change to simpler, more extensible continuity simproc
define attribute [cont2cont] for continuity rules;
new continuity simproc just applies cont2cont rules repeatedly;
split theory Product_Cpo from Cprod, so Cfun can import Product_Cpo;
add lemma cont2cont_LAM', which is suitable as a cont2cont rule.
(* Title: HOLCF/HOLCF.thy
Author: Franz Regensburger
HOLCF -- a semantic extension of HOL by the LCF logic.
*)
theory HOLCF
imports
Domain ConvexPD Algebraic Universal Dsum Main
uses
"holcf_logic.ML"
"Tools/cont_consts.ML"
"Tools/cont_proc.ML"
"Tools/domain/domain_library.ML"
"Tools/domain/domain_syntax.ML"
"Tools/domain/domain_axioms.ML"
"Tools/domain/domain_theorems.ML"
"Tools/domain/domain_extender.ML"
"Tools/adm_tac.ML"
begin
defaultsort pcpo
declaration {* fn _ =>
Simplifier.map_ss (fn simpset => simpset addSolver
(mk_solver' "adm_tac" (fn ss =>
Adm.adm_tac (cut_facts_tac (Simplifier.prems_of_ss ss) THEN' cont_tacRs ss))));
*}
end