes S :: "'a::t1_space set" and T :: "'b::t1_space set"
assumes "finite T"
shows "S homeomorphic T \<longleftrightarrow> finite S \<and> finite T \<and> card S = card T" (is "?lhs = ?rhs")
proof
assume "S homeomorphic T"
with assms show ?rhs
apply (auto simp: homeomorphic_def homeomorphism_def)
apply (metis finite_imageI)
by (metis card_image_le finite_imageI le_antisym)
next
assume R: ?rhs
with finite_same_card_bij obtain h where "bij_betw h S T"
by (auto simp: )
with R show ?lhs
apply (auto simp: homeomorphic_def homeomorphism_def continuous_on_finite)
apply (rule_tac x="h" in exI)
apply (rule_tac x="inv_into S h" in exI)
apply (auto simp: bij_betw_inv_into_left bij_betw_inv_into_right bij_betw_imp_surj_on inv_into_into bij_betwE)
apply (metis bij_betw_def bij_betw_inv_into)
done
qed
text \<open>Relatively weak hypotheses if a set is compact.\<close>
lemma homeomorphism_compact:
fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space"
assumes "compact s" "continuous_on s f" "f ` s = t" "inj_on f s"
shows "\<exists>g. homeomorphism s t f g"
proof -
define g where "g x = (SOME y. y\<in>s \<and> f y = x)" for x
have g: "\<forall>x\<in>s. g (f x) = x"
using assms(3) assms(4)[unfolded inj_on_def] unfolding g_def by auto
{
fix y
assume "y \<in> t"
then obtain x where x:"f x = y" "x\<in>s"
using assms(3) by auto
then have "g (f x) = x" using g by auto
then have "f (g y) = y" unfolding x(1)[symmetric] by auto
}
then have g':"\<forall>x\<in>t. f (g x) = x" by auto
moreover
{
fix x
have "x\<in>s \<Longrightarrow> x \<in> g ` t"
using g[THEN bspec[where x=x]]
unfolding image_iff
using assms(3)
by (auto intro!: bexI[where x="f x"])
moreover
{
assume "x\<in>g ` t"
then obtain y where y:"y\<in>t" "g y = x" by auto
then obtain x' where x':"x'\<in>s" "f x' = y"
using assms(3) by auto
then have "x \<in> s"
unfolding g_def
using someI2[of "\<lambda>b. b\<in>s \<and> f b = y" x' "\<lambda>x. x\<in>s"]
unfolding y(2)[symmetric] and g_def
by auto
}
ultimately have "x\<in>s \<longleftrightarrow> x \<in> g ` t" ..
}
then have "g ` t = s" by auto
ultimately show ?thesis
unfolding homeomorphism_def homeomorphic_def
apply (rule_tac x=g in exI)
using g and assms(3) and continuous_on_inv[OF assms(2,1), of g, unfolded assms(3)] and assms(2)
apply auto
done
qed
lemma homeomorphic_compact:
fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space"
shows "compact s \<Longrightarrow> continuous_on s f \<Longrightarrow> (f ` s = t) \<Longrightarrow> inj_on f s \<Longrightarrow> s homeomorphic t"
unfolding homeomorphic_def by (metis homeomorphism_compact)
text\<open>Preservation of topological properties.\<close>
lemma homeomorphic_compactness: "s homeomorphic t \<Longrightarrow> (compact s \<longleftrightarrow> compact t)"
unfolding homeomorphic_def homeomorphism_def
by (metis compact_continuous_image)
text\<open>Results on translation, scaling etc.\<close>
lemma homeomorphic_scaling:
fixes s :: "'a::real_normed_vector set"
assumes "c \<noteq> 0"
shows "s homeomorphic ((\<lambda>x. c *\<^sub>R x) ` s)"
unfolding homeomorphic_minimal
apply (rule_tac x="\<lambda>x. c *\<^sub>R x" in exI)
apply (rule_tac x="\<lambda>x. (1 / c) *\<^sub>R x" in exI)
using assms
apply (auto simp add: continuous_intros)
done
lemma homeomorphic_translation:
fixes s :: "'a::real_normed_vector set"
shows "s homeomorphic ((\<lambda>x. a + x) ` s)"
unfolding homeomorphic_minimal
apply (rule_tac x="\<lambda>x. a + x" in exI)
apply (rule_tac x="\<lambda>x. -a + x" in exI)
using continuous_on_add [OF continuous_on_const continuous_on_id, of s a]
continuous_on_add [OF continuous_on_const continuous_on_id, of "plus a ` s" "- a"]
apply auto
done
lemma homeomorphic_affinity:
fixes s :: "'a::real_normed_vector set"
assumes "c \<noteq> 0"
shows "s homeomorphic ((\<lambda>x. a + c *\<^sub>R x) ` s)"
proof -
have *: "op + a ` op *\<^sub>R c ` s = (\<lambda>x. a + c *\<^sub>R x) ` s" by auto
show ?thesis
using homeomorphic_trans
using homeomorphic_scaling[OF assms, of s]
using homeomorphic_translation[of "(\<lambda>x. c *\<^sub>R x) ` s" a]
unfolding *
by auto
qed
lemma homeomorphic_balls:
fixes a b ::"'a::real_normed_vector"
assumes "0 < d" "0 < e"
shows "(ball a d) homeomorphic (ball b e)" (is ?th)
and "(cball a d) homeomorphic (cball b e)" (is ?cth)
proof -
show ?th unfolding homeomorphic_minimal
apply(rule_tac x="\<lambda>x. b + (e/d) *\<^sub>R (x - a)" in exI)
apply(rule_tac x="\<lambda>x. a + (d/e) *\<^sub>R (x - b)" in exI)
using assms
apply (auto intro!: continuous_intros
simp: dist_commute dist_norm pos_divide_less_eq mult_strict_left_mono)
done
show ?cth unfolding homeomorphic_minimal
apply(rule_tac x="\<lambda>x. b + (e/d) *\<^sub>R (x - a)" in exI)
apply(rule_tac x="\<lambda>x. a + (d/e) *\<^sub>R (x - b)" in exI)
using assms
apply (auto intro!: continuous_intros
simp: dist_commute dist_norm pos_divide_le_eq mult_strict_left_mono)
done
qed
lemma homeomorphic_spheres:
fixes a b ::"'a::real_normed_vector"
assumes "0 < d" "0 < e"
shows "(sphere a d) homeomorphic (sphere b e)"
unfolding homeomorphic_minimal
apply(rule_tac x="\<lambda>x. b + (e/d) *\<^sub>R (x - a)" in exI)
apply(rule_tac x="\<lambda>x. a + (d/e) *\<^sub>R (x - b)" in exI)
using assms
apply (auto intro!: continuous_intros
simp: dist_commute dist_norm pos_divide_less_eq mult_strict_left_mono)
done
subsection\<open>Inverse function property for open/closed maps\<close>
lemma continuous_on_inverse_open_map:
assumes contf: "continuous_on S f"
and imf: "f ` S = T"
and injf: "\<And>x. x \<in> S \<Longrightarrow> g (f x) = x"
and oo: "\<And>U. openin (subtopology euclidean S) U \<Longrightarrow> openin (subtopology euclidean T) (f ` U)"
shows "continuous_on T g"
proof -
from imf injf have gTS: "g ` T = S"
by force
from imf injf have fU: "U \<subseteq> S \<Longrightarrow> (f ` U) = {x \<in> T. g x \<in> U}" for U
by force
show ?thesis
by (simp add: continuous_on_open [of T g] gTS) (metis openin_imp_subset fU oo)
qed
lemma continuous_on_inverse_closed_map:
assumes contf: "continuous_on S f"
and imf: "f ` S = T"
and injf: "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x"
and oo: "\<And>U. closedin (subtopology euclidean S) U \<Longrightarrow> closedin (subtopology euclidean T) (f ` U)"
shows "continuous_on T g"
proof -
from imf injf have gTS: "g ` T = S"
by force
from imf injf have fU: "U \<subseteq> S \<Longrightarrow> (f ` U) = {x \<in> T. g x \<in> U}" for U
by force
show ?thesis
by (simp add: continuous_on_closed [of T g] gTS) (metis closedin_imp_subset fU oo)
qed
lemma homeomorphism_injective_open_map:
assumes contf: "continuous_on S f"
and imf: "f ` S = T"
and injf: "inj_on f S"
and oo: "\<And>U. openin (subtopology euclidean S) U \<Longrightarrow> openin (subtopology euclidean T) (f ` U)"
obtains g where "homeomorphism S T f g"
proof
have "continuous_on T (inv_into S f)"
by (metis contf continuous_on_inverse_open_map imf injf inv_into_f_f oo)
with imf injf contf show "homeomorphism S T f (inv_into S f)"
by (auto simp: homeomorphism_def)
qed
lemma homeomorphism_injective_closed_map:
assumes contf: "continuous_on S f"
and imf: "f ` S = T"
and injf: "inj_on f S"
and oo: "\<And>U. closedin (subtopology euclidean S) U \<Longrightarrow> closedin (subtopology euclidean T) (f ` U)"
obtains g where "homeomorphism S T f g"
proof
have "continuous_on T (inv_into S f)"
by (metis contf continuous_on_inverse_closed_map imf injf inv_into_f_f oo)
with imf injf contf show "homeomorphism S T f (inv_into S f)"
by (auto simp: homeomorphism_def)
qed
lemma homeomorphism_imp_open_map:
assumes hom: "homeomorphism S T f g"
and oo: "openin (subtopology euclidean S) U"
shows "openin (subtopology euclidean T) (f ` U)"
proof -
from hom oo have [simp]: "f ` U = {y. y \<in> T \<and> g y \<in> U}"
using openin_subset by (fastforce simp: homeomorphism_def rev_image_eqI)
from hom have "continuous_on T g"
unfolding homeomorphism_def by blast
moreover have "g ` T = S"
by (metis hom homeomorphism_def)
ultimately show ?thesis
by (simp add: continuous_on_open oo)
qed
lemma homeomorphism_imp_closed_map:
assumes hom: "homeomorphism S T f g"
and oo: "closedin (subtopology euclidean S) U"
shows "closedin (subtopology euclidean T) (f ` U)"
proof -
from hom oo have [simp]: "f ` U = {y. y \<in> T \<and> g y \<in> U}"
using closedin_subset by (fastforce simp: homeomorphism_def rev_image_eqI)
from hom have "continuous_on T g"
unfolding homeomorphism_def by blast
moreover have "g ` T = S"
by (metis hom homeomorphism_def)
ultimately show ?thesis
by (simp add: continuous_on_closed oo)
qed
subsection \<open>"Isometry" (up to constant bounds) of injective linear map etc.\<close>
lemma cauchy_isometric:
assumes e: "e > 0"
and s: "subspace s"
and f: "bounded_linear f"
and normf: "\<forall>x\<in>s. norm (f x) \<ge> e * norm x"
and xs: "\<forall>n. x n \<in> s"
and cf: "Cauchy (f \<circ> x)"
shows "Cauchy x"
proof -
interpret f: bounded_linear f by fact
have "\<exists>N. \<forall>n\<ge>N. norm (x n - x N) < d" if "d > 0" for d :: real
proof -
from that obtain N where N: "\<forall>n\<ge>N. norm (f (x n) - f (x N)) < e * d"
using cf[unfolded Cauchy_def o_def dist_norm, THEN spec[where x="e*d"]] e
by auto
have "norm (x n - x N) < d" if "n \<ge> N" for n
proof -
have "e * norm (x n - x N) \<le> norm (f (x n - x N))"
using subspace_diff[OF s, of "x n" "x N"]
using xs[THEN spec[where x=N]] and xs[THEN spec[where x=n]]
using normf[THEN bspec[where x="x n - x N"]]
by auto
also have "norm (f (x n - x N)) < e * d"
using \<open>N \<le> n\<close> N unfolding f.diff[symmetric] by auto
finally show ?thesis
using \<open>e>0\<close> by simp
qed
then show ?thesis by auto
qed
then show ?thesis
by (simp add: Cauchy_altdef2 dist_norm)
qed
lemma complete_isometric_image:
assumes "0 < e"
and s: "subspace s"
and f: "bounded_linear f"
and normf: "\<forall>x\<in>s. norm(f x) \<ge> e * norm(x)"
and cs: "complete s"
shows "complete (f ` s)"
proof -
have "\<exists>l\<in>f ` s. (g \<longlongrightarrow> l) sequentially"
if as:"\<forall>n::nat. g n \<in> f ` s" and cfg:"Cauchy g" for g
proof -
from that obtain x where "\<forall>n. x n \<in> s \<and> g n = f (x n)"
using choice[of "\<lambda> n xa. xa \<in> s \<and> g n = f xa"] by auto
then have x: "\<forall>n. x n \<in> s" "\<forall>n. g n = f (x n)" by auto
then have "f \<circ> x = g" by (simp add: fun_eq_iff)
then obtain l where "l\<in>s" and l:"(x \<longlongrightarrow> l) sequentially"
using cs[unfolded complete_def, THEN spec[where x="x"]]
using cauchy_isometric[OF \<open>0 < e\<close> s f normf] and cfg and x(1)
by auto
then show ?thesis
using linear_continuous_at[OF f, unfolded continuous_at_sequentially, THEN spec[where x=x], of l]
by (auto simp: \<open>f \<circ> x = g\<close>)
qed
then show ?thesis
unfolding complete_def by auto
qed
lemma injective_imp_isometric:
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
assumes s: "closed s" "subspace s"
and f: "bounded_linear f" "\<forall>x\<in>s. f x = 0 \<longrightarrow> x = 0"
shows "\<exists>e>0. \<forall>x\<in>s. norm (f x) \<ge> e * norm x"
proof (cases "s \<subseteq> {0::'a}")
case True
have "norm x \<le> norm (f x)" if "x \<in> s" for x
proof -
from True that have "x = 0" by auto
then show ?thesis by simp
qed
then show ?thesis
by (auto intro!: exI[where x=1])
next
case False
interpret f: bounded_linear f by fact
from False obtain a where a: "a \<noteq> 0" "a \<in> s"
by auto
from False have "s \<noteq> {}"
by auto
let ?S = "{f x| x. x \<in> s \<and> norm x = norm a}"
let ?S' = "{x::'a. x\<in>s \<and> norm x = norm a}"
let ?S'' = "{x::'a. norm x = norm a}"
have "?S'' = frontier (cball 0 (norm a))"
by (simp add: sphere_def dist_norm)
then have "compact ?S''" by (metis compact_cball compact_frontier)
moreover have "?S' = s \<inter> ?S''" by auto
ultimately have "compact ?S'"
using closed_Int_compact[of s ?S''] using s(1) by auto
moreover have *:"f ` ?S' = ?S" by auto
ultimately have "compact ?S"
using compact_continuous_image[OF linear_continuous_on[OF f(1)], of ?S'] by auto
then have "closed ?S"
using compact_imp_closed by auto
moreover from a have "?S \<noteq> {}" by auto
ultimately obtain b' where "b'\<in>?S" "\<forall>y\<in>?S. norm b' \<le> norm y"
using distance_attains_inf[of ?S 0] unfolding dist_0_norm by auto
then obtain b where "b\<in>s"
and ba: "norm b = norm a"
and b: "\<forall>x\<in>{x \<in> s. norm x = norm a}. norm (f b) \<le> norm (f x)"
unfolding *[symmetric] unfolding image_iff by auto
let ?e = "norm (f b) / norm b"
have "norm b > 0"
using ba and a and norm_ge_zero by auto
moreover have "norm (f b) > 0"
using f(2)[THEN bspec[where x=b], OF \<open>b\<in>s\<close>]
using \<open>norm b >0\<close> by simp
ultimately have "0 < norm (f b) / norm b" by simp
moreover
have "norm (f b) / norm b * norm x \<le> norm (f x)" if "x\<in>s" for x
proof (cases "x = 0")
case True
then show "norm (f b) / norm b * norm x \<le> norm (f x)"
by auto
next
case False
with \<open>a \<noteq> 0\<close> have *: "0 < norm a / norm x"
unfolding zero_less_norm_iff[symmetric] by simp
have "\<forall>x\<in>s. c *\<^sub>R x \<in> s" for c
using s[unfolded subspace_def] by simp
with \<open>x \<in> s\<close> \<open>x \<noteq> 0\<close> have "(norm a / norm x) *\<^sub>R x \<in> {x \<in> s. norm x = norm a}"
by simp
with \<open>x \<noteq> 0\<close> \<open>a \<noteq> 0\<close> show "norm (f b) / norm b * norm x \<le> norm (f x)"
using b[THEN bspec[where x="(norm a / norm x) *\<^sub>R x"]]
unfolding f.scaleR and ba
by (auto simp: mult.commute pos_le_divide_eq pos_divide_le_eq)
qed
ultimately show ?thesis by auto
qed
lemma closed_injective_image_subspace:
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
assumes "subspace s" "bounded_linear f" "\<forall>x\<in>s. f x = 0 \<longrightarrow> x = 0" "closed s"
shows "closed(f ` s)"
proof -
obtain e where "e > 0" and e: "\<forall>x\<in>s. e * norm x \<le> norm (f x)"
using injective_imp_isometric[OF assms(4,1,2,3)] by auto
show ?thesis
using complete_isometric_image[OF \<open>e>0\<close> assms(1,2) e] and assms(4)
unfolding complete_eq_closed[symmetric] by auto
qed
subsection \<open>Some properties of a canonical subspace\<close>
lemma subspace_substandard: "subspace {x::'a::euclidean_space. (\<forall>i\<in>Basis. P i \<longrightarrow> x\<bullet>i = 0)}"
by (auto simp: subspace_def inner_add_left)
lemma closed_substandard: "closed {x::'a::euclidean_space. \<forall>i\<in>Basis. P i \<longrightarrow> x\<bullet>i = 0}"
(is "closed ?A")
proof -
let ?D = "{i\<in>Basis. P i}"
have "closed (\<Inter>i\<in>?D. {x::'a. x\<bullet>i = 0})"
by (simp add: closed_INT closed_Collect_eq continuous_on_inner
continuous_on_const continuous_on_id)
also have "(\<Inter>i\<in>?D. {x::'a. x\<bullet>i = 0}) = ?A"
by auto
finally show "closed ?A" .
qed
lemma dim_substandard:
assumes d: "d \<subseteq> Basis"
shows "dim {x::'a::euclidean_space. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x\<bullet>i = 0} = card d" (is "dim ?A = _")
proof (rule dim_unique)
from d show "d \<subseteq> ?A"
by (auto simp: inner_Basis)
from d show "independent d"
by (rule independent_mono [OF independent_Basis])
have "x \<in> span d" if "\<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0" for x
proof -
have "finite d"
by (rule finite_subset [OF d finite_Basis])
then have "(\<Sum>i\<in>d. (x \<bullet> i) *\<^sub>R i) \<in> span d"
by (simp add: span_sum span_clauses)
also have "(\<Sum>i\<in>d. (x \<bullet> i) *\<^sub>R i) = (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R i)"
by (rule sum.mono_neutral_cong_left [OF finite_Basis d]) (auto simp: that)
finally show "x \<in> span d"
by (simp only: euclidean_representation)
qed
then show "?A \<subseteq> span d" by auto
qed simp
text \<open>Hence closure and completeness of all subspaces.\<close>
lemma ex_card:
assumes "n \<le> card A"
shows "\<exists>S\<subseteq>A. card S = n"
proof (cases "finite A")
case True
from ex_bij_betw_nat_finite[OF this] obtain f where f: "bij_betw f {0..<card A} A" ..
moreover from f \<open>n \<le> card A\<close> have "{..< n} \<subseteq> {..< card A}" "inj_on f {..< n}"
by (auto simp: bij_betw_def intro: subset_inj_on)
ultimately have "f ` {..< n} \<subseteq> A" "card (f ` {..< n}) = n"
by (auto simp: bij_betw_def card_image)
then show ?thesis by blast
next
case False
with \<open>n \<le> card A\<close> show ?thesis by force
qed
lemma closed_subspace:
fixes s :: "'a::euclidean_space set"
assumes "subspace s"
shows "closed s"
proof -
have "dim s \<le> card (Basis :: 'a set)"
using dim_subset_UNIV by auto
with ex_card[OF this] obtain d :: "'a set" where t: "card d = dim s" and d: "d \<subseteq> Basis"
by auto
let ?t = "{x::'a. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x\<bullet>i = 0}"
have "\<exists>f. linear f \<and> f ` {x::'a. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0} = s \<and>
inj_on f {x::'a. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0}"
using dim_substandard[of d] t d assms
by (intro subspace_isomorphism[OF subspace_substandard[of "\<lambda>i. i \<notin> d"]]) (auto simp: inner_Basis)
then obtain f where f:
"linear f"
"f ` {x. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0} = s"
"inj_on f {x. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0}"
by blast
interpret f: bounded_linear f
using f by (simp add: linear_conv_bounded_linear)
have "x \<in> ?t \<Longrightarrow> f x = 0 \<Longrightarrow> x = 0" for x
using f.zero d f(3)[THEN inj_onD, of x 0] by auto
moreover have "closed ?t" by (rule closed_substandard)
moreover have "subspace ?t" by (rule subspace_substandard)
ultimately show ?thesis
using closed_injective_image_subspace[of ?t f]
unfolding f(2) using f(1) unfolding linear_conv_bounded_linear by auto
qed
lemma complete_subspace: "subspace s \<Longrightarrow> complete s"
for s :: "'a::euclidean_space set"
using complete_eq_closed closed_subspace by auto
lemma closed_span [iff]: "closed (span s)"
for s :: "'a::euclidean_space set"
by (simp add: closed_subspace)
lemma dim_closure [simp]: "dim (closure s) = dim s" (is "?dc = ?d")
for s :: "'a::euclidean_space set"
proof -
have "?dc \<le> ?d"
using closure_minimal[OF span_inc, of s]
using closed_subspace[OF subspace_span, of s]
using dim_subset[of "closure s" "span s"]
by simp
then show ?thesis
using dim_subset[OF closure_subset, of s]
by simp
qed
subsection \<open>Affine transformations of intervals\<close>
lemma real_affinity_le: "0 < m \<Longrightarrow> m * x + c \<le> y \<longleftrightarrow> x \<le> inverse m * y + - (c / m)"
for m :: "'a::linordered_field"
by (simp add: field_simps)
lemma real_le_affinity: "0 < m \<Longrightarrow> y \<le> m * x + c \<longleftrightarrow> inverse m * y + - (c / m) \<le> x"
for m :: "'a::linordered_field"
by (simp add: field_simps)
lemma real_affinity_lt: "0 < m \<Longrightarrow> m * x + c < y \<longleftrightarrow> x < inverse m * y + - (c / m)"
for m :: "'a::linordered_field"
by (simp add: field_simps)
lemma real_lt_affinity: "0 < m \<Longrightarrow> y < m * x + c \<longleftrightarrow> inverse m * y + - (c / m) < x"
for m :: "'a::linordered_field"
by (simp add: field_simps)
lemma real_affinity_eq: "m \<noteq> 0 \<Longrightarrow> m * x + c = y \<longleftrightarrow> x = inverse m * y + - (c / m)"
for m :: "'a::linordered_field"
by (simp add: field_simps)
lemma real_eq_affinity: "m \<noteq> 0 \<Longrightarrow> y = m * x + c \<longleftrightarrow> inverse m * y + - (c / m) = x"
for m :: "'a::linordered_field"
by (simp add: field_simps)
subsection \<open>Banach fixed point theorem (not really topological ...)\<close>
theorem banach_fix:
assumes s: "complete s" "s \<noteq> {}"
and c: "0 \<le> c" "c < 1"
and f: "f ` s \<subseteq> s"
and lipschitz: "\<forall>x\<in>s. \<forall>y\<in>s. dist (f x) (f y) \<le> c * dist x y"
shows "\<exists>!x\<in>s. f x = x"
proof -
from c have "1 - c > 0" by simp
from s(2) obtain z0 where z0: "z0 \<in> s" by blast
define z where "z n = (f ^^ n) z0" for n
with f z0 have z_in_s: "z n \<in> s" for n :: nat
by (induct n) auto
define d where "d = dist (z 0) (z 1)"
have fzn: "f (z n) = z (Suc n)" for n
by (simp add: z_def)
have cf_z: "dist (z n) (z (Suc n)) \<le> (c ^ n) * d" for n :: nat
proof (induct n)
case 0
then show ?case
by (simp add: d_def)
next
case (Suc m)
with \<open>0 \<le> c\<close> have "c * dist (z m) (z (Suc m)) \<le> c ^ Suc m * d"
using mult_left_mono[of "dist (z m) (z (Suc m))" "c ^ m * d" c] by simp
then show ?case
using lipschitz[THEN bspec[where x="z m"], OF z_in_s, THEN bspec[where x="z (Suc m)"], OF z_in_s]
by (simp add: fzn mult_le_cancel_left)
qed
have cf_z2: "(1 - c) * dist (z m) (z (m + n)) \<le> (c ^ m) * d * (1 - c ^ n)" for n m :: nat
proof (induct n)
case 0
show ?case by simp
next
case (Suc k)
from c have "(1 - c) * dist (z m) (z (m + Suc k)) \<le>
(1 - c) * (dist (z m) (z (m + k)) + dist (z (m + k)) (z (Suc (m + k))))"
by (simp add: dist_triangle)
also from c cf_z[of "m + k"] have "\<dots> \<le> (1 - c) * (dist (z m) (z (m + k)) + c ^ (m + k) * d)"
by simp
also from Suc have "\<dots> \<le> c ^ m * d * (1 - c ^ k) + (1 - c) * c ^ (m + k) * d"
by (simp add: field_simps)
also have "\<dots> = (c ^ m) * (d * (1 - c ^ k) + (1 - c) * c ^ k * d)"
by (simp add: power_add field_simps)
also from c have "\<dots> \<le> (c ^ m) * d * (1 - c ^ Suc k)"
by (simp add: field_simps)
finally show ?case by simp
qed
have "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (z m) (z n) < e" if "e > 0" for e
proof (cases "d = 0")
case True
from \<open>1 - c > 0\<close> have "(1 - c) * x \<le> 0 \<longleftrightarrow> x \<le> 0" for x
by (metis mult_zero_left mult.commute real_mult_le_cancel_iff1)
with c cf_z2[of 0] True have "z n = z0" for n
by (simp add: z_def)
with \<open>e > 0\<close> show ?thesis by simp
next
case False
with zero_le_dist[of "z 0" "z 1"] have "d > 0"
by (metis d_def less_le)
with \<open>1 - c > 0\<close> \<open>e > 0\<close> have "0 < e * (1 - c) / d"
by simp
with c obtain N where N: "c ^ N < e * (1 - c) / d"
using real_arch_pow_inv[of "e * (1 - c) / d" c] by auto
have *: "dist (z m) (z n) < e" if "m > n" and as: "m \<ge> N" "n \<ge> N" for m n :: nat
proof -
from c \<open>n \<ge> N\<close> have *: "c ^ n \<le> c ^ N"
using power_decreasing[OF \<open>n\<ge>N\<close>, of c] by simp
from c \<open>m > n\<close> have "1 - c ^ (m - n) > 0"
using power_strict_mono[of c 1 "m - n"] by simp
with \<open>d > 0\<close> \<open>0 < 1 - c\<close> have **: "d * (1 - c ^ (m - n)) / (1 - c) > 0"
by simp
from cf_z2[of n "m - n"] \<open>m > n\<close>
have "dist (z m) (z n) \<le> c ^ n * d * (1 - c ^ (m - n)) / (1 - c)"
by (simp add: pos_le_divide_eq[OF \<open>1 - c > 0\<close>] mult.commute dist_commute)
also have "\<dots> \<le> c ^ N * d * (1 - c ^ (m - n)) / (1 - c)"
using mult_right_mono[OF * order_less_imp_le[OF **]]
by (simp add: mult.assoc)
also have "\<dots> < (e * (1 - c) / d) * d * (1 - c ^ (m - n)) / (1 - c)"
using mult_strict_right_mono[OF N **] by (auto simp add: mult.assoc)
also from c \<open>d > 0\<close> \<open>1 - c > 0\<close> have "\<dots> = e * (1 - c ^ (m - n))"
by simp
also from c \<open>1 - c ^ (m - n) > 0\<close> \<open>e > 0\<close> have "\<dots> \<le> e"
using mult_right_le_one_le[of e "1 - c ^ (m - n)"] by auto
finally show ?thesis by simp
qed
have "dist (z n) (z m) < e" if "N \<le> m" "N \<le> n" for m n :: nat
proof (cases "n = m")
case True
with \<open>e > 0\<close> show ?thesis by simp
next
case False
with *[of n m] *[of m n] and that show ?thesis
by (auto simp add: dist_commute nat_neq_iff)
qed
then show ?thesis by auto
qed
then have "Cauchy z"
by (simp add: cauchy_def)
then obtain x where "x\<in>s" and x:"(z \<longlongrightarrow> x) sequentially"
using s(1)[unfolded compact_def complete_def, THEN spec[where x=z]] and z_in_s by auto
define e where "e = dist (f x) x"
have "e = 0"
proof (rule ccontr)
assume "e \<noteq> 0"
then have "e > 0"
unfolding e_def using zero_le_dist[of "f x" x]
by (metis dist_eq_0_iff dist_nz e_def)
then obtain N where N:"\<forall>n\<ge>N. dist (z n) x < e / 2"
using x[unfolded lim_sequentially, THEN spec[where x="e/2"]] by auto
then have N':"dist (z N) x < e / 2" by auto
have *: "c * dist (z N) x \<le> dist (z N) x"
unfolding mult_le_cancel_right2
using zero_le_dist[of "z N" x] and c
by (metis dist_eq_0_iff dist_nz order_less_asym less_le)
have "dist (f (z N)) (f x) \<le> c * dist (z N) x"
using lipschitz[THEN bspec[where x="z N"], THEN bspec[where x=x]]
using z_in_s[of N] \<open>x\<in>s\<close>
using c
by auto
also have "\<dots> < e / 2"
using N' and c using * by auto
finally show False
unfolding fzn
using N[THEN spec[where x="Suc N"]] and dist_triangle_half_r[of "z (Suc N)" "f x" e x]
unfolding e_def
by auto
qed
then have "f x = x" by (auto simp: e_def)
moreover have "y = x" if "f y = y" "y \<in> s" for y
proof -
from \<open>x \<in> s\<close> \<open>f x = x\<close> that have "dist x y \<le> c * dist x y"
using lipschitz[THEN bspec[where x=x], THEN bspec[where x=y]] by simp
with c and zero_le_dist[of x y] have "dist x y = 0"
by (simp add: mult_le_cancel_right1)
then show ?thesis by simp
qed
ultimately show ?thesis
using \<open>x\<in>s\<close> by blast
qed
subsection \<open>Edelstein fixed point theorem\<close>
theorem edelstein_fix:
fixes s :: "'a::metric_space set"
assumes s: "compact s" "s \<noteq> {}"
and gs: "(g ` s) \<subseteq> s"
and dist: "\<forall>x\<in>s. \<forall>y\<in>s. x \<noteq> y \<longrightarrow> dist (g x) (g y) < dist x y"
shows "\<exists>!x\<in>s. g x = x"
proof -
let ?D = "(\<lambda>x. (x, x)) ` s"
have D: "compact ?D" "?D \<noteq> {}"
by (rule compact_continuous_image)
(auto intro!: s continuous_Pair continuous_ident simp: continuous_on_eq_continuous_within)
have "\<And>x y e. x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> 0 < e \<Longrightarrow> dist y x < e \<Longrightarrow> dist (g y) (g x) < e"
using dist by fastforce
then have "continuous_on s g"
by (auto simp: continuous_on_iff)
then have cont: "continuous_on ?D (\<lambda>x. dist ((g \<circ> fst) x) (snd x))"
unfolding continuous_on_eq_continuous_within
by (intro continuous_dist ballI continuous_within_compose)
(auto intro!: continuous_fst continuous_snd continuous_ident simp: image_image)
obtain a where "a \<in> s" and le: "\<And>x. x \<in> s \<Longrightarrow> dist (g a) a \<le> dist (g x) x"
using continuous_attains_inf[OF D cont] by auto
have "g a = a"
proof (rule ccontr)
assume "g a \<noteq> a"
with \<open>a \<in> s\<close> gs have "dist (g (g a)) (g a) < dist (g a) a"
by (intro dist[rule_format]) auto
moreover have "dist (g a) a \<le> dist (g (g a)) (g a)"
using \<open>a \<in> s\<close> gs by (intro le) auto
ultimately show False by auto
qed
moreover have "\<And>x. x \<in> s \<Longrightarrow> g x = x \<Longrightarrow> x = a"
using dist[THEN bspec[where x=a]] \<open>g a = a\<close> and \<open>a\<in>s\<close> by auto
ultimately show "\<exists>!x\<in>s. g x = x"
using \<open>a \<in> s\<close> by blast
qed
lemma cball_subset_cball_iff:
fixes a :: "'a :: euclidean_space"
shows "cball a r \<subseteq> cball a' r' \<longleftrightarrow> dist a a' + r \<le> r' \<or> r < 0"
(is "?lhs \<longleftrightarrow> ?rhs")
proof
assume ?lhs
then show ?rhs
proof (cases "r < 0")
case True
then show ?rhs by simp
next
case False
then have [simp]: "r \<ge> 0" by simp
have "norm (a - a') + r \<le> r'"
proof (cases "a = a'")
case True
then show ?thesis
using subsetD [where c = "a + r *\<^sub>R (SOME i. i \<in> Basis)", OF \<open>?lhs\<close>] subsetD [where c = "a", OF \<open>?lhs\<close>]
by (force simp add: SOME_Basis dist_norm)
next
case False
have "norm (a' - (a + (r / norm (a - a')) *\<^sub>R (a - a'))) = norm (a' - a - (r / norm (a - a')) *\<^sub>R (a - a'))"
by (simp add: algebra_simps)
also have "... = norm ((-1 - (r / norm (a - a'))) *\<^sub>R (a - a'))"
by (simp add: algebra_simps)
also from \<open>a \<noteq> a'\<close> have "... = \<bar>- norm (a - a') - r\<bar>"
by (simp add: abs_mult_pos field_simps)
finally have [simp]: "norm (a' - (a + (r / norm (a - a')) *\<^sub>R (a - a'))) = \<bar>norm (a - a') + r\<bar>"
by linarith
from \<open>a \<noteq> a'\<close> show ?thesis
using subsetD [where c = "a' + (1 + r / norm(a - a')) *\<^sub>R (a - a')", OF \<open>?lhs\<close>]
by (simp add: dist_norm scaleR_add_left)
qed
then show ?rhs
by (simp add: dist_norm)
qed
next
assume ?rhs
then show ?lhs
by (auto simp: ball_def dist_norm)
(metis add.commute add_le_cancel_right dist_norm dist_triangle3 order_trans)
qed
lemma cball_subset_ball_iff: "cball a r \<subseteq> ball a' r' \<longleftrightarrow> dist a a' + r < r' \<or> r < 0"
(is "?lhs \<longleftrightarrow> ?rhs")
for a :: "'a::euclidean_space"
proof
assume ?lhs
then show ?rhs
proof (cases "r < 0")
case True then
show ?rhs by simp
next
case False
then have [simp]: "r \<ge> 0" by simp
have "norm (a - a') + r < r'"
proof (cases "a = a'")
case True
then show ?thesis
using subsetD [where c = "a + r *\<^sub>R (SOME i. i \<in> Basis)", OF \<open>?lhs\<close>] subsetD [where c = "a", OF \<open>?lhs\<close>]
by (force simp add: SOME_Basis dist_norm)
next
case False
have False if "norm (a - a') + r \<ge> r'"
proof -
from that have "\<bar>r' - norm (a - a')\<bar> \<le> r"
by (simp split: abs_split)
(metis \<open>0 \<le> r\<close> \<open>?lhs\<close> centre_in_cball dist_commute dist_norm less_asym mem_ball subset_eq)
then show ?thesis
using subsetD [where c = "a + (r' / norm(a - a') - 1) *\<^sub>R (a - a')", OF \<open>?lhs\<close>] \<open>a \<noteq> a'\<close>
by (simp add: dist_norm field_simps)
(simp add: diff_divide_distrib scaleR_left_diff_distrib)
qed
then show ?thesis by force
qed
then show ?rhs by (simp add: dist_norm)
qed
next
assume ?rhs
then show ?lhs
by (auto simp: ball_def dist_norm)
(metis add.commute add_le_cancel_right dist_norm dist_triangle3 le_less_trans)
qed
lemma ball_subset_cball_iff: "ball a r \<subseteq> cball a' r' \<longleftrightarrow> dist a a' + r \<le> r' \<or> r \<le> 0"
(is "?lhs = ?rhs")
for a :: "'a::euclidean_space"
proof (cases "r \<le> 0")
case True
then show ?thesis
using dist_not_less_zero less_le_trans by force
next
case False
show ?thesis
proof
assume ?lhs
then have "(cball a r \<subseteq> cball a' r')"
by (metis False closed_cball closure_ball closure_closed closure_mono not_less)
with False show ?rhs
by (fastforce iff: cball_subset_cball_iff)
next
assume ?rhs
with False show ?lhs
using ball_subset_cball cball_subset_cball_iff by blast
qed
qed
lemma ball_subset_ball_iff:
fixes a :: "'a :: euclidean_space"
shows "ball a r \<subseteq> ball a' r' \<longleftrightarrow> dist a a' + r \<le> r' \<or> r \<le> 0"
(is "?lhs = ?rhs")
proof (cases "r \<le> 0")
case True then show ?thesis
using dist_not_less_zero less_le_trans by force
next
case False show ?thesis
proof
assume ?lhs
then have "0 < r'"
by (metis (no_types) False \<open>?lhs\<close> centre_in_ball dist_norm le_less_trans mem_ball norm_ge_zero not_less set_mp)
then have "(cball a r \<subseteq> cball a' r')"
by (metis False\<open>?lhs\<close> closure_ball closure_mono not_less)
then show ?rhs
using False cball_subset_cball_iff by fastforce
next
assume ?rhs then show ?lhs
apply (auto simp: ball_def)
apply (metis add.commute add_le_cancel_right dist_commute dist_triangle_lt not_le order_trans)
using dist_not_less_zero order.strict_trans2 apply blast
done
qed
qed
lemma ball_eq_ball_iff:
fixes x :: "'a :: euclidean_space"
shows "ball x d = ball y e \<longleftrightarrow> d \<le> 0 \<and> e \<le> 0 \<or> x=y \<and> d=e"
(is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
proof (cases "d \<le> 0 \<or> e \<le> 0")
case True
with \<open>?lhs\<close> show ?rhs
by safe (simp_all only: ball_eq_empty [of y e, symmetric] ball_eq_empty [of x d, symmetric])
next
case False
with \<open>?lhs\<close> show ?rhs
apply (auto simp add: set_eq_subset ball_subset_ball_iff dist_norm norm_minus_commute algebra_simps)
apply (metis add_le_same_cancel1 le_add_same_cancel1 norm_ge_zero norm_pths(2) order_trans)
apply (metis add_increasing2 add_le_imp_le_right eq_iff norm_ge_zero)
done
qed
next
assume ?rhs then show ?lhs
by (auto simp add: set_eq_subset ball_subset_ball_iff)
qed
lemma cball_eq_cball_iff:
fixes x :: "'a :: euclidean_space"
shows "cball x d = cball y e \<longleftrightarrow> d < 0 \<and> e < 0 \<or> x=y \<and> d=e"
(is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
proof (cases "d < 0 \<or> e < 0")
case True
with \<open>?lhs\<close> show ?rhs
by safe (simp_all only: cball_eq_empty [of y e, symmetric] cball_eq_empty [of x d, symmetric])
next
case False
with \<open>?lhs\<close> show ?rhs
apply (auto simp add: set_eq_subset cball_subset_cball_iff dist_norm norm_minus_commute algebra_simps)
apply (metis add_le_same_cancel1 le_add_same_cancel1 norm_ge_zero norm_pths(2) order_trans)
apply (metis add_increasing2 add_le_imp_le_right eq_iff norm_ge_zero)
done
qed
next
assume ?rhs then show ?lhs
by (auto simp add: set_eq_subset cball_subset_cball_iff)
qed
lemma ball_eq_cball_iff:
fixes x :: "'a :: euclidean_space"
shows "ball x d = cball y e \<longleftrightarrow> d \<le> 0 \<and> e < 0" (is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
apply (auto simp add: set_eq_subset ball_subset_cball_iff cball_subset_ball_iff algebra_simps)
apply (metis add_increasing2 add_le_cancel_right add_less_same_cancel1 dist_not_less_zero less_le_trans zero_le_dist)
apply (metis add_less_same_cancel1 dist_not_less_zero less_le_trans not_le)
using \<open>?lhs\<close> ball_eq_empty cball_eq_empty apply blast+
done
next
assume ?rhs then show ?lhs by auto
qed
lemma cball_eq_ball_iff:
fixes x :: "'a :: euclidean_space"
shows "cball x d = ball y e \<longleftrightarrow> d < 0 \<and> e \<le> 0"
using ball_eq_cball_iff by blast
lemma finite_ball_avoid:
fixes S :: "'a :: euclidean_space set"
assumes "open S" "finite X" "p \<in> S"
shows "\<exists>e>0. \<forall>w\<in>ball p e. w\<in>S \<and> (w\<noteq>p \<longrightarrow> w\<notin>X)"
proof -
obtain e1 where "0 < e1" and e1_b:"ball p e1 \<subseteq> S"
using open_contains_ball_eq[OF \<open>open S\<close>] assms by auto
obtain e2 where "0 < e2" and "\<forall>x\<in>X. x \<noteq> p \<longrightarrow> e2 \<le> dist p x"
using finite_set_avoid[OF \<open>finite X\<close>,of p] by auto
hence "\<forall>w\<in>ball p (min e1 e2). w\<in>S \<and> (w\<noteq>p \<longrightarrow> w\<notin>X)" using e1_b by auto
thus "\<exists>e>0. \<forall>w\<in>ball p e. w \<in> S \<and> (w \<noteq> p \<longrightarrow> w \<notin> X)" using \<open>e2>0\<close> \<open>e1>0\<close>
apply (rule_tac x="min e1 e2" in exI)
by auto
qed
lemma finite_cball_avoid:
fixes S :: "'a :: euclidean_space set"
assumes "open S" "finite X" "p \<in> S"
shows "\<exists>e>0. \<forall>w\<in>cball p e. w\<in>S \<and> (w\<noteq>p \<longrightarrow> w\<notin>X)"
proof -
obtain e1 where "e1>0" and e1: "\<forall>w\<in>ball p e1. w\<in>S \<and> (w\<noteq>p \<longrightarrow> w\<notin>X)"
using finite_ball_avoid[OF assms] by auto
define e2 where "e2 \<equiv> e1/2"
have "e2>0" and "e2 < e1" unfolding e2_def using \<open>e1>0\<close> by auto
then have "cball p e2 \<subseteq> ball p e1" by (subst cball_subset_ball_iff,auto)
then show "\<exists>e>0. \<forall>w\<in>cball p e. w \<in> S \<and> (w \<noteq> p \<longrightarrow> w \<notin> X)" using \<open>e2>0\<close> e1 by auto
qed
subsection\<open>Various separability-type properties\<close>
lemma univ_second_countable:
obtains \<B> :: "'a::euclidean_space set set"
where "countable \<B>" "\<And>C. C \<in> \<B> \<Longrightarrow> open C"
"\<And>S. open S \<Longrightarrow> \<exists>U. U \<subseteq> \<B> \<and> S = \<Union>U"
by (metis ex_countable_basis topological_basis_def)
lemma subset_second_countable:
obtains \<B> :: "'a:: euclidean_space set set"
where "countable \<B>"
"{} \<notin> \<B>"
"\<And>C. C \<in> \<B> \<Longrightarrow> openin(subtopology euclidean S) C"
"\<And>T. openin(subtopology euclidean S) T \<Longrightarrow> \<exists>\<U>. \<U> \<subseteq> \<B> \<and> T = \<Union>\<U>"
proof -
obtain \<B> :: "'a set set"
where "countable \<B>"
and opeB: "\<And>C. C \<in> \<B> \<Longrightarrow> openin(subtopology euclidean S) C"
and \<B>: "\<And>T. openin(subtopology euclidean S) T \<Longrightarrow> \<exists>\<U>. \<U> \<subseteq> \<B> \<and> T = \<Union>\<U>"
proof -
obtain \<C> :: "'a set set"
where "countable \<C>" and ope: "\<And>C. C \<in> \<C> \<Longrightarrow> open C"
and \<C>: "\<And>S. open S \<Longrightarrow> \<exists>U. U \<subseteq> \<C> \<and> S = \<Union>U"
by (metis univ_second_countable that)
show ?thesis
proof
show "countable ((\<lambda>C. S \<inter> C) ` \<C>)"
by (simp add: \<open>countable \<C>\<close>)
show "\<And>C. C \<in> op \<inter> S ` \<C> \<Longrightarrow> openin (subtopology euclidean S) C"
using ope by auto
show "\<And>T. openin (subtopology euclidean S) T \<Longrightarrow> \<exists>\<U>\<subseteq>op \<inter> S ` \<C>. T = \<Union>\<U>"
by (metis \<C> image_mono inf_Sup openin_open)
qed
qed
show ?thesis
proof
show "countable (\<B> - {{}})"
using \<open>countable \<B>\<close> by blast
show "\<And>C. \<lbrakk>C \<in> \<B> - {{}}\<rbrakk> \<Longrightarrow> openin (subtopology euclidean S) C"
by (simp add: \<open>\<And>C. C \<in> \<B> \<Longrightarrow> openin (subtopology euclidean S) C\<close>)
show "\<exists>\<U>\<subseteq>\<B> - {{}}. T = \<Union>\<U>" if "openin (subtopology euclidean S) T" for T
using \<B> [OF that]
apply clarify
apply (rule_tac x="\<U> - {{}}" in exI, auto)
done
qed auto
qed
lemma univ_second_countable_sequence:
obtains B :: "nat \<Rightarrow> 'a::euclidean_space set"
where "inj B" "\<And>n. open(B n)" "\<And>S. open S \<Longrightarrow> \<exists>k. S = \<Union>{B n |n. n \<in> k}"
proof -
obtain \<B> :: "'a set set"
where "countable \<B>"
and op: "\<And>C. C \<in> \<B> \<Longrightarrow> open C"
and Un: "\<And>S. open S \<Longrightarrow> \<exists>U. U \<subseteq> \<B> \<and> S = \<Union>U"
using univ_second_countable by blast
have *: "infinite (range (\<lambda>n. ball (0::'a) (inverse(Suc n))))"
apply (rule Infinite_Set.range_inj_infinite)
apply (simp add: inj_on_def ball_eq_ball_iff)
done
have "infinite \<B>"
proof
assume "finite \<B>"
then have "finite (Union ` (Pow \<B>))"
by simp
then have "finite (range (\<lambda>n. ball (0::'a) (inverse(Suc n))))"
apply (rule rev_finite_subset)
by (metis (no_types, lifting) PowI image_eqI image_subset_iff Un [OF open_ball])
with * show False by simp
qed
obtain f :: "nat \<Rightarrow> 'a set" where "\<B> = range f" "inj f"
by (blast intro: countable_as_injective_image [OF \<open>countable \<B>\<close> \<open>infinite \<B>\<close>])
have *: "\<exists>k. S = \<Union>{f n |n. n \<in> k}" if "open S" for S
using Un [OF that]
apply clarify
apply (rule_tac x="f-`U" in exI)
using \<open>inj f\<close> \<open>\<B> = range f\<close> apply force
done
show ?thesis
apply (rule that [OF \<open>inj f\<close> _ *])
apply (auto simp: \<open>\<B> = range f\<close> op)
done
qed
proposition separable:
fixes S :: "'a:: euclidean_space set"
obtains T where "countable T" "T \<subseteq> S" "S \<subseteq> closure T"
proof -
obtain \<B> :: "'a:: euclidean_space set set"
where "countable \<B>"
and "{} \<notin> \<B>"
and ope: "\<And>C. C \<in> \<B> \<Longrightarrow> openin(subtopology euclidean S) C"
and if_ope: "\<And>T. openin(subtopology euclidean S) T \<Longrightarrow> \<exists>\<U>. \<U> \<subseteq> \<B> \<and> T = \<Union>\<U>"
by (meson subset_second_countable)
then obtain f where f: "\<And>C. C \<in> \<B> \<Longrightarrow> f C \<in> C"
by (metis equals0I)
show ?thesis
proof
show "countable (f ` \<B>)"
by (simp add: \<open>countable \<B>\<close>)
show "f ` \<B> \<subseteq> S"
using ope f openin_imp_subset by blast
show "S \<subseteq> closure (f ` \<B>)"
proof (clarsimp simp: closure_approachable)
fix x and e::real
assume "x \<in> S" "0 < e"
have "openin (subtopology euclidean S) (S \<inter> ball x e)"
by (simp add: openin_Int_open)
with if_ope obtain \<U> where \<U>: "\<U> \<subseteq> \<B>" "S \<inter> ball x e = \<Union>\<U>"
by meson
show "\<exists>C \<in> \<B>. dist (f C) x < e"
proof (cases "\<U> = {}")
case True
then show ?thesis
using \<open>0 < e\<close> \<U> \<open>x \<in> S\<close> by auto
next
case False
then obtain C where "C \<in> \<U>" by blast
show ?thesis
proof
show "dist (f C) x < e"
by (metis Int_iff Union_iff \<U> \<open>C \<in> \<U>\<close> dist_commute f mem_ball subsetCE)
show "C \<in> \<B>"
using \<open>\<U> \<subseteq> \<B>\<close> \<open>C \<in> \<U>\<close> by blast
qed
qed
qed
qed
qed
proposition Lindelof:
fixes \<F> :: "'a::euclidean_space set set"
assumes \<F>: "\<And>S. S \<in> \<F> \<Longrightarrow> open S"
obtains \<F>' where "\<F>' \<subseteq> \<F>" "countable \<F>'" "\<Union>\<F>' = \<Union>\<F>"
proof -
obtain \<B> :: "'a set set"
where "countable \<B>" "\<And>C. C \<in> \<B> \<Longrightarrow> open C"
and \<B>: "\<And>S. open S \<Longrightarrow> \<exists>U. U \<subseteq> \<B> \<and> S = \<Union>U"
using univ_second_countable by blast
define \<D> where "\<D> \<equiv> {S. S \<in> \<B> \<and> (\<exists>U. U \<in> \<F> \<and> S \<subseteq> U)}"
have "countable \<D>"
apply (rule countable_subset [OF _ \<open>countable \<B>\<close>])
apply (force simp: \<D>_def)
done
have "\<And>S. \<exists>U. S \<in> \<D> \<longrightarrow> U \<in> \<F> \<and> S \<subseteq> U"
by (simp add: \<D>_def)
then obtain G where G: "\<And>S. S \<in> \<D> \<longrightarrow> G S \<in> \<F> \<and> S \<subseteq> G S"
by metis
have "\<Union>\<F> \<subseteq> \<Union>\<D>"
unfolding \<D>_def by (blast dest: \<F> \<B>)
moreover have "\<Union>\<D> \<subseteq> \<Union>\<F>"
using \<D>_def by blast
ultimately have eq1: "\<Union>\<F> = \<Union>\<D>" ..
have eq2: "\<Union>\<D> = UNION \<D> G"
using G eq1 by auto
show ?thesis
apply (rule_tac \<F>' = "G ` \<D>" in that)
using G \<open>countable \<D>\<close> apply (auto simp: eq1 eq2)
done
qed
lemma Lindelof_openin:
fixes \<F> :: "'a::euclidean_space set set"
assumes "\<And>S. S \<in> \<F> \<Longrightarrow> openin (subtopology euclidean U) S"
obtains \<F>' where "\<F>' \<subseteq> \<F>" "countable \<F>'" "\<Union>\<F>' = \<Union>\<F>"
proof -
have "\<And>S. S \<in> \<F> \<Longrightarrow> \<exists>T. open T \<and> S = U \<inter> T"
using assms by (simp add: openin_open)
then obtain tf where tf: "\<And>S. S \<in> \<F> \<Longrightarrow> open (tf S) \<and> (S = U \<inter> tf S)"
by metis
have [simp]: "\<And>\<F>'. \<F>' \<subseteq> \<F> \<Longrightarrow> \<Union>\<F>' = U \<inter> \<Union>(tf ` \<F>')"
using tf by fastforce
obtain \<G> where "countable \<G> \<and> \<G> \<subseteq> tf ` \<F>" "\<Union>\<G> = UNION \<F> tf"
using tf by (force intro: Lindelof [of "tf ` \<F>"])
then obtain \<F>' where \<F>': "\<F>' \<subseteq> \<F>" "countable \<F>'" "\<Union>\<F>' = \<Union>\<F>"
by (clarsimp simp add: countable_subset_image)
then show ?thesis ..
qed
lemma countable_disjoint_open_subsets:
fixes \<F> :: "'a::euclidean_space set set"
assumes "\<And>S. S \<in> \<F> \<Longrightarrow> open S" and pw: "pairwise disjnt \<F>"
shows "countable \<F>"
proof -
obtain \<F>' where "\<F>' \<subseteq> \<F>" "countable \<F>'" "\<Union>\<F>' = \<Union>\<F>"
by (meson assms Lindelof)
with pw have "\<F> \<subseteq> insert {} \<F>'"
by (fastforce simp add: pairwise_def disjnt_iff)
then show ?thesis
by (simp add: \<open>countable \<F>'\<close> countable_subset)
qed
lemma closedin_compact:
"\<lbrakk>compact S; closedin (subtopology euclidean S) T\<rbrakk> \<Longrightarrow> compact T"
by (metis closedin_closed compact_Int_closed)
lemma closedin_compact_eq:
fixes S :: "'a::t2_space set"
shows
"compact S
\<Longrightarrow> (closedin (subtopology euclidean S) T \<longleftrightarrow>
compact T \<and> T \<subseteq> S)"
by (metis closedin_imp_subset closedin_compact closed_subset compact_imp_closed)
lemma continuous_imp_closed_map:
fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
assumes "closedin (subtopology euclidean S) U"
"continuous_on S f" "image f S = T" "compact S"
shows "closedin (subtopology euclidean T) (image f U)"
by (metis assms closedin_compact_eq compact_continuous_image continuous_on_subset subset_image_iff)
lemma continuous_imp_quotient_map:
fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
assumes "continuous_on S f" "image f S = T" "compact S" "U \<subseteq> T"
shows "openin (subtopology euclidean S) {x. x \<in> S \<and> f x \<in> U} \<longleftrightarrow>
openin (subtopology euclidean T) U"
by (metis (no_types, lifting) Collect_cong assms closed_map_imp_quotient_map continuous_imp_closed_map)
subsection\<open> Finite intersection property\<close>
text\<open>Also developed in HOL's toplogical spaces theory, but the Heine-Borel type class isn't available there.\<close>
lemma closed_imp_fip:
fixes S :: "'a::heine_borel set"
assumes "closed S"
and T: "T \<in> \<F>" "bounded T"
and clof: "\<And>T. T \<in> \<F> \<Longrightarrow> closed T"
and none: "\<And>\<F>'. \<lbrakk>finite \<F>'; \<F>' \<subseteq> \<F>\<rbrakk> \<Longrightarrow> S \<inter> \<Inter>\<F>' \<noteq> {}"
shows "S \<inter> \<Inter>\<F> \<noteq> {}"
proof -
have "compact (S \<inter> T)"
using \<open>closed S\<close> clof compact_eq_bounded_closed T by blast
then have "(S \<inter> T) \<inter> \<Inter>\<F> \<noteq> {}"
apply (rule compact_imp_fip)
apply (simp add: clof)
by (metis Int_assoc complete_lattice_class.Inf_insert finite_insert insert_subset none \<open>T \<in> \<F>\<close>)
then show ?thesis by blast
qed
lemma closed_imp_fip_compact:
fixes S :: "'a::heine_borel set"
shows
"\<lbrakk>closed S; \<And>T. T \<in> \<F> \<Longrightarrow> compact T;
\<And>\<F>'. \<lbrakk>finite \<F>'; \<F>' \<subseteq> \<F>\<rbrakk> \<Longrightarrow> S \<inter> \<Inter>\<F>' \<noteq> {}\<rbrakk>
\<Longrightarrow> S \<inter> \<Inter>\<F> \<noteq> {}"
by (metis Inf_greatest closed_imp_fip compact_eq_bounded_closed empty_subsetI finite.emptyI inf.orderE)
lemma closed_fip_heine_borel:
fixes \<F> :: "'a::heine_borel set set"
assumes "closed S" "T \<in> \<F>" "bounded T"
and "\<And>T. T \<in> \<F> \<Longrightarrow> closed T"
and "\<And>\<F>'. \<lbrakk>finite \<F>'; \<F>' \<subseteq> \<F>\<rbrakk> \<Longrightarrow> \<Inter>\<F>' \<noteq> {}"
shows "\<Inter>\<F> \<noteq> {}"
proof -
have "UNIV \<inter> \<Inter>\<F> \<noteq> {}"
using assms closed_imp_fip [OF closed_UNIV] by auto
then show ?thesis by simp
qed
lemma compact_fip_heine_borel:
fixes \<F> :: "'a::heine_borel set set"
assumes clof: "\<And>T. T \<in> \<F> \<Longrightarrow> compact T"
and none: "\<And>\<F>'. \<lbrakk>finite \<F>'; \<F>' \<subseteq> \<F>\<rbrakk> \<Longrightarrow> \<Inter>\<F>' \<noteq> {}"
shows "\<Inter>\<F> \<noteq> {}"
by (metis InterI all_not_in_conv clof closed_fip_heine_borel compact_eq_bounded_closed none)
lemma compact_sequence_with_limit:
fixes f :: "nat \<Rightarrow> 'a::heine_borel"
shows "(f \<longlongrightarrow> l) sequentially \<Longrightarrow> compact (insert l (range f))"
apply (simp add: compact_eq_bounded_closed, auto)
apply (simp add: convergent_imp_bounded)
by (simp add: closed_limpt islimpt_insert sequence_unique_limpt)
subsection\<open>Componentwise limits and continuity\<close>
text\<open>But is the premise really necessary? Need to generalise @{thm euclidean_dist_l2}\<close>
lemma Euclidean_dist_upper: "i \<in> Basis \<Longrightarrow> dist (x \<bullet> i) (y \<bullet> i) \<le> dist x y"
by (metis (no_types) member_le_setL2 euclidean_dist_l2 finite_Basis)
text\<open>But is the premise @{term \<open>i \<in> Basis\<close>} really necessary?\<close>
lemma open_preimage_inner:
assumes "open S" "i \<in> Basis"
shows "open {x. x \<bullet> i \<in> S}"
proof (rule openI, simp)
fix x
assume x: "x \<bullet> i \<in> S"
with assms obtain e where "0 < e" and e: "ball (x \<bullet> i) e \<subseteq> S"
by (auto simp: open_contains_ball_eq)
have "\<exists>e>0. ball (y \<bullet> i) e \<subseteq> S" if dxy: "dist x y < e / 2" for y
proof (intro exI conjI)
have "dist (x \<bullet> i) (y \<bullet> i) < e / 2"
by (meson \<open>i \<in> Basis\<close> dual_order.trans Euclidean_dist_upper not_le that)
then have "dist (x \<bullet> i) z < e" if "dist (y \<bullet> i) z < e / 2" for z
by (metis dist_commute dist_triangle_half_l that)
then have "ball (y \<bullet> i) (e / 2) \<subseteq> ball (x \<bullet> i) e"
using mem_ball by blast
with e show "ball (y \<bullet> i) (e / 2) \<subseteq> S"
by (metis order_trans)
qed (simp add: \<open>0 < e\<close>)
then show "\<exists>e>0. ball x e \<subseteq> {s. s \<bullet> i \<in> S}"
by (metis (no_types, lifting) \<open>0 < e\<close> \<open>open S\<close> half_gt_zero_iff mem_Collect_eq mem_ball open_contains_ball_eq subsetI)
qed
proposition tendsto_componentwise_iff:
fixes f :: "_ \<Rightarrow> 'b::euclidean_space"
shows "(f \<longlongrightarrow> l) F \<longleftrightarrow> (\<forall>i \<in> Basis. ((\<lambda>x. (f x \<bullet> i)) \<longlongrightarrow> (l \<bullet> i)) F)"
(is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
unfolding tendsto_def
apply clarify
apply (drule_tac x="{s. s \<bullet> i \<in> S}" in spec)
apply (auto simp: open_preimage_inner)
done
next
assume R: ?rhs
then have "\<And>e. e > 0 \<Longrightarrow> \<forall>i\<in>Basis. \<forall>\<^sub>F x in F. dist (f x \<bullet> i) (l \<bullet> i) < e"
unfolding tendsto_iff by blast
then have R': "\<And>e. e > 0 \<Longrightarrow> \<forall>\<^sub>F x in F. \<forall>i\<in>Basis. dist (f x \<bullet> i) (l \<bullet> i) < e"
by (simp add: eventually_ball_finite_distrib [symmetric])
show ?lhs
unfolding tendsto_iff
proof clarify
fix e::real
assume "0 < e"
have *: "setL2 (\<lambda>i. dist (f x \<bullet> i) (l \<bullet> i)) Basis < e"
if "\<forall>i\<in>Basis. dist (f x \<bullet> i) (l \<bullet> i) < e / real DIM('b)" for x
proof -
have "setL2 (\<lambda>i. dist (f x \<bullet> i) (l \<bullet> i)) Basis \<le> sum (\<lambda>i. dist (f x \<bullet> i) (l \<bullet> i)) Basis"
by (simp add: setL2_le_sum)
also have "... < DIM('b) * (e / real DIM('b))"
apply (rule sum_bounded_above_strict)
using that by auto
also have "... = e"
by (simp add: field_simps)
finally show "setL2 (\<lambda>i. dist (f x \<bullet> i) (l \<bullet> i)) Basis < e" .
qed
have "\<forall>\<^sub>F x in F. \<forall>i\<in>Basis. dist (f x \<bullet> i) (l \<bullet> i) < e / DIM('b)"
apply (rule R')
using \<open>0 < e\<close> by simp
then show "\<forall>\<^sub>F x in F. dist (f x) l < e"
apply (rule eventually_mono)
apply (subst euclidean_dist_l2)
using * by blast
qed
qed
corollary continuous_componentwise:
"continuous F f \<longleftrightarrow> (\<forall>i \<in> Basis. continuous F (\<lambda>x. (f x \<bullet> i)))"
by (simp add: continuous_def tendsto_componentwise_iff [symmetric])
corollary continuous_on_componentwise:
fixes S :: "'a :: t2_space set"
shows "continuous_on S f \<longleftrightarrow> (\<forall>i \<in> Basis. continuous_on S (\<lambda>x. (f x \<bullet> i)))"
apply (simp add: continuous_on_eq_continuous_within)
using continuous_componentwise by blast
lemma linear_componentwise_iff:
"(linear f') \<longleftrightarrow> (\<forall>i\<in>Basis. linear (\<lambda>x. f' x \<bullet> i))"
apply (auto simp: linear_iff inner_left_distrib)
apply (metis inner_left_distrib euclidean_eq_iff)
by (metis euclidean_eqI inner_scaleR_left)
lemma bounded_linear_componentwise_iff:
"(bounded_linear f') \<longleftrightarrow> (\<forall>i\<in>Basis. bounded_linear (\<lambda>x. f' x \<bullet> i))"
(is "?lhs = ?rhs")
proof
assume ?lhs then show ?rhs
by (simp add: bounded_linear_inner_left_comp)
next
assume ?rhs
then have "(\<forall>i\<in>Basis. \<exists>K. \<forall>x. \<bar>f' x \<bullet> i\<bar> \<le> norm x * K)" "linear f'"
by (auto simp: bounded_linear_def bounded_linear_axioms_def linear_componentwise_iff [symmetric] ball_conj_distrib)
then obtain F where F: "\<And>i x. i \<in> Basis \<Longrightarrow> \<bar>f' x \<bullet> i\<bar> \<le> norm x * F i"
by metis
have "norm (f' x) \<le> norm x * sum F Basis" for x
proof -
have "norm (f' x) \<le> (\<Sum>i\<in>Basis. \<bar>f' x \<bullet> i\<bar>)"
by (rule norm_le_l1)
also have "... \<le> (\<Sum>i\<in>Basis. norm x * F i)"
by (metis F sum_mono)
also have "... = norm x * sum F Basis"
by (simp add: sum_distrib_left)
finally show ?thesis .
qed
then show ?lhs
by (force simp: bounded_linear_def bounded_linear_axioms_def \<open>linear f'\<close>)
qed
subsection\<open>Pasting functions together\<close>
subsubsection\<open>on open sets\<close>
lemma pasting_lemma:
fixes f :: "'i \<Rightarrow> 'a::topological_space \<Rightarrow> 'b::topological_space"
assumes clo: "\<And>i. i \<in> I \<Longrightarrow> openin (subtopology euclidean S) (T i)"
and cont: "\<And>i. i \<in> I \<Longrightarrow> continuous_on (T i) (f i)"
and f: "\<And>i j x. \<lbrakk>i \<in> I; j \<in> I; x \<in> S \<inter> T i \<inter> T j\<rbrakk> \<Longrightarrow> f i x = f j x"
and g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>j. j \<in> I \<and> x \<in> T j \<and> g x = f j x"
shows "continuous_on S g"
proof (clarsimp simp: continuous_openin_preimage_eq)
fix U :: "'b set"
assume "open U"
have S: "\<And>i. i \<in> I \<Longrightarrow> (T i) \<subseteq> S"
using clo openin_imp_subset by blast
have *: "{x \<in> S. g x \<in> U} = \<Union>{{x. x \<in> (T i) \<and> (f i x) \<in> U} |i. i \<in> I}"
apply (auto simp: dest: S)
apply (metis (no_types, lifting) g mem_Collect_eq)
using clo f g openin_imp_subset by fastforce
show "openin (subtopology euclidean S) {x \<in> S. g x \<in> U}"
apply (subst *)
apply (rule openin_Union, clarify)
apply (metis (full_types) \<open>open U\<close> cont clo openin_trans continuous_openin_preimage_gen)
done
qed
lemma pasting_lemma_exists:
fixes f :: "'i \<Rightarrow> 'a::topological_space \<Rightarrow> 'b::topological_space"
assumes S: "S \<subseteq> (\<Union>i \<in> I. T i)"
and clo: "\<And>i. i \<in> I \<Longrightarrow> openin (subtopology euclidean S) (T i)"
and cont: "\<And>i. i \<in> I \<Longrightarrow> continuous_on (T i) (f i)"
and f: "\<And>i j x. \<lbrakk>i \<in> I; j \<in> I; x \<in> S \<inter> T i \<inter> T j\<rbrakk> \<Longrightarrow> f i x = f j x"
obtains g where "continuous_on S g" "\<And>x i. \<lbrakk>i \<in> I; x \<in> S \<inter> T i\<rbrakk> \<Longrightarrow> g x = f i x"
proof
show "continuous_on S (\<lambda>x. f (SOME i. i \<in> I \<and> x \<in> T i) x)"
apply (rule pasting_lemma [OF clo cont])
apply (blast intro: f)+
apply (metis (mono_tags, lifting) S UN_iff subsetCE someI)
done
next
fix x i
assume "i \<in> I" "x \<in> S \<inter> T i"
then show "f (SOME i. i \<in> I \<and> x \<in> T i) x = f i x"
by (metis (no_types, lifting) IntD2 IntI f someI_ex)
qed
subsubsection\<open>Likewise on closed sets, with a finiteness assumption\<close>
lemma pasting_lemma_closed:
fixes f :: "'i \<Rightarrow> 'a::topological_space \<Rightarrow> 'b::topological_space"
assumes "finite I"
and clo: "\<And>i. i \<in> I \<Longrightarrow> closedin (subtopology euclidean S) (T i)"
and cont: "\<And>i. i \<in> I \<Longrightarrow> continuous_on (T i) (f i)"
and f: "\<And>i j x. \<lbrakk>i \<in> I; j \<in> I; x \<in> S \<inter> T i \<inter> T j\<rbrakk> \<Longrightarrow> f i x = f j x"
and g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>j. j \<in> I \<and> x \<in> T j \<and> g x = f j x"
shows "continuous_on S g"
proof (clarsimp simp: continuous_closedin_preimage_eq)
fix U :: "'b set"
assume "closed U"
have *: "{x \<in> S. g x \<in> U} = \<Union>{{x. x \<in> (T i) \<and> (f i x) \<in> U} |i. i \<in> I}"
apply auto
apply (metis (no_types, lifting) g mem_Collect_eq)
using clo closedin_closed apply blast
apply (metis Int_iff f g clo closedin_limpt inf.absorb_iff2)
done
show "closedin (subtopology euclidean S) {x \<in> S. g x \<in> U}"
apply (subst *)
apply (rule closedin_Union)
using \<open>finite I\<close> apply simp
apply (blast intro: \<open>closed U\<close> continuous_closedin_preimage cont clo closedin_trans)
done
qed
lemma pasting_lemma_exists_closed:
fixes f :: "'i \<Rightarrow> 'a::topological_space \<Rightarrow> 'b::topological_space"
assumes "finite I"
and S: "S \<subseteq> (\<Union>i \<in> I. T i)"
and clo: "\<And>i. i \<in> I \<Longrightarrow> closedin (subtopology euclidean S) (T i)"
and cont: "\<And>i. i \<in> I \<Longrightarrow> continuous_on (T i) (f i)"
and f: "\<And>i j x. \<lbrakk>i \<in> I; j \<in> I; x \<in> S \<inter> T i \<inter> T j\<rbrakk> \<Longrightarrow> f i x = f j x"
obtains g where "continuous_on S g" "\<And>x i. \<lbrakk>i \<in> I; x \<in> S \<inter> T i\<rbrakk> \<Longrightarrow> g x = f i x"
proof
show "continuous_on S (\<lambda>x. f (SOME i. i \<in> I \<and> x \<in> T i) x)"
apply (rule pasting_lemma_closed [OF \<open>finite I\<close> clo cont])
apply (blast intro: f)+
apply (metis (mono_tags, lifting) S UN_iff subsetCE someI)
done
next
fix x i
assume "i \<in> I" "x \<in> S \<inter> T i"
then show "f (SOME i. i \<in> I \<and> x \<in> T i) x = f i x"
by (metis (no_types, lifting) IntD2 IntI f someI_ex)
qed
lemma tube_lemma:
assumes "compact K"
assumes "open W"
assumes "{x0} \<times> K \<subseteq> W"
shows "\<exists>X0. x0 \<in> X0 \<and> open X0 \<and> X0 \<times> K \<subseteq> W"
proof -
{
fix y assume "y \<in> K"
then have "(x0, y) \<in> W" using assms by auto
with \<open>open W\<close>
have "\<exists>X0 Y. open X0 \<and> open Y \<and> x0 \<in> X0 \<and> y \<in> Y \<and> X0 \<times> Y \<subseteq> W"
by (rule open_prod_elim) blast
}
then obtain X0 Y where
*: "\<forall>y \<in> K. open (X0 y) \<and> open (Y y) \<and> x0 \<in> X0 y \<and> y \<in> Y y \<and> X0 y \<times> Y y \<subseteq> W"
by metis
from * have "\<forall>t\<in>Y ` K. open t" "K \<subseteq> \<Union>(Y ` K)" by auto
with \<open>compact K\<close> obtain CC where CC: "CC \<subseteq> Y ` K" "finite CC" "K \<subseteq> \<Union>CC"
by (meson compactE)
then obtain c where c: "\<And>C. C \<in> CC \<Longrightarrow> c C \<in> K \<and> C = Y (c C)"
by (force intro!: choice)
with * CC show ?thesis
by (force intro!: exI[where x="\<Inter>C\<in>CC. X0 (c C)"]) (* SLOW *)
qed
lemma continuous_on_prod_compactE:
fixes fx::"'a::topological_space \<times> 'b::topological_space \<Rightarrow> 'c::metric_space"
and e::real
assumes cont_fx: "continuous_on (U \<times> C) fx"
assumes "compact C"
assumes [intro]: "x0 \<in> U"
notes [continuous_intros] = continuous_on_compose2[OF cont_fx]
assumes "e > 0"
obtains X0 where "x0 \<in> X0" "open X0"
"\<forall>x\<in>X0 \<inter> U. \<forall>t \<in> C. dist (fx (x, t)) (fx (x0, t)) \<le> e"
proof -
define psi where "psi = (\<lambda>(x, t). dist (fx (x, t)) (fx (x0, t)))"
define W0 where "W0 = {(x, t) \<in> U \<times> C. psi (x, t) < e}"
have W0_eq: "W0 = psi -` {..<e} \<inter> U \<times> C"
by (auto simp: vimage_def W0_def)
have "open {..<e}" by simp
have "continuous_on (U \<times> C) psi"
by (auto intro!: continuous_intros simp: psi_def split_beta')
from this[unfolded continuous_on_open_invariant, rule_format, OF \<open>open {..<e}\<close>]
obtain W where W: "open W" "W \<inter> U \<times> C = W0 \<inter> U \<times> C"
unfolding W0_eq by blast
have "{x0} \<times> C \<subseteq> W \<inter> U \<times> C"
unfolding W
by (auto simp: W0_def psi_def \<open>0 < e\<close>)
then have "{x0} \<times> C \<subseteq> W" by blast
from tube_lemma[OF \<open>compact C\<close> \<open>open W\<close> this]
obtain X0 where X0: "x0 \<in> X0" "open X0" "X0 \<times> C \<subseteq> W"
by blast
have "\<forall>x\<in>X0 \<inter> U. \<forall>t \<in> C. dist (fx (x, t)) (fx (x0, t)) \<le> e"
proof safe
fix x assume x: "x \<in> X0" "x \<in> U"
fix t assume t: "t \<in> C"
have "dist (fx (x, t)) (fx (x0, t)) = psi (x, t)"
by (auto simp: psi_def)
also
{
have "(x, t) \<in> X0 \<times> C"
using t x
by auto
also note \<open>\<dots> \<subseteq> W\<close>
finally have "(x, t) \<in> W" .
with t x have "(x, t) \<in> W \<inter> U \<times> C"
by blast
also note \<open>W \<inter> U \<times> C = W0 \<inter> U \<times> C\<close>
finally have "psi (x, t) < e"
by (auto simp: W0_def)
}
finally show "dist (fx (x, t)) (fx (x0, t)) \<le> e" by simp
qed
from X0(1,2) this show ?thesis ..
qed
subsection\<open>Constancy of a function from a connected set into a finite, disconnected or discrete set\<close>
text\<open>Still missing: versions for a set that is smaller than R, or countable.\<close>
lemma continuous_disconnected_range_constant:
assumes s: "connected s"
and conf: "continuous_on s f"
and fim: "f ` s \<subseteq> t"
and cct: "\<And>y. y \<in> t \<Longrightarrow> connected_component_set t y = {y}"
shows "\<exists>a. \<forall>x \<in> s. f x = a"
proof (cases "s = {}")
case True then show ?thesis by force
next
case False
{ fix x assume "x \<in> s"
then have "f ` s \<subseteq> {f x}"
by (metis connected_continuous_image conf connected_component_maximal fim image_subset_iff rev_image_eqI s cct)
}
with False show ?thesis
by blast
qed
lemma discrete_subset_disconnected:
fixes s :: "'a::topological_space set"
fixes t :: "'b::real_normed_vector set"
assumes conf: "continuous_on s f"
and no: "\<And>x. x \<in> s \<Longrightarrow> \<exists>e>0. \<forall>y. y \<in> s \<and> f y \<noteq> f x \<longrightarrow> e \<le> norm (f y - f x)"
shows "f ` s \<subseteq> {y. connected_component_set (f ` s) y = {y}}"
proof -
{ fix x assume x: "x \<in> s"
then obtain e where "e>0" and ele: "\<And>y. \<lbrakk>y \<in> s; f y \<noteq> f x\<rbrakk> \<Longrightarrow> e \<le> norm (f y - f x)"
using conf no [OF x] by auto
then have e2: "0 \<le> e / 2"
by simp
have "f y = f x" if "y \<in> s" and ccs: "f y \<in> connected_component_set (f ` s) (f x)" for y
apply (rule ccontr)
using connected_closed [of "connected_component_set (f ` s) (f x)"] \<open>e>0\<close>
apply (simp add: del: ex_simps)
apply (drule spec [where x="cball (f x) (e / 2)"])
apply (drule spec [where x="- ball(f x) e"])
apply (auto simp: dist_norm open_closed [symmetric] simp del: le_divide_eq_numeral1 dest!: connected_component_in)
apply (metis diff_self e2 ele norm_minus_commute norm_zero not_less)
using centre_in_cball connected_component_refl_eq e2 x apply blast
using ccs
apply (force simp: cball_def dist_norm norm_minus_commute dest: ele [OF \<open>y \<in> s\<close>])
done
moreover have "connected_component_set (f ` s) (f x) \<subseteq> f ` s"
by (auto simp: connected_component_in)
ultimately have "connected_component_set (f ` s) (f x) = {f x}"
by (auto simp: x)
}
with assms show ?thesis
by blast
qed
lemma finite_implies_discrete:
fixes s :: "'a::topological_space set"
assumes "finite (f ` s)"
shows "(\<forall>x \<in> s. \<exists>e>0. \<forall>y. y \<in> s \<and> f y \<noteq> f x \<longrightarrow> e \<le> norm (f y - f x))"
proof -
have "\<exists>e>0. \<forall>y. y \<in> s \<and> f y \<noteq> f x \<longrightarrow> e \<le> norm (f y - f x)" if "x \<in> s" for x
proof (cases "f ` s - {f x} = {}")
case True
with zero_less_numeral show ?thesis
by (fastforce simp add: Set.image_subset_iff cong: conj_cong)
next
case False
then obtain z where z: "z \<in> s" "f z \<noteq> f x"
by blast
have finn: "finite {norm (z - f x) |z. z \<in> f ` s - {f x}}"
using assms by simp
then have *: "0 < Inf{norm(z - f x) | z. z \<in> f ` s - {f x}}"
apply (rule finite_imp_less_Inf)
using z apply force+
done
show ?thesis
by (force intro!: * cInf_le_finite [OF finn])
qed
with assms show ?thesis
by blast
qed
text\<open>This proof requires the existence of two separate values of the range type.\<close>
lemma finite_range_constant_imp_connected:
assumes "\<And>f::'a::topological_space \<Rightarrow> 'b::real_normed_algebra_1.
\<lbrakk>continuous_on s f; finite(f ` s)\<rbrakk> \<Longrightarrow> \<exists>a. \<forall>x \<in> s. f x = a"
shows "connected s"
proof -
{ fix t u
assume clt: "closedin (subtopology euclidean s) t"
and clu: "closedin (subtopology euclidean s) u"
and tue: "t \<inter> u = {}" and tus: "t \<union> u = s"
have conif: "continuous_on s (\<lambda>x. if x \<in> t then 0 else 1)"
apply (subst tus [symmetric])
apply (rule continuous_on_cases_local)
using clt clu tue
apply (auto simp: tus continuous_on_const)
done
have fi: "finite ((\<lambda>x. if x \<in> t then 0 else 1) ` s)"
by (rule finite_subset [of _ "{0,1}"]) auto
have "t = {} \<or> u = {}"
using assms [OF conif fi] tus [symmetric]
by (auto simp: Ball_def) (metis IntI empty_iff one_neq_zero tue)
}
then show ?thesis
by (simp add: connected_closedin_eq)
qed
lemma continuous_disconnected_range_constant_eq:
"(connected S \<longleftrightarrow>
(\<forall>f::'a::topological_space \<Rightarrow> 'b::real_normed_algebra_1.
\<forall>t. continuous_on S f \<and> f ` S \<subseteq> t \<and> (\<forall>y \<in> t. connected_component_set t y = {y})
\<longrightarrow> (\<exists>a::'b. \<forall>x \<in> S. f x = a)))" (is ?thesis1)
and continuous_discrete_range_constant_eq:
"(connected S \<longleftrightarrow>
(\<forall>f::'a::topological_space \<Rightarrow> 'b::real_normed_algebra_1.
continuous_on S f \<and>
(\<forall>x \<in> S. \<exists>e. 0 < e \<and> (\<forall>y. y \<in> S \<and> (f y \<noteq> f x) \<longrightarrow> e \<le> norm(f y - f x)))
\<longrightarrow> (\<exists>a::'b. \<forall>x \<in> S. f x = a)))" (is ?thesis2)
and continuous_finite_range_constant_eq:
"(connected S \<longleftrightarrow>
(\<forall>f::'a::topological_space \<Rightarrow> 'b::real_normed_algebra_1.
continuous_on S f \<and> finite (f ` S)
\<longrightarrow> (\<exists>a::'b. \<forall>x \<in> S. f x = a)))" (is ?thesis3)
proof -
have *: "\<And>s t u v. \<lbrakk>s \<Longrightarrow> t; t \<Longrightarrow> u; u \<Longrightarrow> v; v \<Longrightarrow> s\<rbrakk>
\<Longrightarrow> (s \<longleftrightarrow> t) \<and> (s \<longleftrightarrow> u) \<and> (s \<longleftrightarrow> v)"
by blast
have "?thesis1 \<and> ?thesis2 \<and> ?thesis3"
apply (rule *)
using continuous_disconnected_range_constant apply metis
apply clarify
apply (frule discrete_subset_disconnected; blast)
apply (blast dest: finite_implies_discrete)
apply (blast intro!: finite_range_constant_imp_connected)
done
then show ?thesis1 ?thesis2 ?thesis3
by blast+
qed
lemma continuous_discrete_range_constant:
fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_algebra_1"
assumes S: "connected S"
and "continuous_on S f"
and "\<And>x. x \<in> S \<Longrightarrow> \<exists>e>0. \<forall>y. y \<in> S \<and> f y \<noteq> f x \<longrightarrow> e \<le> norm (f y - f x)"
obtains a where "\<And>x. x \<in> S \<Longrightarrow> f x = a"
using continuous_discrete_range_constant_eq [THEN iffD1, OF S] assms
by blast
lemma continuous_finite_range_constant:
fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_algebra_1"
assumes "connected S"
and "continuous_on S f"
and "finite (f ` S)"
obtains a where "\<And>x. x \<in> S \<Longrightarrow> f x = a"
using assms continuous_finite_range_constant_eq
by blast
subsection \<open>Continuous Extension\<close>
definition clamp :: "'a::euclidean_space \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" where
"clamp a b x = (if (\<forall>i\<in>Basis. a \<bullet> i \<le> b \<bullet> i)
then (\<Sum>i\<in>Basis. (if x\<bullet>i < a\<bullet>i then a\<bullet>i else if x\<bullet>i \<le> b\<bullet>i then x\<bullet>i else b\<bullet>i) *\<^sub>R i)
else a)"
lemma clamp_in_interval[simp]:
assumes "\<And>i. i \<in> Basis \<Longrightarrow> a \<bullet> i \<le> b \<bullet> i"
shows "clamp a b x \<in> cbox a b"
unfolding clamp_def
using box_ne_empty(1)[of a b] assms by (auto simp: cbox_def)
lemma clamp_cancel_cbox[simp]:
fixes x a b :: "'a::euclidean_space"
assumes x: "x \<in> cbox a b"
shows "clamp a b x = x"
using assms
by (auto simp: clamp_def mem_box intro!: euclidean_eqI[where 'a='a])
lemma clamp_empty_interval:
assumes "i \<in> Basis" "a \<bullet> i > b \<bullet> i"
shows "clamp a b = (\<lambda>_. a)"
using assms
by (force simp: clamp_def[abs_def] split: if_splits intro!: ext)
lemma dist_clamps_le_dist_args:
fixes x :: "'a::euclidean_space"
shows "dist (clamp a b y) (clamp a b x) \<le> dist y x"
proof cases
assume le: "(\<forall>i\<in>Basis. a \<bullet> i \<le> b \<bullet> i)"
then have "(\<Sum>i\<in>Basis. (dist (clamp a b y \<bullet> i) (clamp a b x \<bullet> i))\<^sup>2) \<le>
(\<Sum>i\<in>Basis. (dist (y \<bullet> i) (x \<bullet> i))\<^sup>2)"
by (auto intro!: sum_mono simp: clamp_def dist_real_def abs_le_square_iff[symmetric])
then show ?thesis
by (auto intro: real_sqrt_le_mono
simp: euclidean_dist_l2[where y=x] euclidean_dist_l2[where y="clamp a b x"] setL2_def)
qed (auto simp: clamp_def)
lemma clamp_continuous_at:
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::metric_space"
and x :: 'a
assumes f_cont: "continuous_on (cbox a b) f"
shows "continuous (at x) (\<lambda>x. f (clamp a b x))"
proof cases
assume le: "(\<forall>i\<in>Basis. a \<bullet> i \<le> b \<bullet> i)"
show ?thesis
unfolding continuous_at_eps_delta
proof safe
fix x :: 'a
fix e :: real
assume "e > 0"
moreover have "clamp a b x \<in> cbox a b"
by (simp add: clamp_in_interval le)
moreover note f_cont[simplified continuous_on_iff]
ultimately
obtain d where d: "0 < d"
"\<And>x'. x' \<in> cbox a b \<Longrightarrow> dist x' (clamp a b x) < d \<Longrightarrow> dist (f x') (f (clamp a b x)) < e"
by force
show "\<exists>d>0. \<forall>x'. dist x' x < d \<longrightarrow>
dist (f (clamp a b x')) (f (clamp a b x)) < e"
using le
by (auto intro!: d clamp_in_interval dist_clamps_le_dist_args[THEN le_less_trans])
qed
qed (auto simp: clamp_empty_interval)
lemma clamp_continuous_on:
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::metric_space"
assumes f_cont: "continuous_on (cbox a b) f"
shows "continuous_on S (\<lambda>x. f (clamp a b x))"
using assms
by (auto intro: continuous_at_imp_continuous_on clamp_continuous_at)
lemma clamp_bounded:
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::metric_space"
assumes bounded: "bounded (f ` (cbox a b))"
shows "bounded (range (\<lambda>x. f (clamp a b x)))"
proof cases
assume le: "(\<forall>i\<in>Basis. a \<bullet> i \<le> b \<bullet> i)"
from bounded obtain c where f_bound: "\<forall>x\<in>f ` cbox a b. dist undefined x \<le> c"
by (auto simp add: bounded_any_center[where a=undefined])
then show ?thesis
by (auto intro!: exI[where x=c] clamp_in_interval[OF le[rule_format]]
simp: bounded_any_center[where a=undefined])
qed (auto simp: clamp_empty_interval image_def)
definition ext_cont :: "('a::euclidean_space \<Rightarrow> 'b::metric_space) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b"
where "ext_cont f a b = (\<lambda>x. f (clamp a b x))"
lemma ext_cont_cancel_cbox[simp]:
fixes x a b :: "'a::euclidean_space"
assumes x: "x \<in> cbox a b"
shows "ext_cont f a b x = f x"
using assms
unfolding ext_cont_def
by (auto simp: clamp_def mem_box intro!: euclidean_eqI[where 'a='a] arg_cong[where f=f])
lemma continuous_on_ext_cont[continuous_intros]:
"continuous_on (cbox a b) f \<Longrightarrow> continuous_on S (ext_cont f a b)"
by (auto intro!: clamp_continuous_on simp: ext_cont_def)
no_notation
eucl_less (infix "<e" 50)
end