(* ID: $Id$ *)
(* EXTRACT from HOL/ex/Primes.thy*)
(*Euclid's algorithm
This material now appears AFTER that of Forward.thy *)
theory Primes = Main:
consts
gcd :: "nat*nat \<Rightarrow> nat"
recdef gcd "measure snd"
"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
ML "Pretty.setmargin 64"
ML "IsarOutput.indent := 5" (*that is, Doc/TutorialI/settings.ML*)
text {*Now in Basic.thy!
@{thm[display]"dvd_def"}
\rulename{dvd_def}
*};
(*** Euclid's Algorithm ***)
lemma gcd_0 [simp]: "gcd(m,0) = m"
apply (simp);
done
lemma gcd_non_0 [simp]: "0<n \<Longrightarrow> gcd(m,n) = gcd (n, m mod n)"
apply (simp)
done;
declare gcd.simps [simp del];
(*gcd(m,n) divides m and n. The conjunctions don't seem provable separately*)
lemma gcd_dvd_both: "(gcd(m,n) dvd m) \<and> (gcd(m,n) dvd n)"
apply (induct_tac m n rule: gcd.induct)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (case_tac "n=0")
txt{*subgoals after the case tac
@{subgoals[display,indent=0,margin=65]}
*};
apply (simp_all)
--{* @{subgoals[display,indent=0,margin=65]} *}
by (blast dest: dvd_mod_imp_dvd)
text {*
@{thm[display] dvd_mod_imp_dvd}
\rulename{dvd_mod_imp_dvd}
@{thm[display] dvd_trans}
\rulename{dvd_trans}
*}
lemmas gcd_dvd1 [iff] = gcd_dvd_both [THEN conjunct1]
lemmas gcd_dvd2 [iff] = gcd_dvd_both [THEN conjunct2];
text {*
\begin{quote}
@{thm[display] gcd_dvd1}
\rulename{gcd_dvd1}
@{thm[display] gcd_dvd2}
\rulename{gcd_dvd2}
\end{quote}
*};
(*Maximality: for all m,n,k naturals,
if k divides m and k divides n then k divides gcd(m,n)*)
lemma gcd_greatest [rule_format]:
"k dvd m \<longrightarrow> k dvd n \<longrightarrow> k dvd gcd(m,n)"
apply (induct_tac m n rule: gcd.induct)
apply (case_tac "n=0")
txt{*subgoals after the case tac
@{subgoals[display,indent=0,margin=65]}
*};
apply (simp_all add: dvd_mod)
done
text {*
@{thm[display] dvd_mod}
\rulename{dvd_mod}
*}
(*just checking the claim that case_tac "n" works too*)
lemma "k dvd m \<longrightarrow> k dvd n \<longrightarrow> k dvd gcd(m,n)"
apply (induct_tac m n rule: gcd.induct)
apply (case_tac "n")
apply (simp_all add: dvd_mod)
done
theorem gcd_greatest_iff [iff]:
"(k dvd gcd(m,n)) = (k dvd m \<and> k dvd n)"
by (blast intro!: gcd_greatest intro: dvd_trans)
(**** The material below was omitted from the book ****)
constdefs
is_gcd :: "[nat,nat,nat] \<Rightarrow> bool" (*gcd as a relation*)
"is_gcd p m n == p dvd m \<and> p dvd n \<and>
(ALL d. d dvd m \<and> d dvd n \<longrightarrow> d dvd p)"
(*Function gcd yields the Greatest Common Divisor*)
lemma is_gcd: "is_gcd (gcd(m,n)) m n"
apply (simp add: is_gcd_def gcd_greatest);
done
(*uniqueness of GCDs*)
lemma is_gcd_unique: "\<lbrakk> is_gcd m a b; is_gcd n a b \<rbrakk> \<Longrightarrow> m=n"
apply (simp add: is_gcd_def);
apply (blast intro: dvd_anti_sym)
done
text {*
@{thm[display] dvd_anti_sym}
\rulename{dvd_anti_sym}
\begin{isabelle}
proof\ (prove):\ step\ 1\isanewline
\isanewline
goal\ (lemma\ is_gcd_unique):\isanewline
\isasymlbrakk is_gcd\ m\ a\ b;\ is_gcd\ n\ a\ b\isasymrbrakk \ \isasymLongrightarrow \ m\ =\ n\isanewline
\ 1.\ \isasymlbrakk m\ dvd\ a\ \isasymand \ m\ dvd\ b\ \isasymand \ (\isasymforall d.\ d\ dvd\ a\ \isasymand \ d\ dvd\ b\ \isasymlongrightarrow \ d\ dvd\ m);\isanewline
\ \ \ \ \ \ \ n\ dvd\ a\ \isasymand \ n\ dvd\ b\ \isasymand \ (\isasymforall d.\ d\ dvd\ a\ \isasymand \ d\ dvd\ b\ \isasymlongrightarrow \ d\ dvd\ n)\isasymrbrakk \isanewline
\ \ \ \ \isasymLongrightarrow \ m\ =\ n
\end{isabelle}
*};
lemma gcd_assoc: "gcd(gcd(k,m),n) = gcd(k,gcd(m,n))"
apply (rule is_gcd_unique)
apply (rule is_gcd)
apply (simp add: is_gcd_def);
apply (blast intro: dvd_trans);
done
text{*
\begin{isabelle}
proof\ (prove):\ step\ 3\isanewline
\isanewline
goal\ (lemma\ gcd_assoc):\isanewline
gcd\ (gcd\ (k,\ m),\ n)\ =\ gcd\ (k,\ gcd\ (m,\ n))\isanewline
\ 1.\ gcd\ (k,\ gcd\ (m,\ n))\ dvd\ k\ \isasymand \isanewline
\ \ \ \ gcd\ (k,\ gcd\ (m,\ n))\ dvd\ m\ \isasymand \ gcd\ (k,\ gcd\ (m,\ n))\ dvd\ n
\end{isabelle}
*}
lemma gcd_dvd_gcd_mult: "gcd(m,n) dvd gcd(k*m, n)"
apply (blast intro: dvd_trans);
done
(*This is half of the proof (by dvd_anti_sym) of*)
lemma gcd_mult_cancel: "gcd(k,n) = 1 \<Longrightarrow> gcd(k*m, n) = gcd(m,n)"
oops
end