Miniscoping rules are deleted, as these brittle proofs
would otherwise have to be entirely redone
(* Title: HOL/datatype.ML
ID: $Id$
Author: Max Breitling, Carsten Clasohm, Tobias Nipkow, Norbert Voelker,
Konrad Slind
Copyright 1995 TU Muenchen
*)
(*used for constructor parameters*)
datatype dt_type = dtVar of string |
dtTyp of dt_type list * string |
dtRek of dt_type list * string;
structure Datatype =
struct
local
val mysort = sort;
open ThyParse HOLogic;
exception Impossible;
exception RecError of string;
val is_dtRek = (fn dtRek _ => true | _ => false);
fun opt_parens s = if s = "" then "" else enclose "(" ")" s;
(* ----------------------------------------------------------------------- *)
(* Derivation of the primrec combinator application from the equations *)
(* substitute fname(ls,xk,rs) by yk(ls,rs) in t for (xk,yk) in pairs *)
fun subst_apps (_,_) [] t = t
| subst_apps (fname,rpos) pairs t =
let
fun subst (Abs(a,T,t)) = Abs(a,T,subst t)
| subst (funct $ body) =
let val (f,b) = strip_comb (funct$body)
in
if is_Const f andalso fst(dest_Const f) = fname
then
let val (ls,rest) = (take(rpos,b), drop(rpos,b));
val (xk,rs) = (hd rest,tl rest)
handle LIST _ => raise RecError "not enough arguments \
\ in recursive application on rhs"
in
(case assoc (pairs,xk) of
None => list_comb(f, map subst b)
| Some U => list_comb(U, map subst (ls @ rs)))
end
else list_comb(f, map subst b)
end
| subst(t) = t
in subst t end;
(* abstract rhs *)
fun abst_rec (fname,rpos,tc,ls,cargs,rs,rhs) =
let val rargs = (map fst o
(filter (fn (a,T) => is_dtRek T))) (cargs ~~ tc);
val subs = map (fn (s,T) => (s,dummyT))
(rev(rename_wrt_term rhs rargs));
val subst_rhs = subst_apps (fname,rpos)
(map Free rargs ~~ map Free subs) rhs;
in
list_abs_free (cargs @ subs @ ls @ rs, subst_rhs)
end;
(* parsing the prim rec equations *)
fun dest_eq ( Const("Trueprop",_) $ (Const ("op =",_) $ lhs $ rhs))
= (lhs, rhs)
| dest_eq _ = raise RecError "not a proper equation";
fun dest_rec eq =
let val (lhs,rhs) = dest_eq eq;
val (name,args) = strip_comb lhs;
val (ls',rest) = take_prefix is_Free args;
val (middle,rs') = take_suffix is_Free rest;
val rpos = length ls';
val (c,cargs') = strip_comb (hd middle)
handle LIST "hd" => raise RecError "constructor missing";
val (ls,cargs,rs) = (map dest_Free ls', map dest_Free cargs'
, map dest_Free rs')
handle TERM ("dest_Free",_) =>
raise RecError "constructor has illegal argument in pattern";
in
if length middle > 1 then
raise RecError "more than one non-variable in pattern"
else if not(null(findrep (map fst (ls @ rs @ cargs)))) then
raise RecError "repeated variable name in pattern"
else (fst(dest_Const name) handle TERM _ =>
raise RecError "function is not declared as constant in theory"
,rpos,ls,fst( dest_Const c),cargs,rs,rhs)
end;
(* check function specified for all constructors and sort function terms *)
fun check_and_sort (n,its) =
if length its = n
then map snd (mysort (fn ((i : int,_),(j,_)) => i<j) its)
else raise error "Primrec definition error:\n\
\Please give an equation for every constructor";
(* translate rec equations into function arguments suitable for rec comb *)
(* theory parameter needed for printing error messages *)
fun trans_recs _ _ [] = error("No primrec equations.")
| trans_recs thy cs' (eq1::eqs) =
let val (name1,rpos1,ls1,_,_,_,_) = dest_rec eq1
handle RecError s =>
error("Primrec definition error: " ^ s ^ ":\n"
^ " " ^ Sign.string_of_term (sign_of thy) eq1);
val tcs = map (fn (_,c,T,_,_) => (c,T)) cs';
val cs = map fst tcs;
fun trans_recs' _ [] = []
| trans_recs' cis (eq::eqs) =
let val (name,rpos,ls,c,cargs,rs,rhs) = dest_rec eq;
val tc = assoc(tcs,c);
val i = (1 + find (c,cs)) handle LIST "find" => 0;
in
if name <> name1 then
raise RecError "function names inconsistent"
else if rpos <> rpos1 then
raise RecError "position of rec. argument inconsistent"
else if i = 0 then
raise RecError "illegal argument in pattern"
else if i mem cis then
raise RecError "constructor already occured as pattern "
else (i,abst_rec (name,rpos,the tc,ls,cargs,rs,rhs))
:: trans_recs' (i::cis) eqs
end
handle RecError s =>
error("Primrec definition error\n" ^ s ^ "\n"
^ " " ^ Sign.string_of_term (sign_of thy) eq);
in ( name1, ls1
, check_and_sort (length cs, trans_recs' [] (eq1::eqs)))
end ;
in
fun add_datatype (typevars, tname, cons_list') thy =
let
fun typid(dtRek(_,id)) = id
| typid(dtVar s) = implode (tl (explode s))
| typid(dtTyp(_,id)) = id;
fun index_vnames(vn::vns,tab) =
(case assoc(tab,vn) of
None => if vn mem vns
then (vn^"1") :: index_vnames(vns,(vn,2)::tab)
else vn :: index_vnames(vns,tab)
| Some(i) => (vn^(string_of_int i)) ::
index_vnames(vns,(vn,i+1)::tab))
| index_vnames([],tab) = [];
fun mk_var_names types = index_vnames(map typid types,[]);
(*search for free type variables and convert recursive *)
fun analyse_types (cons, types, syn) =
let fun analyse(t as dtVar v) =
if t mem typevars then t
else error ("Free type variable " ^ v ^ " on rhs.")
| analyse(dtTyp(typl,s)) =
if tname <> s then dtTyp(analyses typl, s)
else if typevars = typl then dtRek(typl, s)
else error (s ^ " used in different ways")
| analyse(dtRek _) = raise Impossible
and analyses ts = map analyse ts;
in (cons, Syntax.const_name cons syn, analyses types,
mk_var_names types, syn)
end;
(*test if all elements are recursive, i.e. if the type is empty*)
fun non_empty (cs : ('a * 'b * dt_type list * 'c *'d) list) =
not(forall (exists is_dtRek o #3) cs) orelse
error("Empty datatype not allowed!");
val cons_list = map analyse_types cons_list';
val dummy = non_empty cons_list;
val num_of_cons = length cons_list;
(* Auxiliary functions to construct argument and equation lists *)
(*generate 'var_n, ..., var_m'*)
fun Args(var, delim, n, m) =
space_implode delim (map (fn n => var^string_of_int(n)) (n upto m));
fun C_exp name vns = name ^ opt_parens(space_implode ") (" vns);
(*Arg_eqs([x1,...,xn],[y1,...,yn]) = "x1 = y1 & ... & xn = yn" *)
fun arg_eqs vns vns' =
let fun mkeq(x,x') = x ^ "=" ^ x'
in space_implode " & " (map mkeq (vns~~vns')) end;
(*Pretty printers for type lists;
pp_typlist1: parentheses, pp_typlist2: brackets*)
fun pp_typ (dtVar s) = "(" ^ s ^ "::term)"
| pp_typ (dtTyp (typvars, id)) =
if null typvars then id else (pp_typlist1 typvars) ^ id
| pp_typ (dtRek (typvars, id)) = (pp_typlist1 typvars) ^ id
and
pp_typlist' ts = commas (map pp_typ ts)
and
pp_typlist1 ts = if null ts then "" else parens (pp_typlist' ts);
fun pp_typlist2 ts = if null ts then "" else brackets (pp_typlist' ts);
(* Generate syntax translation for case rules *)
fun calc_xrules c_nr y_nr ((_, name, _, vns, _) :: cs) =
let val arity = length vns;
val body = "z" ^ string_of_int(c_nr);
val args1 = if arity=0 then ""
else " " ^ Args ("y", " ", y_nr, y_nr+arity-1);
val args2 = if arity=0 then ""
else "(% " ^ Args ("y", " ", y_nr, y_nr+arity-1)
^ ". ";
val (rest1,rest2) =
if null cs then ("","")
else let val (h1, h2) = calc_xrules (c_nr+1) (y_nr+arity) cs
in (" | " ^ h1, " " ^ h2) end;
in (name ^ args1 ^ " => " ^ body ^ rest1,
args2 ^ body ^ (if args2 = "" then "" else ")") ^ rest2)
end
| calc_xrules _ _ [] = raise Impossible;
val xrules =
let val (first_part, scnd_part) = calc_xrules 1 1 cons_list
in [Syntax.<-> (("logic", "case x of " ^ first_part),
("logic", tname ^ "_case " ^ scnd_part ^ " x"))]
end;
(*type declarations for constructors*)
fun const_type (id, _, typlist, _, syn) =
(id,
(if null typlist then "" else pp_typlist2 typlist ^ " => ") ^
pp_typlist1 typevars ^ tname, syn);
fun assumpt (dtRek _ :: ts, v :: vs ,found) =
let val h = if found then ";P(" ^ v ^ ")" else "[| P(" ^ v ^ ")"
in h ^ (assumpt (ts, vs, true)) end
| assumpt (t :: ts, v :: vs, found) = assumpt (ts, vs, found)
| assumpt ([], [], found) = if found then "|] ==>" else ""
| assumpt _ = raise Impossible;
fun t_inducting ((_, name, types, vns, _) :: cs) =
let
val h = if null types then " P(" ^ name ^ ")"
else " !!" ^ (space_implode " " vns) ^ "." ^
(assumpt (types, vns, false)) ^
"P(" ^ C_exp name vns ^ ")";
val rest = t_inducting cs;
in if rest = "" then h else h ^ "; " ^ rest end
| t_inducting [] = "";
fun t_induct cl typ_name =
"[|" ^ t_inducting cl ^ "|] ==> P(" ^ typ_name ^ ")";
fun gen_typlist typevar f ((_, _, ts, _, _) :: cs) =
let val h = if (length ts) > 0
then pp_typlist2(f ts) ^ "=>"
else ""
in h ^ typevar ^ "," ^ (gen_typlist typevar f cs) end
| gen_typlist _ _ [] = "";
(* -------------------------------------------------------------------- *)
(* The case constant and rules *)
val t_case = tname ^ "_case";
fun case_rule n (id, name, _, vns, _) =
let val args = if vns = [] then "" else " " ^ space_implode " " vns
in (t_case ^ "_" ^ id,
t_case ^ " " ^ Args("f", " ", 1, num_of_cons)
^ " (" ^ name ^ args ^ ") = f"^string_of_int(n) ^ args)
end
fun case_rules n (c :: cs) = case_rule n c :: case_rules(n+1) cs
| case_rules _ [] = [];
val datatype_arity = length typevars;
val types = [(tname, datatype_arity, NoSyn)];
val arities =
let val term_list = replicate datatype_arity termS;
in [(tname, term_list, termS)]
end;
val datatype_name = pp_typlist1 typevars ^ tname;
val new_tvar_name = variant (map (fn dtVar s => s) typevars) "'z";
val case_const =
(t_case,
"[" ^ gen_typlist new_tvar_name I cons_list
^ pp_typlist1 typevars ^ tname ^ "] =>" ^ new_tvar_name^"::term",
NoSyn);
val rules_case = case_rules 1 cons_list;
(* -------------------------------------------------------------------- *)
(* The prim-rec combinator *)
val t_rec = tname ^ "_rec"
(* adding type variables for dtRek types to end of list of dt_types *)
fun add_reks ts =
ts @ map (fn _ => dtVar new_tvar_name) (filter is_dtRek ts);
(* positions of the dtRek types in a list of dt_types, starting from 1 *)
fun rek_vars ts vns = map snd (filter (is_dtRek o fst) (ts ~~ vns))
fun rec_rule n (id,name,ts,vns,_) =
let val args = opt_parens(space_implode ") (" vns)
val fargs = opt_parens(Args("f", ") (", 1, num_of_cons))
fun rarg vn = t_rec ^ fargs ^ " (" ^ vn ^ ")"
val rargs = opt_parens(space_implode ") ("
(map rarg (rek_vars ts vns)))
in
(t_rec ^ "_" ^ id,
t_rec ^ fargs ^ " (" ^ name ^ args ^ ") = f"
^ string_of_int(n) ^ args ^ rargs)
end
fun rec_rules n (c::cs) = rec_rule n c :: rec_rules (n+1) cs
| rec_rules _ [] = [];
val rec_const =
(t_rec,
"[" ^ (gen_typlist new_tvar_name add_reks cons_list)
^ (pp_typlist1 typevars) ^ tname ^ "] =>" ^ new_tvar_name^"::term",
NoSyn);
val rules_rec = rec_rules 1 cons_list
(* -------------------------------------------------------------------- *)
val consts =
map const_type cons_list
@ (if num_of_cons < dtK then []
else [(tname ^ "_ord", datatype_name ^ "=>nat", NoSyn)])
@ [case_const,rec_const];
fun Ci_ing ((id, name, _, vns, _) :: cs) =
if null vns then Ci_ing cs
else let val vns' = variantlist(vns,vns)
in ("inject_" ^ id,
"(" ^ (C_exp name vns) ^ "=" ^ (C_exp name vns')
^ ") = (" ^ (arg_eqs vns vns') ^ ")") :: (Ci_ing cs)
end
| Ci_ing [] = [];
fun Ci_negOne (id1,name1,_,vns1,_) (id2,name2,_,vns2,_) =
let val vns2' = variantlist(vns2,vns1)
val ax = C_exp name1 vns1 ^ "~=" ^ C_exp name2 vns2'
in (id1 ^ "_not_" ^ id2, ax) end;
fun Ci_neg1 [] = []
| Ci_neg1 (c1::cs) = (map (Ci_negOne c1) cs) @ Ci_neg1 cs;
fun suc_expr n =
if n=0 then "0" else "Suc(" ^ suc_expr(n-1) ^ ")";
fun Ci_neg2() =
let val ord_t = tname ^ "_ord";
val cis = cons_list ~~ (0 upto (num_of_cons - 1))
fun Ci_neg2equals ((id, name, _, vns, _), n) =
let val ax = ord_t ^ "(" ^ (C_exp name vns) ^ ") = " ^ (suc_expr n)
in (ord_t ^ "_" ^ id, ax) end
in (ord_t ^ "_distinct", ord_t^"(x) ~= "^ord_t^"(y) ==> x ~= y") ::
(map Ci_neg2equals cis)
end;
val rules_distinct = if num_of_cons < dtK then Ci_neg1 cons_list
else Ci_neg2();
val rules_inject = Ci_ing cons_list;
val rule_induct = (tname ^ "_induct", t_induct cons_list tname);
val rules = rule_induct ::
(rules_inject @ rules_distinct @ rules_case @ rules_rec);
fun add_primrec eqns thy =
let val rec_comb = Const(t_rec,dummyT)
val teqns = map (fn neq => snd(read_axm (sign_of thy) neq)) eqns
val (fname,ls,fns) = trans_recs thy cons_list teqns
val rhs =
list_abs_free
(ls @ [(tname,dummyT)]
,list_comb(rec_comb
, fns @ map Bound (0 ::(length ls downto 1))));
val sg = sign_of thy;
val defpair = (fname ^ "_" ^ tname ^ "_def",
Logic.mk_equals (Const(fname,dummyT), rhs))
val defpairT as (_, _ $ Const(_,T) $ _ ) = inferT_axm sg defpair;
val varT = Type.varifyT T;
val ftyp = the (Sign.const_type sg fname);
in add_defs_i [defpairT] thy end;
in
(thy |> add_types types
|> add_arities arities
|> add_consts consts
|> add_trrules xrules
|> add_axioms rules, add_primrec)
end
end
end
(*
Informal description of functions used in datatype.ML for the Isabelle/HOL
implementation of prim. rec. function definitions. (N. Voelker, Feb. 1995)
* subst_apps (fname,rpos) pairs t:
substitute the term
fname(ls,xk,rs)
by
yk(ls,rs)
in t for (xk,yk) in pairs, where rpos = length ls.
Applied with :
fname = function name
rpos = position of recursive argument
pairs = list of pairs (xk,yk), where
xk are the rec. arguments of the constructor in the pattern,
yk is a variable with name derived from xk
t = rhs of equation
* abst_rec (fname,rpos,tc,ls,cargs,rs,rhs)
- filter recursive arguments from constructor arguments cargs,
- perform substitutions on rhs,
- derive list subs of new variable names yk for use in subst_apps,
- abstract rhs with respect to cargs, subs, ls and rs.
* dest_eq t
destruct a term denoting an equation into lhs and rhs.
* dest_req eq
destruct an equation of the form
name (vl1..vlrpos, Ci(vi1..vin), vr1..vrn) = rhs
into
- function name (name)
- position of the first non-variable parameter (rpos)
- the list of first rpos parameters (ls = [vl1..vlrpos])
- the constructor (fst( dest_Const c) = Ci)
- the arguments of the constructor (cargs = [vi1..vin])
- the rest of the variables in the pattern (rs = [vr1..vrn])
- the right hand side of the equation (rhs).
* check_and_sort (n,its)
check that n = length its holds, and sort elements of its by
first component.
* trans_recs thy cs' (eq1::eqs)
destruct eq1 into name1, rpos1, ls1, etc..
get constructor list with and without type (tcs resp. cs) from cs',
for every equation:
destruct it into (name,rpos,ls,c,cargs,rs,rhs)
get typed constructor tc from c and tcs
determine the index i of the constructor
check function name and position of rec. argument by comparison
with first equation
check for repeated variable names in pattern
derive function term f_i which is used as argument of the rec. combinator
sort the terms f_i according to i and return them together
with the function name and the parameter of the definition (ls).
* Application:
The rec. combinator is applied to the function terms resulting from
trans_rec. This results in a function which takes the recursive arg.
as first parameter and then the arguments corresponding to ls. The
order of parameters is corrected by setting the rhs equal to
list_abs_free
(ls @ [(tname,dummyT)]
,list_comb(rec_comb
, fns @ map Bound (0 ::(length ls downto 1))));
Note the de-Bruijn indices counting the number of lambdas between the
variable and its binding.
*)
(* ----------------------------------------------- *)
(* The following has been written by Konrad Slind. *)
type dtype_info = {case_const:term, case_rewrites:thm list,
constructors:term list, nchotomy:thm, case_cong:thm};
signature Dtype_sig =
sig
val build_case_cong: Sign.sg -> thm list -> cterm
val build_nchotomy: Sign.sg -> thm list -> cterm
val prove_case_cong: thm -> thm list -> cterm -> thm
val prove_nchotomy: (string -> int -> tactic) -> cterm -> thm
val case_thms : Sign.sg -> thm list -> (string -> int -> tactic)
-> {nchotomy:thm, case_cong:thm}
val build_record : (theory * (string * string list)
* (string -> int -> tactic))
-> (string * dtype_info)
end;
(*---------------------------------------------------------------------------
* This structure is support for the Isabelle datatype package. It provides
* entrypoints for 1) building and proving the case congruence theorem for
* a datatype and 2) building and proving the "exhaustion" theorem for
* a datatype (I have called this theorem "nchotomy" for no good reason).
*
* It also brings all these together in the function "build_record", which
* is probably what will be used.
*
* Since these routines are required in order to support TFL, they have
* been written so they will compile "stand-alone", i.e., in Isabelle-HOL
* without any TFL code around.
*---------------------------------------------------------------------------*)
structure Dtype : Dtype_sig =
struct
exception DTYPE_ERR of {func:string, mesg:string};
(*---------------------------------------------------------------------------
* General support routines
*---------------------------------------------------------------------------*)
fun itlist f L base_value =
let fun it [] = base_value
| it (a::rst) = f a (it rst)
in it L
end;
fun end_itlist f =
let fun endit [] = raise DTYPE_ERR{func="end_itlist", mesg="list too short"}
| endit alist =
let val (base::ralist) = rev alist
in itlist f (rev ralist) base end
in endit
end;
fun unzip L = itlist (fn (x,y) => fn (l1,l2) =>((x::l1),(y::l2))) L ([],[]);
(*---------------------------------------------------------------------------
* Miscellaneous Syntax manipulation
*---------------------------------------------------------------------------*)
val mk_var = Free;
val mk_const = Const
fun mk_comb(Rator,Rand) = Rator $ Rand;
fun mk_abs(r as (Var((s,_),ty),_)) = Abs(s,ty,abstract_over r)
| mk_abs(r as (Free(s,ty),_)) = Abs(s,ty,abstract_over r)
| mk_abs _ = raise DTYPE_ERR{func="mk_abs", mesg="1st not a variable"};
fun dest_var(Var((s,i),ty)) = (s,ty)
| dest_var(Free(s,ty)) = (s,ty)
| dest_var _ = raise DTYPE_ERR{func="dest_var", mesg="not a variable"};
fun dest_const(Const p) = p
| dest_const _ = raise DTYPE_ERR{func="dest_const", mesg="not a constant"};
fun dest_comb(t1 $ t2) = (t1,t2)
| dest_comb _ = raise DTYPE_ERR{func = "dest_comb", mesg = "not a comb"};
val rand = #2 o dest_comb;
val rator = #1 o dest_comb;
fun dest_abs(a as Abs(s,ty,M)) =
let val v = Free(s, ty)
in (v, betapply (a,v)) end
| dest_abs _ = raise DTYPE_ERR{func="dest_abs", mesg="not an abstraction"};
val bool = Type("bool",[])
and prop = Type("prop",[]);
fun mk_eq(lhs,rhs) =
let val ty = type_of lhs
val c = mk_const("op =", ty --> ty --> bool)
in list_comb(c,[lhs,rhs])
end
fun dest_eq(Const("op =",_) $ M $ N) = (M, N)
| dest_eq _ = raise DTYPE_ERR{func="dest_eq", mesg="not an equality"};
fun mk_disj(disj1,disj2) =
let val c = Const("op |", bool --> bool --> bool)
in list_comb(c,[disj1,disj2])
end;
fun mk_forall (r as (Bvar,_)) =
let val ty = type_of Bvar
val c = Const("All", (ty --> bool) --> bool)
in mk_comb(c, mk_abs r)
end;
fun mk_exists (r as (Bvar,_)) =
let val ty = type_of Bvar
val c = Const("Ex", (ty --> bool) --> bool)
in mk_comb(c, mk_abs r)
end;
fun mk_prop (tm as Const("Trueprop",_) $ _) = tm
| mk_prop tm = mk_comb(Const("Trueprop", bool --> prop),tm);
fun drop_prop (Const("Trueprop",_) $ X) = X
| drop_prop X = X;
fun mk_all (r as (Bvar,_)) = mk_comb(all (type_of Bvar), mk_abs r);
fun list_mk_all(V,t) = itlist(fn v => fn b => mk_all(v,b)) V t;
fun list_mk_exists(V,t) = itlist(fn v => fn b => mk_exists(v,b)) V t;
val list_mk_disj = end_itlist(fn d1 => fn tm => mk_disj(d1,tm))
fun dest_thm thm =
let val {prop,hyps,...} = rep_thm thm
in (map drop_prop hyps, drop_prop prop)
end;
val concl = #2 o dest_thm;
(*---------------------------------------------------------------------------
* Names of all variables occurring in a term, including bound ones. These
* are added into the second argument.
*---------------------------------------------------------------------------*)
fun add_term_names tm =
let fun insert (x:string) =
let fun canfind[] = [x]
| canfind(alist as (y::rst)) =
if (x<y) then x::alist
else if (x=y) then y::rst
else y::canfind rst
in canfind end
fun add (Free(s,_)) V = insert s V
| add (Var((s,_),_)) V = insert s V
| add (Abs(s,_,body)) V = add body (insert s V)
| add (f$t) V = add t (add f V)
| add _ V = V
in add tm
end;
(*---------------------------------------------------------------------------
* We need to make everything free, so that we can put the term into a
* goalstack, or submit it as an argument to prove_goalw_cterm.
*---------------------------------------------------------------------------*)
fun make_free_ty(Type(s,alist)) = Type(s,map make_free_ty alist)
| make_free_ty(TVar((s,i),srt)) = TFree(s,srt)
| make_free_ty x = x;
fun make_free (Var((s,_),ty)) = Free(s,make_free_ty ty)
| make_free (Abs(s,x,body)) = Abs(s,make_free_ty x, make_free body)
| make_free (f$t) = (make_free f $ make_free t)
| make_free (Const(s,ty)) = Const(s, make_free_ty ty)
| make_free (Free(s,ty)) = Free(s, make_free_ty ty)
| make_free b = b;
(*---------------------------------------------------------------------------
* Structure of case congruence theorem looks like this:
*
* (M = M')
* ==> (!!x1,...,xk. (M' = C1 x1..xk) ==> (f1 x1..xk = f1' x1..xk))
* ==> ...
* ==> (!!x1,...,xj. (M' = Cn x1..xj) ==> (fn x1..xj = fn' x1..xj))
* ==>
* (ty_case f1..fn M = ty_case f1'..fn' m')
*
* The input is the list of rules for the case construct for the type, i.e.,
* that found in the "ty.cases" field of a theory where datatype "ty" is
* defined.
*---------------------------------------------------------------------------*)
fun build_case_cong sign case_rewrites =
let val clauses = map concl case_rewrites
val clause1 = hd clauses
val left = (#1 o dest_eq) clause1
val ty = type_of ((#2 o dest_comb) left)
val varnames = itlist add_term_names clauses []
val M = variant varnames "M"
val Mvar = Free(M, ty)
val M' = variant (M::varnames) M
val M'var = Free(M', ty)
fun mk_clause clause =
let val (lhs,rhs) = dest_eq clause
val func = (#1 o strip_comb) rhs
val (constr,xbar) = strip_comb(rand lhs)
val (Name,Ty) = dest_var func
val func'name = variant (M::M'::varnames) (Name^"a")
val func' = mk_var(func'name,Ty)
in (func', list_mk_all
(xbar, Logic.mk_implies
(mk_prop(mk_eq(M'var, list_comb(constr,xbar))),
mk_prop(mk_eq(list_comb(func, xbar),
list_comb(func',xbar)))))) end
val (funcs',clauses') = unzip (map mk_clause clauses)
val lhsM = mk_comb(rator left, Mvar)
val c = #1(strip_comb left)
in
cterm_of sign
(make_free
(Logic.list_implies(mk_prop(mk_eq(Mvar, M'var))::clauses',
mk_prop(mk_eq(lhsM, list_comb(c,(funcs'@[M'var])))))))
end
handle _ => raise DTYPE_ERR{func="build_case_cong",mesg="failed"};
(*---------------------------------------------------------------------------
* Proves the result of "build_case_cong".
* This one solves it a disjunct at a time, and builds the ss only once.
*---------------------------------------------------------------------------*)
fun prove_case_cong nchotomy case_rewrites ctm =
let val {sign,t,...} = rep_cterm ctm
val (Const("==>",_) $ tm $ _) = t
val (Const("Trueprop",_) $ (Const("op =",_) $ _ $ Ma)) = tm
val (Free(str,_)) = Ma
val thm = prove_goalw_cterm[] ctm
(fn prems =>
let val simplify = asm_simp_tac(HOL_ss addsimps (prems@case_rewrites))
in [simp_tac (HOL_ss addsimps [hd prems]) 1,
cut_inst_tac [("x",str)] (nchotomy RS spec) 1,
REPEAT (etac disjE 1 THEN REPEAT (etac exE 1) THEN simplify 1),
REPEAT (etac exE 1) THEN simplify 1 (* Get last disjunct *)]
end)
in standard (thm RS eq_reflection)
end
handle _ => raise DTYPE_ERR{func="prove_case_cong",mesg="failed"};
(*---------------------------------------------------------------------------
* Structure of exhaustion theorem looks like this:
*
* !v. (EX y1..yi. v = C1 y1..yi) | ... | (EX y1..yj. v = Cn y1..yj)
*
* As for "build_case_cong", the input is the list of rules for the case
* construct (the case "rewrites").
*---------------------------------------------------------------------------*)
fun build_nchotomy sign case_rewrites =
let val clauses = map concl case_rewrites
val C_ybars = map (rand o #1 o dest_eq) clauses
val varnames = itlist add_term_names C_ybars []
val vname = variant varnames "v"
val ty = type_of (hd C_ybars)
val v = mk_var(vname,ty)
fun mk_disj C_ybar =
let val ybar = #2(strip_comb C_ybar)
in list_mk_exists(ybar, mk_eq(v,C_ybar))
end
in
cterm_of sign
(make_free(mk_prop (mk_forall(v, list_mk_disj (map mk_disj C_ybars)))))
end
handle _ => raise DTYPE_ERR{func="build_nchotomy",mesg="failed"};
(*---------------------------------------------------------------------------
* Takes the induction tactic for the datatype, and the result from
* "build_nchotomy"
*
* !v. (EX y1..yi. v = C1 y1..yi) | ... | (EX y1..yj. v = Cn y1..yj)
*
* and proves the theorem. The proof works along a diagonal: the nth
* disjunct in the nth subgoal is easy to solve. Thus this routine depends
* on the order of goals arising out of the application of the induction
* tactic. A more general solution would have to use injectiveness and
* distinctness rewrite rules.
*---------------------------------------------------------------------------*)
fun prove_nchotomy induct_tac ctm =
let val (Const ("Trueprop",_) $ g) = #t(rep_cterm ctm)
val (Const ("All",_) $ Abs (v,_,_)) = g
(* For goal i, select the correct disjunct to attack, then prove it *)
fun tac i 0 = (rtac disjI1 i ORELSE all_tac) THEN
REPEAT (rtac exI i) THEN (rtac refl i)
| tac i n = rtac disjI2 i THEN tac i (n-1)
in
prove_goalw_cterm[] ctm
(fn _ => [rtac allI 1,
induct_tac v 1,
ALLGOALS (fn i => tac i (i-1))])
end
handle _ => raise DTYPE_ERR {func="prove_nchotomy", mesg="failed"};
(*---------------------------------------------------------------------------
* Brings the preceeding functions together.
*---------------------------------------------------------------------------*)
fun case_thms sign case_rewrites induct_tac =
let val nchotomy = prove_nchotomy induct_tac
(build_nchotomy sign case_rewrites)
val cong = prove_case_cong nchotomy case_rewrites
(build_case_cong sign case_rewrites)
in {nchotomy=nchotomy, case_cong=cong}
end;
(*---------------------------------------------------------------------------
* Tests
*
*
Dtype.case_thms (sign_of List.thy) List.list.cases List.list.induct_tac;
Dtype.case_thms (sign_of Prod.thy) [split]
(fn s => res_inst_tac [("p",s)] PairE_lemma);
Dtype.case_thms (sign_of Nat.thy) [nat_case_0, nat_case_Suc] nat_ind_tac;
*
*---------------------------------------------------------------------------*)
(*---------------------------------------------------------------------------
* Given a theory and the name (and constructors) of a datatype declared in
* an ancestor of that theory and an induction tactic for that datatype,
* return the information that TFL needs. This should only be called once for
* a datatype, because "build_record" proves various facts, and thus is slow.
* It fails on the datatype of pairs, which must be included for TFL to work.
* The test shows how to build the record for pairs.
*---------------------------------------------------------------------------*)
local fun mk_rw th = (th RS eq_reflection) handle _ => th
fun get_fact thy s = (get_axiom thy s handle _ => get_thm thy s)
in
fun build_record (thy,(ty,cl),itac) =
let val sign = sign_of thy
fun const s = Const(s, the(Sign.const_type sign s))
val case_rewrites = map (fn c => get_fact thy (ty^"_case_"^c)) cl
val {nchotomy,case_cong} = case_thms sign case_rewrites itac
in
(ty, {constructors = map(fn s => const s handle _ => const("op "^s)) cl,
case_const = const (ty^"_case"),
case_rewrites = map mk_rw case_rewrites,
nchotomy = nchotomy,
case_cong = case_cong})
end
end;
(*---------------------------------------------------------------------------
* Test
*
*
map Dtype.build_record
[(Nat.thy, ("nat",["0", "Suc"]), nat_ind_tac),
(List.thy,("list",["[]", "#"]), List.list.induct_tac)]
@
[let val prod_case_thms = Dtype.case_thms (sign_of Prod.thy) [split]
(fn s => res_inst_tac [("p",s)] PairE_lemma)
fun const s = Const(s, the(Sign.const_type (sign_of Prod.thy) s))
in ("*",
{constructors = [const "Pair"],
case_const = const "split",
case_rewrites = [split RS eq_reflection],
case_cong = #case_cong prod_case_thms,
nchotomy = #nchotomy prod_case_thms}) end];
*
*---------------------------------------------------------------------------*)
end;