src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy
author haftmann
Sun, 16 Mar 2014 18:09:04 +0100
changeset 56166 9a241bc276cd
parent 55522 23d2cbac6dce
child 56212 3253aaf73a01
permissions -rw-r--r--
normalising simp rules for compound operators

(*  Title:      HOL/Multivariate_Analysis/Extended_Real_Limits.thy
    Author:     Johannes Hölzl, TU München
    Author:     Robert Himmelmann, TU München
    Author:     Armin Heller, TU München
    Author:     Bogdan Grechuk, University of Edinburgh
*)

header {* Limits on the Extended real number line *}

theory Extended_Real_Limits
  imports Topology_Euclidean_Space "~~/src/HOL/Library/Extended_Real"
begin

lemma convergent_limsup_cl:
  fixes X :: "nat \<Rightarrow> 'a::{complete_linorder,linorder_topology}"
  shows "convergent X \<Longrightarrow> limsup X = lim X"
  by (auto simp: convergent_def limI lim_imp_Limsup)

lemma lim_increasing_cl:
  assumes "\<And>n m. n \<ge> m \<Longrightarrow> f n \<ge> f m"
  obtains l where "f ----> (l::'a::{complete_linorder,linorder_topology})"
proof
  show "f ----> (SUP n. f n)"
    using assms
    by (intro increasing_tendsto)
       (auto simp: SUP_upper eventually_sequentially less_SUP_iff intro: less_le_trans)
qed

lemma lim_decreasing_cl:
  assumes "\<And>n m. n \<ge> m \<Longrightarrow> f n \<le> f m"
  obtains l where "f ----> (l::'a::{complete_linorder,linorder_topology})"
proof
  show "f ----> (INF n. f n)"
    using assms
    by (intro decreasing_tendsto)
       (auto simp: INF_lower eventually_sequentially INF_less_iff intro: le_less_trans)
qed

lemma compact_complete_linorder:
  fixes X :: "nat \<Rightarrow> 'a::{complete_linorder,linorder_topology}"
  shows "\<exists>l r. subseq r \<and> (X \<circ> r) ----> l"
proof -
  obtain r where "subseq r" and mono: "monoseq (X \<circ> r)"
    using seq_monosub[of X]
    unfolding comp_def
    by auto
  then have "(\<forall>n m. m \<le> n \<longrightarrow> (X \<circ> r) m \<le> (X \<circ> r) n) \<or> (\<forall>n m. m \<le> n \<longrightarrow> (X \<circ> r) n \<le> (X \<circ> r) m)"
    by (auto simp add: monoseq_def)
  then obtain l where "(X \<circ> r) ----> l"
     using lim_increasing_cl[of "X \<circ> r"] lim_decreasing_cl[of "X \<circ> r"]
     by auto
  then show ?thesis
    using `subseq r` by auto
qed

lemma compact_UNIV:
  "compact (UNIV :: 'a::{complete_linorder,linorder_topology,second_countable_topology} set)"
  using compact_complete_linorder
  by (auto simp: seq_compact_eq_compact[symmetric] seq_compact_def)

lemma compact_eq_closed:
  fixes S :: "'a::{complete_linorder,linorder_topology,second_countable_topology} set"
  shows "compact S \<longleftrightarrow> closed S"
  using closed_inter_compact[of S, OF _ compact_UNIV] compact_imp_closed
  by auto

lemma closed_contains_Sup_cl:
  fixes S :: "'a::{complete_linorder,linorder_topology,second_countable_topology} set"
  assumes "closed S"
    and "S \<noteq> {}"
  shows "Sup S \<in> S"
proof -
  from compact_eq_closed[of S] compact_attains_sup[of S] assms
  obtain s where S: "s \<in> S" "\<forall>t\<in>S. t \<le> s"
    by auto
  then have "Sup S = s"
    by (auto intro!: Sup_eqI)
  with S show ?thesis
    by simp
qed

lemma closed_contains_Inf_cl:
  fixes S :: "'a::{complete_linorder,linorder_topology,second_countable_topology} set"
  assumes "closed S"
    and "S \<noteq> {}"
  shows "Inf S \<in> S"
proof -
  from compact_eq_closed[of S] compact_attains_inf[of S] assms
  obtain s where S: "s \<in> S" "\<forall>t\<in>S. s \<le> t"
    by auto
  then have "Inf S = s"
    by (auto intro!: Inf_eqI)
  with S show ?thesis
    by simp
qed

lemma ereal_dense3:
  fixes x y :: ereal
  shows "x < y \<Longrightarrow> \<exists>r::rat. x < real_of_rat r \<and> real_of_rat r < y"
proof (cases x y rule: ereal2_cases, simp_all)
  fix r q :: real
  assume "r < q"
  from Rats_dense_in_real[OF this] show "\<exists>x. r < real_of_rat x \<and> real_of_rat x < q"
    by (fastforce simp: Rats_def)
next
  fix r :: real
  show "\<exists>x. r < real_of_rat x" "\<exists>x. real_of_rat x < r"
    using gt_ex[of r] lt_ex[of r] Rats_dense_in_real
    by (auto simp: Rats_def)
qed

instance ereal :: second_countable_topology
proof (default, intro exI conjI)
  let ?B = "(\<Union>r\<in>\<rat>. {{..< r}, {r <..}} :: ereal set set)"
  show "countable ?B"
    by (auto intro: countable_rat)
  show "open = generate_topology ?B"
  proof (intro ext iffI)
    fix S :: "ereal set"
    assume "open S"
    then show "generate_topology ?B S"
      unfolding open_generated_order
    proof induct
      case (Basis b)
      then obtain e where "b = {..<e} \<or> b = {e<..}"
        by auto
      moreover have "{..<e} = \<Union>{{..<x}|x. x \<in> \<rat> \<and> x < e}" "{e<..} = \<Union>{{x<..}|x. x \<in> \<rat> \<and> e < x}"
        by (auto dest: ereal_dense3
                 simp del: ex_simps
                 simp add: ex_simps[symmetric] conj_commute Rats_def image_iff)
      ultimately show ?case
        by (auto intro: generate_topology.intros)
    qed (auto intro: generate_topology.intros)
  next
    fix S
    assume "generate_topology ?B S"
    then show "open S"
      by induct auto
  qed
qed

lemma continuous_on_ereal[intro, simp]: "continuous_on A ereal"
  unfolding continuous_on_topological open_ereal_def
  by auto

lemma continuous_at_ereal[intro, simp]: "continuous (at x) ereal"
  using continuous_on_eq_continuous_at[of UNIV]
  by auto

lemma continuous_within_ereal[intro, simp]: "x \<in> A \<Longrightarrow> continuous (at x within A) ereal"
  using continuous_on_eq_continuous_within[of A]
  by auto

lemma ereal_open_uminus:
  fixes S :: "ereal set"
  assumes "open S"
  shows "open (uminus ` S)"
  using `open S`[unfolded open_generated_order]
proof induct
  have "range uminus = (UNIV :: ereal set)"
    by (auto simp: image_iff ereal_uminus_eq_reorder)
  then show "open (range uminus :: ereal set)"
    by simp
qed (auto simp add: image_Union image_Int)

lemma ereal_uminus_complement:
  fixes S :: "ereal set"
  shows "uminus ` (- S) = - uminus ` S"
  by (auto intro!: bij_image_Compl_eq surjI[of _ uminus] simp: bij_betw_def)

lemma ereal_closed_uminus:
  fixes S :: "ereal set"
  assumes "closed S"
  shows "closed (uminus ` S)"
  using assms
  unfolding closed_def ereal_uminus_complement[symmetric]
  by (rule ereal_open_uminus)

lemma ereal_open_closed_aux:
  fixes S :: "ereal set"
  assumes "open S"
    and "closed S"
    and S: "(-\<infinity>) \<notin> S"
  shows "S = {}"
proof (rule ccontr)
  assume "\<not> ?thesis"
  then have *: "Inf S \<in> S"
    by (metis assms(2) closed_contains_Inf_cl)
  {
    assume "Inf S = -\<infinity>"
    then have False
      using * assms(3) by auto
  }
  moreover
  {
    assume "Inf S = \<infinity>"
    then have "S = {\<infinity>}"
      by (metis Inf_eq_PInfty `S \<noteq> {}`)
    then have False
      by (metis assms(1) not_open_singleton)
  }
  moreover
  {
    assume fin: "\<bar>Inf S\<bar> \<noteq> \<infinity>"
    from ereal_open_cont_interval[OF assms(1) * fin]
    obtain e where e: "e > 0" "{Inf S - e<..<Inf S + e} \<subseteq> S" .
    then obtain b where b: "Inf S - e < b" "b < Inf S"
      using fin ereal_between[of "Inf S" e] dense[of "Inf S - e"]
      by auto
    then have "b: {Inf S - e <..< Inf S + e}"
      using e fin ereal_between[of "Inf S" e]
      by auto
    then have "b \<in> S"
      using e by auto
    then have False
      using b by (metis complete_lattice_class.Inf_lower leD)
  }
  ultimately show False
    by auto
qed

lemma ereal_open_closed:
  fixes S :: "ereal set"
  shows "open S \<and> closed S \<longleftrightarrow> S = {} \<or> S = UNIV"
proof -
  {
    assume lhs: "open S \<and> closed S"
    {
      assume "-\<infinity> \<notin> S"
      then have "S = {}"
        using lhs ereal_open_closed_aux by auto
    }
    moreover
    {
      assume "-\<infinity> \<in> S"
      then have "- S = {}"
        using lhs ereal_open_closed_aux[of "-S"] by auto
    }
    ultimately have "S = {} \<or> S = UNIV"
      by auto
  }
  then show ?thesis
    by auto
qed

lemma ereal_open_affinity_pos:
  fixes S :: "ereal set"
  assumes "open S"
    and m: "m \<noteq> \<infinity>" "0 < m"
    and t: "\<bar>t\<bar> \<noteq> \<infinity>"
  shows "open ((\<lambda>x. m * x + t) ` S)"
proof -
  obtain r where r[simp]: "m = ereal r"
    using m by (cases m) auto
  obtain p where p[simp]: "t = ereal p"
    using t by auto
  have "r \<noteq> 0" "0 < r" and m': "m \<noteq> \<infinity>" "m \<noteq> -\<infinity>" "m \<noteq> 0"
    using m by auto
  from `open S` [THEN ereal_openE]
  obtain l u where T:
      "open (ereal -` S)"
      "\<infinity> \<in> S \<Longrightarrow> {ereal l<..} \<subseteq> S"
      "- \<infinity> \<in> S \<Longrightarrow> {..<ereal u} \<subseteq> S"
    by blast
  let ?f = "(\<lambda>x. m * x + t)"
  show ?thesis
    unfolding open_ereal_def
  proof (intro conjI impI exI subsetI)
    have "ereal -` ?f ` S = (\<lambda>x. r * x + p) ` (ereal -` S)"
    proof safe
      fix x y
      assume "ereal y = m * x + t" "x \<in> S"
      then show "y \<in> (\<lambda>x. r * x + p) ` ereal -` S"
        using `r \<noteq> 0` by (cases x) (auto intro!: image_eqI[of _ _ "real x"] split: split_if_asm)
    qed force
    then show "open (ereal -` ?f ` S)"
      using open_affinity[OF T(1) `r \<noteq> 0`]
      by (auto simp: ac_simps)
  next
    assume "\<infinity> \<in> ?f`S"
    with `0 < r` have "\<infinity> \<in> S"
      by auto
    fix x
    assume "x \<in> {ereal (r * l + p)<..}"
    then have [simp]: "ereal (r * l + p) < x"
      by auto
    show "x \<in> ?f`S"
    proof (rule image_eqI)
      show "x = m * ((x - t) / m) + t"
        using m t
        by (cases rule: ereal3_cases[of m x t]) auto
      have "ereal l < (x - t) / m"
        using m t
        by (simp add: ereal_less_divide_pos ereal_less_minus)
      then show "(x - t) / m \<in> S"
        using T(2)[OF `\<infinity> \<in> S`] by auto
    qed
  next
    assume "-\<infinity> \<in> ?f ` S"
    with `0 < r` have "-\<infinity> \<in> S"
      by auto
    fix x assume "x \<in> {..<ereal (r * u + p)}"
    then have [simp]: "x < ereal (r * u + p)"
      by auto
    show "x \<in> ?f`S"
    proof (rule image_eqI)
      show "x = m * ((x - t) / m) + t"
        using m t
        by (cases rule: ereal3_cases[of m x t]) auto
      have "(x - t)/m < ereal u"
        using m t
        by (simp add: ereal_divide_less_pos ereal_minus_less)
      then show "(x - t)/m \<in> S"
        using T(3)[OF `-\<infinity> \<in> S`]
        by auto
    qed
  qed
qed

lemma ereal_open_affinity:
  fixes S :: "ereal set"
  assumes "open S"
    and m: "\<bar>m\<bar> \<noteq> \<infinity>" "m \<noteq> 0"
    and t: "\<bar>t\<bar> \<noteq> \<infinity>"
  shows "open ((\<lambda>x. m * x + t) ` S)"
proof cases
  assume "0 < m"
  then show ?thesis
    using ereal_open_affinity_pos[OF `open S` _ _ t, of m] m
    by auto
next
  assume "\<not> 0 < m" then
  have "0 < -m"
    using `m \<noteq> 0`
    by (cases m) auto
  then have m: "-m \<noteq> \<infinity>" "0 < -m"
    using `\<bar>m\<bar> \<noteq> \<infinity>`
    by (auto simp: ereal_uminus_eq_reorder)
  from ereal_open_affinity_pos[OF ereal_open_uminus[OF `open S`] m t] show ?thesis
    unfolding image_image by simp
qed

lemma ereal_lim_mult:
  fixes X :: "'a \<Rightarrow> ereal"
  assumes lim: "(X ---> L) net"
    and a: "\<bar>a\<bar> \<noteq> \<infinity>"
  shows "((\<lambda>i. a * X i) ---> a * L) net"
proof cases
  assume "a \<noteq> 0"
  show ?thesis
  proof (rule topological_tendstoI)
    fix S
    assume "open S" and "a * L \<in> S"
    have "a * L / a = L"
      using `a \<noteq> 0` a
      by (cases rule: ereal2_cases[of a L]) auto
    then have L: "L \<in> ((\<lambda>x. x / a) ` S)"
      using `a * L \<in> S`
      by (force simp: image_iff)
    moreover have "open ((\<lambda>x. x / a) ` S)"
      using ereal_open_affinity[OF `open S`, of "inverse a" 0] `a \<noteq> 0` a
      by (auto simp: ereal_divide_eq ereal_inverse_eq_0 divide_ereal_def ac_simps)
    note * = lim[THEN topological_tendstoD, OF this L]
    {
      fix x
      from a `a \<noteq> 0` have "a * (x / a) = x"
        by (cases rule: ereal2_cases[of a x]) auto
    }
    note this[simp]
    show "eventually (\<lambda>x. a * X x \<in> S) net"
      by (rule eventually_mono[OF _ *]) auto
  qed
qed auto

lemma ereal_lim_uminus:
  fixes X :: "'a \<Rightarrow> ereal"
  shows "((\<lambda>i. - X i) ---> - L) net \<longleftrightarrow> (X ---> L) net"
  using ereal_lim_mult[of X L net "ereal (-1)"]
    ereal_lim_mult[of "(\<lambda>i. - X i)" "-L" net "ereal (-1)"]
  by (auto simp add: algebra_simps)

lemma ereal_open_atLeast:
  fixes x :: ereal
  shows "open {x..} \<longleftrightarrow> x = -\<infinity>"
proof
  assume "x = -\<infinity>"
  then have "{x..} = UNIV"
    by auto
  then show "open {x..}"
    by auto
next
  assume "open {x..}"
  then have "open {x..} \<and> closed {x..}"
    by auto
  then have "{x..} = UNIV"
    unfolding ereal_open_closed by auto
  then show "x = -\<infinity>"
    by (simp add: bot_ereal_def atLeast_eq_UNIV_iff)
qed

lemma open_uminus_iff:
  fixes S :: "ereal set"
  shows "open (uminus ` S) \<longleftrightarrow> open S"
  using ereal_open_uminus[of S] ereal_open_uminus[of "uminus ` S"]
  by auto

lemma ereal_Liminf_uminus:
  fixes f :: "'a \<Rightarrow> ereal"
  shows "Liminf net (\<lambda>x. - (f x)) = - Limsup net f"
  using ereal_Limsup_uminus[of _ "(\<lambda>x. - (f x))"] by auto

lemma ereal_Lim_uminus:
  fixes f :: "'a \<Rightarrow> ereal"
  shows "(f ---> f0) net \<longleftrightarrow> ((\<lambda>x. - f x) ---> - f0) net"
  using
    ereal_lim_mult[of f f0 net "- 1"]
    ereal_lim_mult[of "\<lambda>x. - (f x)" "-f0" net "- 1"]
  by (auto simp: ereal_uminus_reorder)

lemma Liminf_PInfty:
  fixes f :: "'a \<Rightarrow> ereal"
  assumes "\<not> trivial_limit net"
  shows "(f ---> \<infinity>) net \<longleftrightarrow> Liminf net f = \<infinity>"
  unfolding tendsto_iff_Liminf_eq_Limsup[OF assms]
  using Liminf_le_Limsup[OF assms, of f]
  by auto

lemma Limsup_MInfty:
  fixes f :: "'a \<Rightarrow> ereal"
  assumes "\<not> trivial_limit net"
  shows "(f ---> -\<infinity>) net \<longleftrightarrow> Limsup net f = -\<infinity>"
  unfolding tendsto_iff_Liminf_eq_Limsup[OF assms]
  using Liminf_le_Limsup[OF assms, of f]
  by auto

lemma convergent_ereal:
  fixes X :: "nat \<Rightarrow> 'a :: {complete_linorder,linorder_topology}"
  shows "convergent X \<longleftrightarrow> limsup X = liminf X"
  using tendsto_iff_Liminf_eq_Limsup[of sequentially]
  by (auto simp: convergent_def)

lemma liminf_PInfty:
  fixes X :: "nat \<Rightarrow> ereal"
  shows "X ----> \<infinity> \<longleftrightarrow> liminf X = \<infinity>"
  by (metis Liminf_PInfty trivial_limit_sequentially)

lemma limsup_MInfty:
  fixes X :: "nat \<Rightarrow> ereal"
  shows "X ----> -\<infinity> \<longleftrightarrow> limsup X = -\<infinity>"
  by (metis Limsup_MInfty trivial_limit_sequentially)

lemma ereal_lim_mono:
  fixes X Y :: "nat \<Rightarrow> 'a::linorder_topology"
  assumes "\<And>n. N \<le> n \<Longrightarrow> X n \<le> Y n"
    and "X ----> x"
    and "Y ----> y"
  shows "x \<le> y"
  using assms(1) by (intro LIMSEQ_le[OF assms(2,3)]) auto

lemma incseq_le_ereal:
  fixes X :: "nat \<Rightarrow> 'a::linorder_topology"
  assumes inc: "incseq X"
    and lim: "X ----> L"
  shows "X N \<le> L"
  using inc
  by (intro ereal_lim_mono[of N, OF _ tendsto_const lim]) (simp add: incseq_def)

lemma decseq_ge_ereal:
  assumes dec: "decseq X"
    and lim: "X ----> (L::'a::linorder_topology)"
  shows "X N \<ge> L"
  using dec by (intro ereal_lim_mono[of N, OF _ lim tendsto_const]) (simp add: decseq_def)

lemma bounded_abs:
  fixes a :: real
  assumes "a \<le> x"
    and "x \<le> b"
  shows "abs x \<le> max (abs a) (abs b)"
  by (metis abs_less_iff assms leI le_max_iff_disj
    less_eq_real_def less_le_not_le less_minus_iff minus_minus)

lemma ereal_Sup_lim:
  fixes a :: "'a::{complete_linorder,linorder_topology}"
  assumes "\<And>n. b n \<in> s"
    and "b ----> a"
  shows "a \<le> Sup s"
  by (metis Lim_bounded_ereal assms complete_lattice_class.Sup_upper)

lemma ereal_Inf_lim:
  fixes a :: "'a::{complete_linorder,linorder_topology}"
  assumes "\<And>n. b n \<in> s"
    and "b ----> a"
  shows "Inf s \<le> a"
  by (metis Lim_bounded2_ereal assms complete_lattice_class.Inf_lower)

lemma SUP_Lim_ereal:
  fixes X :: "nat \<Rightarrow> 'a::{complete_linorder,linorder_topology}"
  assumes inc: "incseq X"
    and l: "X ----> l"
  shows "(SUP n. X n) = l"
  using LIMSEQ_SUP[OF inc] tendsto_unique[OF trivial_limit_sequentially l]
  by simp

lemma INF_Lim_ereal:
  fixes X :: "nat \<Rightarrow> 'a::{complete_linorder,linorder_topology}"
  assumes dec: "decseq X"
    and l: "X ----> l"
  shows "(INF n. X n) = l"
  using LIMSEQ_INF[OF dec] tendsto_unique[OF trivial_limit_sequentially l]
  by simp

lemma SUP_eq_LIMSEQ:
  assumes "mono f"
  shows "(SUP n. ereal (f n)) = ereal x \<longleftrightarrow> f ----> x"
proof
  have inc: "incseq (\<lambda>i. ereal (f i))"
    using `mono f` unfolding mono_def incseq_def by auto
  {
    assume "f ----> x"
    then have "(\<lambda>i. ereal (f i)) ----> ereal x"
      by auto
    from SUP_Lim_ereal[OF inc this] show "(SUP n. ereal (f n)) = ereal x" .
  next
    assume "(SUP n. ereal (f n)) = ereal x"
    with LIMSEQ_SUP[OF inc] show "f ----> x" by auto
  }
qed

lemma liminf_ereal_cminus:
  fixes f :: "nat \<Rightarrow> ereal"
  assumes "c \<noteq> -\<infinity>"
  shows "liminf (\<lambda>x. c - f x) = c - limsup f"
proof (cases c)
  case PInf
  then show ?thesis
    by (simp add: Liminf_const)
next
  case (real r)
  then show ?thesis
    unfolding liminf_SUPR_INFI limsup_INFI_SUPR
    apply (subst INFI_ereal_cminus)
    apply auto
    apply (subst SUPR_ereal_cminus)
    apply auto
    done
qed (insert `c \<noteq> -\<infinity>`, simp)


subsubsection {* Continuity *}

lemma continuous_at_of_ereal:
  fixes x0 :: ereal
  assumes "\<bar>x0\<bar> \<noteq> \<infinity>"
  shows "continuous (at x0) real"
proof -
  {
    fix T
    assume T: "open T" "real x0 \<in> T"
    def S \<equiv> "ereal ` T"
    then have "ereal (real x0) \<in> S"
      using T by auto
    then have "x0 \<in> S"
      using assms ereal_real by auto
    moreover have "open S"
      using open_ereal S_def T by auto
    moreover have "\<forall>y\<in>S. real y \<in> T"
      using S_def T by auto
    ultimately have "\<exists>S. x0 \<in> S \<and> open S \<and> (\<forall>y\<in>S. real y \<in> T)"
      by auto
  }
  then show ?thesis
    unfolding continuous_at_open by blast
qed

lemma continuous_at_iff_ereal:
  fixes f :: "'a::t2_space \<Rightarrow> real"
  shows "continuous (at x0) f \<longleftrightarrow> continuous (at x0) (ereal \<circ> f)"
proof -
  {
    assume "continuous (at x0) f"
    then have "continuous (at x0) (ereal \<circ> f)"
      using continuous_at_ereal continuous_at_compose[of x0 f ereal]
      by auto
  }
  moreover
  {
    assume "continuous (at x0) (ereal \<circ> f)"
    then have "continuous (at x0) (real \<circ> (ereal \<circ> f))"
      using continuous_at_of_ereal
      by (intro continuous_at_compose[of x0 "ereal \<circ> f"]) auto
    moreover have "real \<circ> (ereal \<circ> f) = f"
      using real_ereal_id by (simp add: o_assoc)
    ultimately have "continuous (at x0) f"
      by auto
  }
  ultimately show ?thesis
    by auto
qed


lemma continuous_on_iff_ereal:
  fixes f :: "'a::t2_space => real"
  assumes "open A"
  shows "continuous_on A f \<longleftrightarrow> continuous_on A (ereal \<circ> f)"
  using continuous_at_iff_ereal assms
  by (auto simp add: continuous_on_eq_continuous_at cong del: continuous_on_cong)

lemma continuous_on_real: "continuous_on (UNIV - {\<infinity>, -\<infinity>::ereal}) real"
  using continuous_at_of_ereal continuous_on_eq_continuous_at open_image_ereal
  by auto

lemma continuous_on_iff_real:
  fixes f :: "'a::t2_space \<Rightarrow> ereal"
  assumes "\<And>x. x \<in> A \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>"
  shows "continuous_on A f \<longleftrightarrow> continuous_on A (real \<circ> f)"
proof -
  have "f ` A \<subseteq> UNIV - {\<infinity>, -\<infinity>}"
    using assms by force
  then have *: "continuous_on (f ` A) real"
    using continuous_on_real by (simp add: continuous_on_subset)
  have **: "continuous_on ((real \<circ> f) ` A) ereal"
    using continuous_on_ereal continuous_on_subset[of "UNIV" "ereal" "(real \<circ> f) ` A"]
    by blast
  {
    assume "continuous_on A f"
    then have "continuous_on A (real \<circ> f)"
      apply (subst continuous_on_compose)
      using *
      apply auto
      done
  }
  moreover
  {
    assume "continuous_on A (real \<circ> f)"
    then have "continuous_on A (ereal \<circ> (real \<circ> f))"
      apply (subst continuous_on_compose)
      using **
      apply auto
      done
    then have "continuous_on A f"
      apply (subst continuous_on_eq[of A "ereal \<circ> (real \<circ> f)" f])
      using assms ereal_real
      apply auto
      done
  }
  ultimately show ?thesis
    by auto
qed

lemma continuous_at_const:
  fixes f :: "'a::t2_space \<Rightarrow> ereal"
  assumes "\<forall>x. f x = C"
  shows "\<forall>x. continuous (at x) f"
  unfolding continuous_at_open
  using assms t1_space
  by auto

lemma mono_closed_real:
  fixes S :: "real set"
  assumes mono: "\<forall>y z. y \<in> S \<and> y \<le> z \<longrightarrow> z \<in> S"
    and "closed S"
  shows "S = {} \<or> S = UNIV \<or> (\<exists>a. S = {a..})"
proof -
  {
    assume "S \<noteq> {}"
    { assume ex: "\<exists>B. \<forall>x\<in>S. B \<le> x"
      then have *: "\<forall>x\<in>S. Inf S \<le> x"
        using cInf_lower[of _ S] ex by (metis bdd_below_def)
      then have "Inf S \<in> S"
        apply (subst closed_contains_Inf)
        using ex `S \<noteq> {}` `closed S`
        apply auto
        done
      then have "\<forall>x. Inf S \<le> x \<longleftrightarrow> x \<in> S"
        using mono[rule_format, of "Inf S"] *
        by auto
      then have "S = {Inf S ..}"
        by auto
      then have "\<exists>a. S = {a ..}"
        by auto
    }
    moreover
    {
      assume "\<not> (\<exists>B. \<forall>x\<in>S. B \<le> x)"
      then have nex: "\<forall>B. \<exists>x\<in>S. x < B"
        by (simp add: not_le)
      {
        fix y
        obtain x where "x\<in>S" and "x < y"
          using nex by auto
        then have "y \<in> S"
          using mono[rule_format, of x y] by auto
      }
      then have "S = UNIV"
        by auto
    }
    ultimately have "S = UNIV \<or> (\<exists>a. S = {a ..})"
      by blast
  }
  then show ?thesis
    by blast
qed

lemma mono_closed_ereal:
  fixes S :: "real set"
  assumes mono: "\<forall>y z. y \<in> S \<and> y \<le> z \<longrightarrow> z \<in> S"
    and "closed S"
  shows "\<exists>a. S = {x. a \<le> ereal x}"
proof -
  {
    assume "S = {}"
    then have ?thesis
      apply (rule_tac x=PInfty in exI)
      apply auto
      done
  }
  moreover
  {
    assume "S = UNIV"
    then have ?thesis
      apply (rule_tac x="-\<infinity>" in exI)
      apply auto
      done
  }
  moreover
  {
    assume "\<exists>a. S = {a ..}"
    then obtain a where "S = {a ..}"
      by auto
    then have ?thesis
      apply (rule_tac x="ereal a" in exI)
      apply auto
      done
  }
  ultimately show ?thesis
    using mono_closed_real[of S] assms by auto
qed


subsection {* Sums *}

lemma setsum_ereal[simp]: "(\<Sum>x\<in>A. ereal (f x)) = ereal (\<Sum>x\<in>A. f x)"
proof (cases "finite A")
  case True
  then show ?thesis by induct auto
next
  case False
  then show ?thesis by simp
qed

lemma setsum_Pinfty:
  fixes f :: "'a \<Rightarrow> ereal"
  shows "(\<Sum>x\<in>P. f x) = \<infinity> \<longleftrightarrow> finite P \<and> (\<exists>i\<in>P. f i = \<infinity>)"
proof safe
  assume *: "setsum f P = \<infinity>"
  show "finite P"
  proof (rule ccontr)
    assume "infinite P"
    with * show False
      by auto
  qed
  show "\<exists>i\<in>P. f i = \<infinity>"
  proof (rule ccontr)
    assume "\<not> ?thesis"
    then have "\<And>i. i \<in> P \<Longrightarrow> f i \<noteq> \<infinity>"
      by auto
    with `finite P` have "setsum f P \<noteq> \<infinity>"
      by induct auto
    with * show False
      by auto
  qed
next
  fix i
  assume "finite P" and "i \<in> P" and "f i = \<infinity>"
  then show "setsum f P = \<infinity>"
  proof induct
    case (insert x A)
    show ?case using insert by (cases "x = i") auto
  qed simp
qed

lemma setsum_Inf:
  fixes f :: "'a \<Rightarrow> ereal"
  shows "\<bar>setsum f A\<bar> = \<infinity> \<longleftrightarrow> finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)"
proof
  assume *: "\<bar>setsum f A\<bar> = \<infinity>"
  have "finite A"
    by (rule ccontr) (insert *, auto)
  moreover have "\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>"
  proof (rule ccontr)
    assume "\<not> ?thesis"
    then have "\<forall>i\<in>A. \<exists>r. f i = ereal r"
      by auto
    from bchoice[OF this] obtain r where "\<forall>x\<in>A. f x = ereal (r x)" ..
    with * show False
      by auto
  qed
  ultimately show "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)"
    by auto
next
  assume "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)"
  then obtain i where "finite A" "i \<in> A" and "\<bar>f i\<bar> = \<infinity>"
    by auto
  then show "\<bar>setsum f A\<bar> = \<infinity>"
  proof induct
    case (insert j A)
    then show ?case
      by (cases rule: ereal3_cases[of "f i" "f j" "setsum f A"]) auto
  qed simp
qed

lemma setsum_real_of_ereal:
  fixes f :: "'i \<Rightarrow> ereal"
  assumes "\<And>x. x \<in> S \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>"
  shows "(\<Sum>x\<in>S. real (f x)) = real (setsum f S)"
proof -
  have "\<forall>x\<in>S. \<exists>r. f x = ereal r"
  proof
    fix x
    assume "x \<in> S"
    from assms[OF this] show "\<exists>r. f x = ereal r"
      by (cases "f x") auto
  qed
  from bchoice[OF this] obtain r where "\<forall>x\<in>S. f x = ereal (r x)" ..
  then show ?thesis
    by simp
qed

lemma setsum_ereal_0:
  fixes f :: "'a \<Rightarrow> ereal"
  assumes "finite A"
    and "\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i"
  shows "(\<Sum>x\<in>A. f x) = 0 \<longleftrightarrow> (\<forall>i\<in>A. f i = 0)"
proof
  assume *: "(\<Sum>x\<in>A. f x) = 0"
  then have "(\<Sum>x\<in>A. f x) \<noteq> \<infinity>"
    by auto
  then have "\<forall>i\<in>A. \<bar>f i\<bar> \<noteq> \<infinity>"
    using assms by (force simp: setsum_Pinfty)
  then have "\<forall>i\<in>A. \<exists>r. f i = ereal r"
    by auto
  from bchoice[OF this] * assms show "\<forall>i\<in>A. f i = 0"
    using setsum_nonneg_eq_0_iff[of A "\<lambda>i. real (f i)"] by auto
qed (rule setsum_0')

lemma setsum_ereal_right_distrib:
  fixes f :: "'a \<Rightarrow> ereal"
  assumes "\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i"
  shows "r * setsum f A = (\<Sum>n\<in>A. r * f n)"
proof cases
  assume "finite A"
  then show ?thesis using assms
    by induct (auto simp: ereal_right_distrib setsum_nonneg)
qed simp

lemma sums_ereal_positive:
  fixes f :: "nat \<Rightarrow> ereal"
  assumes "\<And>i. 0 \<le> f i"
  shows "f sums (SUP n. \<Sum>i<n. f i)"
proof -
  have "incseq (\<lambda>i. \<Sum>j=0..<i. f j)"
    using ereal_add_mono[OF _ assms]
    by (auto intro!: incseq_SucI)
  from LIMSEQ_SUP[OF this]
  show ?thesis unfolding sums_def
    by (simp add: atLeast0LessThan)
qed

lemma summable_ereal_pos:
  fixes f :: "nat \<Rightarrow> ereal"
  assumes "\<And>i. 0 \<le> f i"
  shows "summable f"
  using sums_ereal_positive[of f, OF assms]
  unfolding summable_def
  by auto

lemma suminf_ereal_eq_SUPR:
  fixes f :: "nat \<Rightarrow> ereal"
  assumes "\<And>i. 0 \<le> f i"
  shows "(\<Sum>x. f x) = (SUP n. \<Sum>i<n. f i)"
  using sums_ereal_positive[of f, OF assms, THEN sums_unique]
  by simp

lemma sums_ereal: "(\<lambda>x. ereal (f x)) sums ereal x \<longleftrightarrow> f sums x"
  unfolding sums_def by simp

lemma suminf_bound:
  fixes f :: "nat \<Rightarrow> ereal"
  assumes "\<forall>N. (\<Sum>n<N. f n) \<le> x"
    and pos: "\<And>n. 0 \<le> f n"
  shows "suminf f \<le> x"
proof (rule Lim_bounded_ereal)
  have "summable f" using pos[THEN summable_ereal_pos] .
  then show "(\<lambda>N. \<Sum>n<N. f n) ----> suminf f"
    by (auto dest!: summable_sums simp: sums_def atLeast0LessThan)
  show "\<forall>n\<ge>0. setsum f {..<n} \<le> x"
    using assms by auto
qed

lemma suminf_bound_add:
  fixes f :: "nat \<Rightarrow> ereal"
  assumes "\<forall>N. (\<Sum>n<N. f n) + y \<le> x"
    and pos: "\<And>n. 0 \<le> f n"
    and "y \<noteq> -\<infinity>"
  shows "suminf f + y \<le> x"
proof (cases y)
  case (real r)
  then have "\<forall>N. (\<Sum>n<N. f n) \<le> x - y"
    using assms by (simp add: ereal_le_minus)
  then have "(\<Sum> n. f n) \<le> x - y"
    using pos by (rule suminf_bound)
  then show "(\<Sum> n. f n) + y \<le> x"
    using assms real by (simp add: ereal_le_minus)
qed (insert assms, auto)

lemma suminf_upper:
  fixes f :: "nat \<Rightarrow> ereal"
  assumes "\<And>n. 0 \<le> f n"
  shows "(\<Sum>n<N. f n) \<le> (\<Sum>n. f n)"
  unfolding suminf_ereal_eq_SUPR[OF assms]
  by (auto intro: complete_lattice_class.SUP_upper)

lemma suminf_0_le:
  fixes f :: "nat \<Rightarrow> ereal"
  assumes "\<And>n. 0 \<le> f n"
  shows "0 \<le> (\<Sum>n. f n)"
  using suminf_upper[of f 0, OF assms]
  by simp

lemma suminf_le_pos:
  fixes f g :: "nat \<Rightarrow> ereal"
  assumes "\<And>N. f N \<le> g N"
    and "\<And>N. 0 \<le> f N"
  shows "suminf f \<le> suminf g"
proof (safe intro!: suminf_bound)
  fix n
  {
    fix N
    have "0 \<le> g N"
      using assms(2,1)[of N] by auto
  }
  have "setsum f {..<n} \<le> setsum g {..<n}"
    using assms by (auto intro: setsum_mono)
  also have "\<dots> \<le> suminf g"
    using `\<And>N. 0 \<le> g N`
    by (rule suminf_upper)
  finally show "setsum f {..<n} \<le> suminf g" .
qed (rule assms(2))

lemma suminf_half_series_ereal: "(\<Sum>n. (1/2 :: ereal) ^ Suc n) = 1"
  using sums_ereal[THEN iffD2, OF power_half_series, THEN sums_unique, symmetric]
  by (simp add: one_ereal_def)

lemma suminf_add_ereal:
  fixes f g :: "nat \<Rightarrow> ereal"
  assumes "\<And>i. 0 \<le> f i"
    and "\<And>i. 0 \<le> g i"
  shows "(\<Sum>i. f i + g i) = suminf f + suminf g"
  apply (subst (1 2 3) suminf_ereal_eq_SUPR)
  unfolding setsum_addf
  apply (intro assms ereal_add_nonneg_nonneg SUPR_ereal_add_pos incseq_setsumI setsum_nonneg ballI)+
  done

lemma suminf_cmult_ereal:
  fixes f g :: "nat \<Rightarrow> ereal"
  assumes "\<And>i. 0 \<le> f i"
    and "0 \<le> a"
  shows "(\<Sum>i. a * f i) = a * suminf f"
  by (auto simp: setsum_ereal_right_distrib[symmetric] assms
       ereal_zero_le_0_iff setsum_nonneg suminf_ereal_eq_SUPR
       intro!: SUPR_ereal_cmult )

lemma suminf_PInfty:
  fixes f :: "nat \<Rightarrow> ereal"
  assumes "\<And>i. 0 \<le> f i"
    and "suminf f \<noteq> \<infinity>"
  shows "f i \<noteq> \<infinity>"
proof -
  from suminf_upper[of f "Suc i", OF assms(1)] assms(2)
  have "(\<Sum>i<Suc i. f i) \<noteq> \<infinity>"
    by auto
  then show ?thesis
    unfolding setsum_Pinfty by simp
qed

lemma suminf_PInfty_fun:
  assumes "\<And>i. 0 \<le> f i"
    and "suminf f \<noteq> \<infinity>"
  shows "\<exists>f'. f = (\<lambda>x. ereal (f' x))"
proof -
  have "\<forall>i. \<exists>r. f i = ereal r"
  proof
    fix i
    show "\<exists>r. f i = ereal r"
      using suminf_PInfty[OF assms] assms(1)[of i]
      by (cases "f i") auto
  qed
  from choice[OF this] show ?thesis
    by auto
qed

lemma summable_ereal:
  assumes "\<And>i. 0 \<le> f i"
    and "(\<Sum>i. ereal (f i)) \<noteq> \<infinity>"
  shows "summable f"
proof -
  have "0 \<le> (\<Sum>i. ereal (f i))"
    using assms by (intro suminf_0_le) auto
  with assms obtain r where r: "(\<Sum>i. ereal (f i)) = ereal r"
    by (cases "\<Sum>i. ereal (f i)") auto
  from summable_ereal_pos[of "\<lambda>x. ereal (f x)"]
  have "summable (\<lambda>x. ereal (f x))"
    using assms by auto
  from summable_sums[OF this]
  have "(\<lambda>x. ereal (f x)) sums (\<Sum>x. ereal (f x))"
    by auto
  then show "summable f"
    unfolding r sums_ereal summable_def ..
qed

lemma suminf_ereal:
  assumes "\<And>i. 0 \<le> f i"
    and "(\<Sum>i. ereal (f i)) \<noteq> \<infinity>"
  shows "(\<Sum>i. ereal (f i)) = ereal (suminf f)"
proof (rule sums_unique[symmetric])
  from summable_ereal[OF assms]
  show "(\<lambda>x. ereal (f x)) sums (ereal (suminf f))"
    unfolding sums_ereal
    using assms
    by (intro summable_sums summable_ereal)
qed

lemma suminf_ereal_minus:
  fixes f g :: "nat \<Rightarrow> ereal"
  assumes ord: "\<And>i. g i \<le> f i" "\<And>i. 0 \<le> g i"
    and fin: "suminf f \<noteq> \<infinity>" "suminf g \<noteq> \<infinity>"
  shows "(\<Sum>i. f i - g i) = suminf f - suminf g"
proof -
  {
    fix i
    have "0 \<le> f i"
      using ord[of i] by auto
  }
  moreover
  from suminf_PInfty_fun[OF `\<And>i. 0 \<le> f i` fin(1)] obtain f' where [simp]: "f = (\<lambda>x. ereal (f' x))" ..
  from suminf_PInfty_fun[OF `\<And>i. 0 \<le> g i` fin(2)] obtain g' where [simp]: "g = (\<lambda>x. ereal (g' x))" ..
  {
    fix i
    have "0 \<le> f i - g i"
      using ord[of i] by (auto simp: ereal_le_minus_iff)
  }
  moreover
  have "suminf (\<lambda>i. f i - g i) \<le> suminf f"
    using assms by (auto intro!: suminf_le_pos simp: field_simps)
  then have "suminf (\<lambda>i. f i - g i) \<noteq> \<infinity>"
    using fin by auto
  ultimately show ?thesis
    using assms `\<And>i. 0 \<le> f i`
    apply simp
    apply (subst (1 2 3) suminf_ereal)
    apply (auto intro!: suminf_diff[symmetric] summable_ereal)
    done
qed

lemma suminf_ereal_PInf [simp]: "(\<Sum>x. \<infinity>::ereal) = \<infinity>"
proof -
  have "(\<Sum>i<Suc 0. \<infinity>) \<le> (\<Sum>x. \<infinity>::ereal)"
    by (rule suminf_upper) auto
  then show ?thesis
    by simp
qed

lemma summable_real_of_ereal:
  fixes f :: "nat \<Rightarrow> ereal"
  assumes f: "\<And>i. 0 \<le> f i"
    and fin: "(\<Sum>i. f i) \<noteq> \<infinity>"
  shows "summable (\<lambda>i. real (f i))"
proof (rule summable_def[THEN iffD2])
  have "0 \<le> (\<Sum>i. f i)"
    using assms by (auto intro: suminf_0_le)
  with fin obtain r where r: "ereal r = (\<Sum>i. f i)"
    by (cases "(\<Sum>i. f i)") auto
  {
    fix i
    have "f i \<noteq> \<infinity>"
      using f by (intro suminf_PInfty[OF _ fin]) auto
    then have "\<bar>f i\<bar> \<noteq> \<infinity>"
      using f[of i] by auto
  }
  note fin = this
  have "(\<lambda>i. ereal (real (f i))) sums (\<Sum>i. ereal (real (f i)))"
    using f
    by (auto intro!: summable_ereal_pos summable_sums simp: ereal_le_real_iff zero_ereal_def)
  also have "\<dots> = ereal r"
    using fin r by (auto simp: ereal_real)
  finally show "\<exists>r. (\<lambda>i. real (f i)) sums r"
    by (auto simp: sums_ereal)
qed

lemma suminf_SUP_eq:
  fixes f :: "nat \<Rightarrow> nat \<Rightarrow> ereal"
  assumes "\<And>i. incseq (\<lambda>n. f n i)"
    and "\<And>n i. 0 \<le> f n i"
  shows "(\<Sum>i. SUP n. f n i) = (SUP n. \<Sum>i. f n i)"
proof -
  {
    fix n :: nat
    have "(\<Sum>i<n. SUP k. f k i) = (SUP k. \<Sum>i<n. f k i)"
      using assms
      by (auto intro!: SUPR_ereal_setsum[symmetric])
  }
  note * = this
  show ?thesis
    using assms
    apply (subst (1 2) suminf_ereal_eq_SUPR)
    unfolding *
    apply (auto intro!: SUP_upper2)
    apply (subst SUP_commute)
    apply rule
    done
qed

lemma suminf_setsum_ereal:
  fixes f :: "_ \<Rightarrow> _ \<Rightarrow> ereal"
  assumes nonneg: "\<And>i a. a \<in> A \<Longrightarrow> 0 \<le> f i a"
  shows "(\<Sum>i. \<Sum>a\<in>A. f i a) = (\<Sum>a\<in>A. \<Sum>i. f i a)"
proof (cases "finite A")
  case True
  then show ?thesis
    using nonneg
    by induct (simp_all add: suminf_add_ereal setsum_nonneg)
next
  case False
  then show ?thesis by simp
qed

lemma suminf_ereal_eq_0:
  fixes f :: "nat \<Rightarrow> ereal"
  assumes nneg: "\<And>i. 0 \<le> f i"
  shows "(\<Sum>i. f i) = 0 \<longleftrightarrow> (\<forall>i. f i = 0)"
proof
  assume "(\<Sum>i. f i) = 0"
  {
    fix i
    assume "f i \<noteq> 0"
    with nneg have "0 < f i"
      by (auto simp: less_le)
    also have "f i = (\<Sum>j. if j = i then f i else 0)"
      by (subst suminf_finite[where N="{i}"]) auto
    also have "\<dots> \<le> (\<Sum>i. f i)"
      using nneg
      by (auto intro!: suminf_le_pos)
    finally have False
      using `(\<Sum>i. f i) = 0` by auto
  }
  then show "\<forall>i. f i = 0"
    by auto
qed simp

lemma Liminf_within:
  fixes f :: "'a::metric_space \<Rightarrow> 'b::complete_lattice"
  shows "Liminf (at x within S) f = (SUP e:{0<..}. INF y:(S \<inter> ball x e - {x}). f y)"
  unfolding Liminf_def eventually_at
proof (rule SUPR_eq, simp_all add: Ball_def Bex_def, safe)
  fix P d
  assume "0 < d" and "\<forall>y. y \<in> S \<longrightarrow> y \<noteq> x \<and> dist y x < d \<longrightarrow> P y"
  then have "S \<inter> ball x d - {x} \<subseteq> {x. P x}"
    by (auto simp: zero_less_dist_iff dist_commute)
  then show "\<exists>r>0. INFI (Collect P) f \<le> INFI (S \<inter> ball x r - {x}) f"
    by (intro exI[of _ d] INF_mono conjI `0 < d`) auto
next
  fix d :: real
  assume "0 < d"
  then show "\<exists>P. (\<exists>d>0. \<forall>xa. xa \<in> S \<longrightarrow> xa \<noteq> x \<and> dist xa x < d \<longrightarrow> P xa) \<and>
    INFI (S \<inter> ball x d - {x}) f \<le> INFI (Collect P) f"
    by (intro exI[of _ "\<lambda>y. y \<in> S \<inter> ball x d - {x}"])
       (auto intro!: INF_mono exI[of _ d] simp: dist_commute)
qed

lemma Limsup_within:
  fixes f :: "'a::metric_space \<Rightarrow> 'b::complete_lattice"
  shows "Limsup (at x within S) f = (INF e:{0<..}. SUP y:(S \<inter> ball x e - {x}). f y)"
  unfolding Limsup_def eventually_at
proof (rule INFI_eq, simp_all add: Ball_def Bex_def, safe)
  fix P d
  assume "0 < d" and "\<forall>y. y \<in> S \<longrightarrow> y \<noteq> x \<and> dist y x < d \<longrightarrow> P y"
  then have "S \<inter> ball x d - {x} \<subseteq> {x. P x}"
    by (auto simp: zero_less_dist_iff dist_commute)
  then show "\<exists>r>0. SUPR (S \<inter> ball x r - {x}) f \<le> SUPR (Collect P) f"
    by (intro exI[of _ d] SUP_mono conjI `0 < d`) auto
next
  fix d :: real
  assume "0 < d"
  then show "\<exists>P. (\<exists>d>0. \<forall>xa. xa \<in> S \<longrightarrow> xa \<noteq> x \<and> dist xa x < d \<longrightarrow> P xa) \<and>
    SUPR (Collect P) f \<le> SUPR (S \<inter> ball x d - {x}) f"
    by (intro exI[of _ "\<lambda>y. y \<in> S \<inter> ball x d - {x}"])
       (auto intro!: SUP_mono exI[of _ d] simp: dist_commute)
qed

lemma Liminf_at:
  fixes f :: "'a::metric_space \<Rightarrow> 'b::complete_lattice"
  shows "Liminf (at x) f = (SUP e:{0<..}. INF y:(ball x e - {x}). f y)"
  using Liminf_within[of x UNIV f] by simp

lemma Limsup_at:
  fixes f :: "'a::metric_space \<Rightarrow> 'b::complete_lattice"
  shows "Limsup (at x) f = (INF e:{0<..}. SUP y:(ball x e - {x}). f y)"
  using Limsup_within[of x UNIV f] by simp

lemma min_Liminf_at:
  fixes f :: "'a::metric_space \<Rightarrow> 'b::complete_linorder"
  shows "min (f x) (Liminf (at x) f) = (SUP e:{0<..}. INF y:ball x e. f y)"
  unfolding inf_min[symmetric] Liminf_at
  apply (subst inf_commute)
  apply (subst SUP_inf)
  apply (intro SUP_cong[OF refl])
  apply (cut_tac A="ball x xa - {x}" and B="{x}" and M=f in INF_union)
  apply (drule sym)
  apply auto
  by (metis INF_absorb centre_in_ball)


subsection {* monoset *}

definition (in order) mono_set:
  "mono_set S \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> x \<in> S \<longrightarrow> y \<in> S)"

lemma (in order) mono_greaterThan [intro, simp]: "mono_set {B<..}" unfolding mono_set by auto
lemma (in order) mono_atLeast [intro, simp]: "mono_set {B..}" unfolding mono_set by auto
lemma (in order) mono_UNIV [intro, simp]: "mono_set UNIV" unfolding mono_set by auto
lemma (in order) mono_empty [intro, simp]: "mono_set {}" unfolding mono_set by auto

lemma (in complete_linorder) mono_set_iff:
  fixes S :: "'a set"
  defines "a \<equiv> Inf S"
  shows "mono_set S \<longleftrightarrow> S = {a <..} \<or> S = {a..}" (is "_ = ?c")
proof
  assume "mono_set S"
  then have mono: "\<And>x y. x \<le> y \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S"
    by (auto simp: mono_set)
  show ?c
  proof cases
    assume "a \<in> S"
    show ?c
      using mono[OF _ `a \<in> S`]
      by (auto intro: Inf_lower simp: a_def)
  next
    assume "a \<notin> S"
    have "S = {a <..}"
    proof safe
      fix x assume "x \<in> S"
      then have "a \<le> x"
        unfolding a_def by (rule Inf_lower)
      then show "a < x"
        using `x \<in> S` `a \<notin> S` by (cases "a = x") auto
    next
      fix x assume "a < x"
      then obtain y where "y < x" "y \<in> S"
        unfolding a_def Inf_less_iff ..
      with mono[of y x] show "x \<in> S"
        by auto
    qed
    then show ?c ..
  qed
qed auto

lemma ereal_open_mono_set:
  fixes S :: "ereal set"
  shows "open S \<and> mono_set S \<longleftrightarrow> S = UNIV \<or> S = {Inf S <..}"
  by (metis Inf_UNIV atLeast_eq_UNIV_iff ereal_open_atLeast
    ereal_open_closed mono_set_iff open_ereal_greaterThan)

lemma ereal_closed_mono_set:
  fixes S :: "ereal set"
  shows "closed S \<and> mono_set S \<longleftrightarrow> S = {} \<or> S = {Inf S ..}"
  by (metis Inf_UNIV atLeast_eq_UNIV_iff closed_ereal_atLeast
    ereal_open_closed mono_empty mono_set_iff open_ereal_greaterThan)

lemma ereal_Liminf_Sup_monoset:
  fixes f :: "'a \<Rightarrow> ereal"
  shows "Liminf net f =
    Sup {l. \<forall>S. open S \<longrightarrow> mono_set S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net}"
    (is "_ = Sup ?A")
proof (safe intro!: Liminf_eqI complete_lattice_class.Sup_upper complete_lattice_class.Sup_least)
  fix P
  assume P: "eventually P net"
  fix S
  assume S: "mono_set S" "INFI (Collect P) f \<in> S"
  {
    fix x
    assume "P x"
    then have "INFI (Collect P) f \<le> f x"
      by (intro complete_lattice_class.INF_lower) simp
    with S have "f x \<in> S"
      by (simp add: mono_set)
  }
  with P show "eventually (\<lambda>x. f x \<in> S) net"
    by (auto elim: eventually_elim1)
next
  fix y l
  assume S: "\<forall>S. open S \<longrightarrow> mono_set S \<longrightarrow> l \<in> S \<longrightarrow> eventually  (\<lambda>x. f x \<in> S) net"
  assume P: "\<forall>P. eventually P net \<longrightarrow> INFI (Collect P) f \<le> y"
  show "l \<le> y"
  proof (rule dense_le)
    fix B
    assume "B < l"
    then have "eventually (\<lambda>x. f x \<in> {B <..}) net"
      by (intro S[rule_format]) auto
    then have "INFI {x. B < f x} f \<le> y"
      using P by auto
    moreover have "B \<le> INFI {x. B < f x} f"
      by (intro INF_greatest) auto
    ultimately show "B \<le> y"
      by simp
  qed
qed

lemma ereal_Limsup_Inf_monoset:
  fixes f :: "'a \<Rightarrow> ereal"
  shows "Limsup net f =
    Inf {l. \<forall>S. open S \<longrightarrow> mono_set (uminus ` S) \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net}"
    (is "_ = Inf ?A")
proof (safe intro!: Limsup_eqI complete_lattice_class.Inf_lower complete_lattice_class.Inf_greatest)
  fix P
  assume P: "eventually P net"
  fix S
  assume S: "mono_set (uminus`S)" "SUPR (Collect P) f \<in> S"
  {
    fix x
    assume "P x"
    then have "f x \<le> SUPR (Collect P) f"
      by (intro complete_lattice_class.SUP_upper) simp
    with S(1)[unfolded mono_set, rule_format, of "- SUPR (Collect P) f" "- f x"] S(2)
    have "f x \<in> S"
      by (simp add: inj_image_mem_iff) }
  with P show "eventually (\<lambda>x. f x \<in> S) net"
    by (auto elim: eventually_elim1)
next
  fix y l
  assume S: "\<forall>S. open S \<longrightarrow> mono_set (uminus ` S) \<longrightarrow> l \<in> S \<longrightarrow> eventually  (\<lambda>x. f x \<in> S) net"
  assume P: "\<forall>P. eventually P net \<longrightarrow> y \<le> SUPR (Collect P) f"
  show "y \<le> l"
  proof (rule dense_ge)
    fix B
    assume "l < B"
    then have "eventually (\<lambda>x. f x \<in> {..< B}) net"
      by (intro S[rule_format]) auto
    then have "y \<le> SUPR {x. f x < B} f"
      using P by auto
    moreover have "SUPR {x. f x < B} f \<le> B"
      by (intro SUP_least) auto
    ultimately show "y \<le> B"
      by simp
  qed
qed

lemma liminf_bounded_open:
  fixes x :: "nat \<Rightarrow> ereal"
  shows "x0 \<le> liminf x \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> mono_set S \<longrightarrow> x0 \<in> S \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. x n \<in> S))"
  (is "_ \<longleftrightarrow> ?P x0")
proof
  assume "?P x0"
  then show "x0 \<le> liminf x"
    unfolding ereal_Liminf_Sup_monoset eventually_sequentially
    by (intro complete_lattice_class.Sup_upper) auto
next
  assume "x0 \<le> liminf x"
  {
    fix S :: "ereal set"
    assume om: "open S" "mono_set S" "x0 \<in> S"
    {
      assume "S = UNIV"
      then have "\<exists>N. \<forall>n\<ge>N. x n \<in> S"
        by auto
    }
    moreover
    {
      assume "S \<noteq> UNIV"
      then obtain B where B: "S = {B<..}"
        using om ereal_open_mono_set by auto
      then have "B < x0"
        using om by auto
      then have "\<exists>N. \<forall>n\<ge>N. x n \<in> S"
        unfolding B
        using `x0 \<le> liminf x` liminf_bounded_iff
        by auto
    }
    ultimately have "\<exists>N. \<forall>n\<ge>N. x n \<in> S"
      by auto
  }
  then show "?P x0"
    by auto
qed

end