theory Distributions
imports Probability_Measure
begin
subsection {* Exponential distribution *}
definition exponential_density :: "real \<Rightarrow> real \<Rightarrow> real" where
"exponential_density l x = (if x < 0 then 0 else l * exp (- x * l))"
lemma borel_measurable_exponential_density[measurable]: "exponential_density l \<in> borel_measurable borel"
by (auto simp add: exponential_density_def[abs_def])
lemma (in prob_space) exponential_distributed_params:
assumes D: "distributed M lborel X (exponential_density l)"
shows "0 < l"
proof (cases l "0 :: real" rule: linorder_cases)
assume "l < 0"
have "emeasure lborel {0 <.. 1::real} \<le>
emeasure lborel {x :: real \<in> space lborel. 0 < x}"
by (rule emeasure_mono) (auto simp: greaterThan_def[symmetric])
also have "emeasure lborel {x :: real \<in> space lborel. 0 < x} = 0"
proof -
have "AE x in lborel. 0 \<le> exponential_density l x"
using assms by (auto simp: distributed_real_AE)
then have "AE x in lborel. x \<le> (0::real)"
apply eventually_elim
using `l < 0`
apply (auto simp: exponential_density_def zero_le_mult_iff split: split_if_asm)
done
then show "emeasure lborel {x :: real \<in> space lborel. 0 < x} = 0"
by (subst (asm) AE_iff_measurable[OF _ refl]) (auto simp: not_le greaterThan_def[symmetric])
qed
finally show "0 < l" by simp
next
assume "l = 0"
then have [simp]: "\<And>x. ereal (exponential_density l x) = 0"
by (simp add: exponential_density_def)
interpret X: prob_space "distr M lborel X"
using distributed_measurable[OF D] by (rule prob_space_distr)
from X.emeasure_space_1
show "0 < l"
by (simp add: emeasure_density distributed_distr_eq_density[OF D])
qed assumption
lemma
assumes [arith]: "0 < l"
shows emeasure_exponential_density_le0: "0 \<le> a \<Longrightarrow> emeasure (density lborel (exponential_density l)) {.. a} = 1 - exp (- a * l)"
and prob_space_exponential_density: "prob_space (density lborel (exponential_density l))"
(is "prob_space ?D")
proof -
let ?f = "\<lambda>x. l * exp (- x * l)"
let ?F = "\<lambda>x. - exp (- x * l)"
have deriv: "\<And>x. DERIV ?F x :> ?f x" "\<And>x. 0 \<le> l * exp (- x * l)"
by (auto intro!: DERIV_intros simp: zero_le_mult_iff)
have "emeasure ?D (space ?D) = (\<integral>\<^isup>+ x. ereal (?f x) * indicator {0..} x \<partial>lborel)"
by (auto simp: emeasure_density exponential_density_def
intro!: positive_integral_cong split: split_indicator)
also have "\<dots> = ereal (0 - ?F 0)"
proof (rule positive_integral_FTC_atLeast)
have "((\<lambda>x. exp (l * x)) ---> 0) at_bot"
by (rule filterlim_compose[OF exp_at_bot filterlim_tendsto_pos_mult_at_bot[of _ l]])
(simp_all add: tendsto_const filterlim_ident)
then show "((\<lambda>x. - exp (- x * l)) ---> 0) at_top"
unfolding filterlim_at_top_mirror
by (simp add: tendsto_minus_cancel_left[symmetric] ac_simps)
qed (insert deriv, auto)
also have "\<dots> = 1" by (simp add: one_ereal_def)
finally have "emeasure ?D (space ?D) = 1" .
then show "prob_space ?D" by rule
assume "0 \<le> a"
have "emeasure ?D {..a} = (\<integral>\<^isup>+x. ereal (?f x) * indicator {0..a} x \<partial>lborel)"
by (auto simp add: emeasure_density intro!: positive_integral_cong split: split_indicator)
(auto simp: exponential_density_def)
also have "(\<integral>\<^isup>+x. ereal (?f x) * indicator {0..a} x \<partial>lborel) = ereal (?F a) - ereal (?F 0)"
using `0 \<le> a` deriv by (intro positive_integral_FTC_atLeastAtMost) auto
also have "\<dots> = 1 - exp (- a * l)"
by simp
finally show "emeasure ?D {.. a} = 1 - exp (- a * l)" .
qed
lemma (in prob_space) exponential_distributedD_le:
assumes D: "distributed M lborel X (exponential_density l)" and a: "0 \<le> a"
shows "\<P>(x in M. X x \<le> a) = 1 - exp (- a * l)"
proof -
have "emeasure M {x \<in> space M. X x \<le> a } = emeasure (distr M lborel X) {.. a}"
using distributed_measurable[OF D]
by (subst emeasure_distr) (auto intro!: arg_cong2[where f=emeasure])
also have "\<dots> = emeasure (density lborel (exponential_density l)) {.. a}"
unfolding distributed_distr_eq_density[OF D] ..
also have "\<dots> = 1 - exp (- a * l)"
using emeasure_exponential_density_le0[OF exponential_distributed_params[OF D] a] .
finally show ?thesis
by (auto simp: measure_def)
qed
lemma (in prob_space) exponential_distributedD_gt:
assumes D: "distributed M lborel X (exponential_density l)" and a: "0 \<le> a"
shows "\<P>(x in M. a < X x ) = exp (- a * l)"
proof -
have "exp (- a * l) = 1 - \<P>(x in M. X x \<le> a)"
unfolding exponential_distributedD_le[OF D a] by simp
also have "\<dots> = prob (space M - {x \<in> space M. X x \<le> a })"
using distributed_measurable[OF D]
by (subst prob_compl) auto
also have "\<dots> = \<P>(x in M. a < X x )"
by (auto intro!: arg_cong[where f=prob] simp: not_le)
finally show ?thesis by simp
qed
lemma (in prob_space) exponential_distributed_memoryless:
assumes D: "distributed M lborel X (exponential_density l)" and a: "0 \<le> a"and t: "0 \<le> t"
shows "\<P>(x in M. a + t < X x \<bar> a < X x) = \<P>(x in M. t < X x)"
proof -
have "\<P>(x in M. a + t < X x \<bar> a < X x) = \<P>(x in M. a + t < X x) / \<P>(x in M. a < X x)"
using `0 \<le> t` by (auto simp: cond_prob_def intro!: arg_cong[where f=prob] arg_cong2[where f="op /"])
also have "\<dots> = exp (- (a + t) * l) / exp (- a * l)"
using a t by (simp add: exponential_distributedD_gt[OF D])
also have "\<dots> = exp (- t * l)"
using exponential_distributed_params[OF D] by (auto simp: field_simps exp_add[symmetric])
finally show ?thesis
using t by (simp add: exponential_distributedD_gt[OF D])
qed
lemma exponential_distributedI:
assumes X[measurable]: "X \<in> borel_measurable M" and [arith]: "0 < l"
and X_distr: "\<And>a. 0 \<le> a \<Longrightarrow> emeasure M {x\<in>space M. X x \<le> a} = 1 - exp (- a * l)"
shows "distributed M lborel X (exponential_density l)"
proof (rule distributedI_borel_atMost)
fix a :: real
{ assume "a \<le> 0"
with X have "emeasure M {x\<in>space M. X x \<le> a} \<le> emeasure M {x\<in>space M. X x \<le> 0}"
by (intro emeasure_mono) auto
then have "emeasure M {x\<in>space M. X x \<le> a} = 0"
using X_distr[of 0] by (simp add: one_ereal_def emeasure_le_0_iff) }
note eq_0 = this
have "\<And>x. \<not> 0 \<le> a \<Longrightarrow> ereal (exponential_density l x) * indicator {..a} x = 0"
by (simp add: exponential_density_def)
then show "(\<integral>\<^isup>+ x. exponential_density l x * indicator {..a} x \<partial>lborel) = ereal (if 0 \<le> a then 1 - exp (- a * l) else 0)"
using emeasure_exponential_density_le0[of l a]
by (auto simp: emeasure_density times_ereal.simps[symmetric] ereal_indicator
simp del: times_ereal.simps ereal_zero_times)
show "emeasure M {x\<in>space M. X x \<le> a} = ereal (if 0 \<le> a then 1 - exp (- a * l) else 0)"
using X_distr[of a] eq_0 by (auto simp: one_ereal_def)
show "AE x in lborel. 0 \<le> exponential_density l x "
by (auto simp: exponential_density_def intro!: AE_I2 mult_nonneg_nonneg)
qed simp_all
lemma (in prob_space) exponential_distributed_iff:
"distributed M lborel X (exponential_density l) \<longleftrightarrow>
(X \<in> borel_measurable M \<and> 0 < l \<and> (\<forall>a\<ge>0. \<P>(x in M. X x \<le> a) = 1 - exp (- a * l)))"
using
distributed_measurable[of M lborel X "exponential_density l"]
exponential_distributed_params[of X l]
emeasure_exponential_density_le0[of l]
exponential_distributedD_le[of X l]
by (auto intro!: exponential_distributedI simp: one_ereal_def emeasure_eq_measure)
lemma borel_integral_x_exp:
"(\<integral>x. x * exp (- x) * indicator {0::real ..} x \<partial>lborel) = 1"
proof (rule integral_monotone_convergence)
let ?f = "\<lambda>i x. x * exp (- x) * indicator {0::real .. i} x"
have "eventually (\<lambda>b::real. 0 \<le> b) at_top"
by (rule eventually_ge_at_top)
then have "eventually (\<lambda>b. 1 - (inverse (exp b) + b / exp b) = integral\<^isup>L lborel (?f b)) at_top"
proof eventually_elim
fix b :: real assume [simp]: "0 \<le> b"
have "(\<integral>x. (exp (-x)) * indicator {0 .. b} x \<partial>lborel) - (integral\<^isup>L lborel (?f b)) =
(\<integral>x. (exp (-x) - x * exp (-x)) * indicator {0 .. b} x \<partial>lborel)"
by (subst integral_diff(2)[symmetric])
(auto intro!: borel_integrable_atLeastAtMost integral_cong split: split_indicator)
also have "\<dots> = b * exp (-b) - 0 * exp (- 0)"
proof (rule integral_FTC_atLeastAtMost)
fix x assume "0 \<le> x" "x \<le> b"
show "DERIV (\<lambda>x. x * exp (-x)) x :> exp (-x) - x * exp (-x)"
by (auto intro!: DERIV_intros)
show "isCont (\<lambda>x. exp (- x) - x * exp (- x)) x "
by (intro isCont_intros isCont_exp')
qed fact
also have "(\<integral>x. (exp (-x)) * indicator {0 .. b} x \<partial>lborel) = - exp (- b) - - exp (- 0)"
by (rule integral_FTC_atLeastAtMost) (auto intro!: DERIV_intros)
finally show "1 - (inverse (exp b) + b / exp b) = integral\<^isup>L lborel (?f b)"
by (auto simp: field_simps exp_minus inverse_eq_divide)
qed
then have "((\<lambda>i. integral\<^isup>L lborel (?f i)) ---> 1 - (0 + 0)) at_top"
proof (rule Lim_transform_eventually)
show "((\<lambda>i. 1 - (inverse (exp i) + i / exp i)) ---> 1 - (0 + 0 :: real)) at_top"
using tendsto_power_div_exp_0[of 1]
by (intro tendsto_intros tendsto_inverse_0_at_top exp_at_top) simp
qed
then show "(\<lambda>i. integral\<^isup>L lborel (?f i)) ----> 1"
by (intro filterlim_compose[OF _ filterlim_real_sequentially]) simp
show "AE x in lborel. mono (\<lambda>n::nat. x * exp (- x) * indicator {0..real n} x)"
by (auto simp: mono_def mult_le_0_iff zero_le_mult_iff split: split_indicator)
show "\<And>i::nat. integrable lborel (\<lambda>x. x * exp (- x) * indicator {0..real i} x)"
by (rule borel_integrable_atLeastAtMost) auto
show "AE x in lborel. (\<lambda>i. x * exp (- x) * indicator {0..real i} x) ----> x * exp (- x) * indicator {0..} x"
apply (intro AE_I2 Lim_eventually )
apply (rule_tac c="natfloor x + 1" in eventually_sequentiallyI)
apply (auto simp add: not_le dest!: ge_natfloor_plus_one_imp_gt[simplified] split: split_indicator)
done
qed (auto intro!: borel_measurable_times borel_measurable_exp)
lemma (in prob_space) exponential_distributed_expectation:
assumes D: "distributed M lborel X (exponential_density l)"
shows "expectation X = 1 / l"
proof (subst distributed_integral[OF D, of "\<lambda>x. x", symmetric])
have "0 < l"
using exponential_distributed_params[OF D] .
have [simp]: "\<And>x. x * (l * (exp (- (x * l)) * indicator {0..} (x * l))) =
x * exponential_density l x"
using `0 < l`
by (auto split: split_indicator simp: zero_le_mult_iff exponential_density_def)
from borel_integral_x_exp `0 < l`
show "(\<integral> x. exponential_density l x * x \<partial>lborel) = 1 / l"
by (subst (asm) lebesgue_integral_real_affine[of "l" _ 0])
(simp_all add: borel_measurable_exp nonzero_eq_divide_eq ac_simps)
qed simp
subsection {* Uniform distribution *}
lemma uniform_distrI:
assumes X: "X \<in> measurable M M'"
and A: "A \<in> sets M'" "emeasure M' A \<noteq> \<infinity>" "emeasure M' A \<noteq> 0"
assumes distr: "\<And>B. B \<in> sets M' \<Longrightarrow> emeasure M (X -` B \<inter> space M) = emeasure M' (A \<inter> B) / emeasure M' A"
shows "distr M M' X = uniform_measure M' A"
unfolding uniform_measure_def
proof (intro measure_eqI)
let ?f = "\<lambda>x. indicator A x / emeasure M' A"
fix B assume B: "B \<in> sets (distr M M' X)"
with X have "emeasure M (X -` B \<inter> space M) = emeasure M' (A \<inter> B) / emeasure M' A"
by (simp add: distr[of B] measurable_sets)
also have "\<dots> = (1 / emeasure M' A) * emeasure M' (A \<inter> B)"
by simp
also have "\<dots> = (\<integral>\<^isup>+ x. (1 / emeasure M' A) * indicator (A \<inter> B) x \<partial>M')"
using A B
by (intro positive_integral_cmult_indicator[symmetric]) (auto intro!: zero_le_divide_ereal)
also have "\<dots> = (\<integral>\<^isup>+ x. ?f x * indicator B x \<partial>M')"
by (rule positive_integral_cong) (auto split: split_indicator)
finally show "emeasure (distr M M' X) B = emeasure (density M' ?f) B"
using A B X by (auto simp add: emeasure_distr emeasure_density)
qed simp
lemma uniform_distrI_borel:
fixes A :: "real set"
assumes X[measurable]: "X \<in> borel_measurable M" and A: "emeasure lborel A = ereal r" "0 < r"
and [measurable]: "A \<in> sets borel"
assumes distr: "\<And>a. emeasure M {x\<in>space M. X x \<le> a} = emeasure lborel (A \<inter> {.. a}) / r"
shows "distributed M lborel X (\<lambda>x. indicator A x / measure lborel A)"
proof (rule distributedI_borel_atMost)
let ?f = "\<lambda>x. 1 / r * indicator A x"
fix a
have "emeasure lborel (A \<inter> {..a}) \<le> emeasure lborel A"
using A by (intro emeasure_mono) auto
also have "\<dots> < \<infinity>"
using A by simp
finally have fin: "emeasure lborel (A \<inter> {..a}) \<noteq> \<infinity>"
by simp
from emeasure_eq_ereal_measure[OF this]
have fin_eq: "emeasure lborel (A \<inter> {..a}) / r = ereal (measure lborel (A \<inter> {..a}) / r)"
using A by simp
then show "emeasure M {x\<in>space M. X x \<le> a} = ereal (measure lborel (A \<inter> {..a}) / r)"
using distr by simp
have "(\<integral>\<^isup>+ x. ereal (indicator A x / measure lborel A * indicator {..a} x) \<partial>lborel) =
(\<integral>\<^isup>+ x. ereal (1 / measure lborel A) * indicator (A \<inter> {..a}) x \<partial>lborel)"
by (auto intro!: positive_integral_cong split: split_indicator)
also have "\<dots> = ereal (1 / measure lborel A) * emeasure lborel (A \<inter> {..a})"
using `A \<in> sets borel`
by (intro positive_integral_cmult_indicator) (auto simp: measure_nonneg)
also have "\<dots> = ereal (measure lborel (A \<inter> {..a}) / r)"
unfolding emeasure_eq_ereal_measure[OF fin] using A by (simp add: measure_def)
finally show "(\<integral>\<^isup>+ x. ereal (indicator A x / measure lborel A * indicator {..a} x) \<partial>lborel) =
ereal (measure lborel (A \<inter> {..a}) / r)" .
qed (auto intro!: divide_nonneg_nonneg measure_nonneg)
lemma (in prob_space) uniform_distrI_borel_atLeastAtMost:
fixes a b :: real
assumes X: "X \<in> borel_measurable M" and "a < b"
assumes distr: "\<And>t. a \<le> t \<Longrightarrow> t \<le> b \<Longrightarrow> \<P>(x in M. X x \<le> t) = (t - a) / (b - a)"
shows "distributed M lborel X (\<lambda>x. indicator {a..b} x / measure lborel {a..b})"
proof (rule uniform_distrI_borel)
fix t
have "t < a \<or> (a \<le> t \<and> t \<le> b) \<or> b < t"
by auto
then show "emeasure M {x\<in>space M. X x \<le> t} = emeasure lborel ({a .. b} \<inter> {..t}) / (b - a)"
proof (elim disjE conjE)
assume "t < a"
then have "emeasure M {x\<in>space M. X x \<le> t} \<le> emeasure M {x\<in>space M. X x \<le> a}"
using X by (auto intro!: emeasure_mono measurable_sets)
also have "\<dots> = 0"
using distr[of a] `a < b` by (simp add: emeasure_eq_measure)
finally have "emeasure M {x\<in>space M. X x \<le> t} = 0"
by (simp add: antisym measure_nonneg emeasure_le_0_iff)
with `t < a` show ?thesis by simp
next
assume bnds: "a \<le> t" "t \<le> b"
have "{a..b} \<inter> {..t} = {a..t}"
using bnds by auto
then show ?thesis using `a \<le> t` `a < b`
using distr[OF bnds] by (simp add: emeasure_eq_measure)
next
assume "b < t"
have "1 = emeasure M {x\<in>space M. X x \<le> b}"
using distr[of b] `a < b` by (simp add: one_ereal_def emeasure_eq_measure)
also have "\<dots> \<le> emeasure M {x\<in>space M. X x \<le> t}"
using X `b < t` by (auto intro!: emeasure_mono measurable_sets)
finally have "emeasure M {x\<in>space M. X x \<le> t} = 1"
by (simp add: antisym emeasure_eq_measure one_ereal_def)
with `b < t` `a < b` show ?thesis by (simp add: measure_def one_ereal_def)
qed
qed (insert X `a < b`, auto)
lemma (in prob_space) uniform_distributed_measure:
fixes a b :: real
assumes D: "distributed M lborel X (\<lambda>x. indicator {a .. b} x / measure lborel {a .. b})"
assumes " a \<le> t" "t \<le> b"
shows "\<P>(x in M. X x \<le> t) = (t - a) / (b - a)"
proof -
have "emeasure M {x \<in> space M. X x \<le> t} = emeasure (distr M lborel X) {.. t}"
using distributed_measurable[OF D]
by (subst emeasure_distr) (auto intro!: arg_cong2[where f=emeasure])
also have "\<dots> = (\<integral>\<^isup>+x. ereal (1 / (b - a)) * indicator {a .. t} x \<partial>lborel)"
using distributed_borel_measurable[OF D] `a \<le> t` `t \<le> b`
unfolding distributed_distr_eq_density[OF D]
by (subst emeasure_density)
(auto intro!: positive_integral_cong simp: measure_def split: split_indicator)
also have "\<dots> = ereal (1 / (b - a)) * (t - a)"
using `a \<le> t` `t \<le> b`
by (subst positive_integral_cmult_indicator) auto
finally show ?thesis
by (simp add: measure_def)
qed
lemma (in prob_space) uniform_distributed_bounds:
fixes a b :: real
assumes D: "distributed M lborel X (\<lambda>x. indicator {a .. b} x / measure lborel {a .. b})"
shows "a < b"
proof (rule ccontr)
assume "\<not> a < b"
then have "{a .. b} = {} \<or> {a .. b} = {a .. a}" by simp
with uniform_distributed_params[OF D] show False
by (auto simp: measure_def)
qed
lemma (in prob_space) uniform_distributed_iff:
fixes a b :: real
shows "distributed M lborel X (\<lambda>x. indicator {a..b} x / measure lborel {a..b}) \<longleftrightarrow>
(X \<in> borel_measurable M \<and> a < b \<and> (\<forall>t\<in>{a .. b}. \<P>(x in M. X x \<le> t)= (t - a) / (b - a)))"
using
uniform_distributed_bounds[of X a b]
uniform_distributed_measure[of X a b]
distributed_measurable[of M lborel X]
by (auto intro!: uniform_distrI_borel_atLeastAtMost simp: one_ereal_def emeasure_eq_measure)
lemma (in prob_space) uniform_distributed_expectation:
fixes a b :: real
assumes D: "distributed M lborel X (\<lambda>x. indicator {a .. b} x / measure lborel {a .. b})"
shows "expectation X = (a + b) / 2"
proof (subst distributed_integral[OF D, of "\<lambda>x. x", symmetric])
have "a < b"
using uniform_distributed_bounds[OF D] .
have "(\<integral> x. indicator {a .. b} x / measure lborel {a .. b} * x \<partial>lborel) =
(\<integral> x. (x / measure lborel {a .. b}) * indicator {a .. b} x \<partial>lborel)"
by (intro integral_cong) auto
also have "(\<integral> x. (x / measure lborel {a .. b}) * indicator {a .. b} x \<partial>lborel) = (a + b) / 2"
proof (subst integral_FTC_atLeastAtMost)
fix x
show "DERIV (\<lambda>x. x ^ 2 / (2 * measure lborel {a..b})) x :> x / measure lborel {a..b}"
using uniform_distributed_params[OF D]
by (auto intro!: DERIV_intros)
show "isCont (\<lambda>x. x / Sigma_Algebra.measure lborel {a..b}) x"
using uniform_distributed_params[OF D]
by (auto intro!: isCont_divide)
have *: "b\<twosuperior> / (2 * measure lborel {a..b}) - a\<twosuperior> / (2 * measure lborel {a..b}) =
(b*b - a * a) / (2 * (b - a))"
using `a < b`
by (auto simp: measure_def power2_eq_square diff_divide_distrib[symmetric])
show "b\<twosuperior> / (2 * measure lborel {a..b}) - a\<twosuperior> / (2 * measure lborel {a..b}) = (a + b) / 2"
using `a < b`
unfolding * square_diff_square_factored by (auto simp: field_simps)
qed (insert `a < b`, simp)
finally show "(\<integral> x. indicator {a .. b} x / measure lborel {a .. b} * x \<partial>lborel) = (a + b) / 2" .
qed auto
end