(* Title: HOL/Fun_Def.thy
Author: Alexander Krauss, TU Muenchen
*)
section {* Function Definitions and Termination Proofs *}
theory Fun_Def
imports Basic_BNF_LFPs Partial_Function SAT
keywords "function" "termination" :: thy_goal and "fun" "fun_cases" :: thy_decl
begin
subsection {* Definitions with default value *}
definition
THE_default :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a" where
"THE_default d P = (if (\<exists>!x. P x) then (THE x. P x) else d)"
lemma THE_defaultI': "\<exists>!x. P x \<Longrightarrow> P (THE_default d P)"
by (simp add: theI' THE_default_def)
lemma THE_default1_equality:
"\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> THE_default d P = a"
by (simp add: the1_equality THE_default_def)
lemma THE_default_none:
"\<not>(\<exists>!x. P x) \<Longrightarrow> THE_default d P = d"
by (simp add:THE_default_def)
lemma fundef_ex1_existence:
assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
assumes ex1: "\<exists>!y. G x y"
shows "G x (f x)"
apply (simp only: f_def)
apply (rule THE_defaultI')
apply (rule ex1)
done
lemma fundef_ex1_uniqueness:
assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
assumes ex1: "\<exists>!y. G x y"
assumes elm: "G x (h x)"
shows "h x = f x"
apply (simp only: f_def)
apply (rule THE_default1_equality [symmetric])
apply (rule ex1)
apply (rule elm)
done
lemma fundef_ex1_iff:
assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
assumes ex1: "\<exists>!y. G x y"
shows "(G x y) = (f x = y)"
apply (auto simp:ex1 f_def THE_default1_equality)
apply (rule THE_defaultI')
apply (rule ex1)
done
lemma fundef_default_value:
assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
assumes graph: "\<And>x y. G x y \<Longrightarrow> D x"
assumes "\<not> D x"
shows "f x = d x"
proof -
have "\<not>(\<exists>y. G x y)"
proof
assume "\<exists>y. G x y"
hence "D x" using graph ..
with `\<not> D x` show False ..
qed
hence "\<not>(\<exists>!y. G x y)" by blast
thus ?thesis
unfolding f_def
by (rule THE_default_none)
qed
definition in_rel_def[simp]:
"in_rel R x y == (x, y) \<in> R"
lemma wf_in_rel:
"wf R \<Longrightarrow> wfP (in_rel R)"
by (simp add: wfP_def)
ML_file "Tools/Function/function_core.ML"
ML_file "Tools/Function/mutual.ML"
ML_file "Tools/Function/pattern_split.ML"
ML_file "Tools/Function/relation.ML"
ML_file "Tools/Function/function_elims.ML"
method_setup relation = {*
Args.term >> (fn t => fn ctxt => SIMPLE_METHOD' (Function_Relation.relation_infer_tac ctxt t))
*} "prove termination using a user-specified wellfounded relation"
ML_file "Tools/Function/function.ML"
ML_file "Tools/Function/pat_completeness.ML"
method_setup pat_completeness = {*
Scan.succeed (SIMPLE_METHOD' o Pat_Completeness.pat_completeness_tac)
*} "prove completeness of (co)datatype patterns"
ML_file "Tools/Function/fun.ML"
ML_file "Tools/Function/induction_schema.ML"
method_setup induction_schema = {*
Scan.succeed (NO_CASES oo Induction_Schema.induction_schema_tac)
*} "prove an induction principle"
subsection {* Measure functions *}
inductive is_measure :: "('a \<Rightarrow> nat) \<Rightarrow> bool"
where is_measure_trivial: "is_measure f"
named_theorems measure_function "rules that guide the heuristic generation of measure functions"
ML_file "Tools/Function/measure_functions.ML"
lemma measure_size[measure_function]: "is_measure size"
by (rule is_measure_trivial)
lemma measure_fst[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (fst p))"
by (rule is_measure_trivial)
lemma measure_snd[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (snd p))"
by (rule is_measure_trivial)
ML_file "Tools/Function/lexicographic_order.ML"
method_setup lexicographic_order = {*
Method.sections clasimp_modifiers >>
(K (SIMPLE_METHOD o Lexicographic_Order.lexicographic_order_tac false))
*} "termination prover for lexicographic orderings"
subsection {* Congruence rules *}
lemma let_cong [fundef_cong]:
"M = N \<Longrightarrow> (\<And>x. x = N \<Longrightarrow> f x = g x) \<Longrightarrow> Let M f = Let N g"
unfolding Let_def by blast
lemmas [fundef_cong] =
if_cong image_cong INF_cong SUP_cong
bex_cong ball_cong imp_cong map_option_cong Option.bind_cong
lemma split_cong [fundef_cong]:
"(\<And>x y. (x, y) = q \<Longrightarrow> f x y = g x y) \<Longrightarrow> p = q
\<Longrightarrow> split f p = split g q"
by (auto simp: split_def)
lemma comp_cong [fundef_cong]:
"f (g x) = f' (g' x') \<Longrightarrow> (f o g) x = (f' o g') x'"
unfolding o_apply .
subsection {* Simp rules for termination proofs *}
declare
trans_less_add1[termination_simp]
trans_less_add2[termination_simp]
trans_le_add1[termination_simp]
trans_le_add2[termination_simp]
less_imp_le_nat[termination_simp]
le_imp_less_Suc[termination_simp]
lemma size_prod_simp[termination_simp]:
"size_prod f g p = f (fst p) + g (snd p) + Suc 0"
by (induct p) auto
subsection {* Decomposition *}
lemma less_by_empty:
"A = {} \<Longrightarrow> A \<subseteq> B"
and union_comp_emptyL:
"\<lbrakk> A O C = {}; B O C = {} \<rbrakk> \<Longrightarrow> (A \<union> B) O C = {}"
and union_comp_emptyR:
"\<lbrakk> A O B = {}; A O C = {} \<rbrakk> \<Longrightarrow> A O (B \<union> C) = {}"
and wf_no_loop:
"R O R = {} \<Longrightarrow> wf R"
by (auto simp add: wf_comp_self[of R])
subsection {* Reduction pairs *}
definition
"reduction_pair P = (wf (fst P) \<and> fst P O snd P \<subseteq> fst P)"
lemma reduction_pairI[intro]: "wf R \<Longrightarrow> R O S \<subseteq> R \<Longrightarrow> reduction_pair (R, S)"
unfolding reduction_pair_def by auto
lemma reduction_pair_lemma:
assumes rp: "reduction_pair P"
assumes "R \<subseteq> fst P"
assumes "S \<subseteq> snd P"
assumes "wf S"
shows "wf (R \<union> S)"
proof -
from rp `S \<subseteq> snd P` have "wf (fst P)" "fst P O S \<subseteq> fst P"
unfolding reduction_pair_def by auto
with `wf S` have "wf (fst P \<union> S)"
by (auto intro: wf_union_compatible)
moreover from `R \<subseteq> fst P` have "R \<union> S \<subseteq> fst P \<union> S" by auto
ultimately show ?thesis by (rule wf_subset)
qed
definition
"rp_inv_image = (\<lambda>(R,S) f. (inv_image R f, inv_image S f))"
lemma rp_inv_image_rp:
"reduction_pair P \<Longrightarrow> reduction_pair (rp_inv_image P f)"
unfolding reduction_pair_def rp_inv_image_def split_def
by force
subsection {* Concrete orders for SCNP termination proofs *}
definition "pair_less = less_than <*lex*> less_than"
definition "pair_leq = pair_less^="
definition "max_strict = max_ext pair_less"
definition "max_weak = max_ext pair_leq \<union> {({}, {})}"
definition "min_strict = min_ext pair_less"
definition "min_weak = min_ext pair_leq \<union> {({}, {})}"
lemma wf_pair_less[simp]: "wf pair_less"
by (auto simp: pair_less_def)
text {* Introduction rules for @{text pair_less}/@{text pair_leq} *}
lemma pair_leqI1: "a < b \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq"
and pair_leqI2: "a \<le> b \<Longrightarrow> s \<le> t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq"
and pair_lessI1: "a < b \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less"
and pair_lessI2: "a \<le> b \<Longrightarrow> s < t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less"
unfolding pair_leq_def pair_less_def by auto
text {* Introduction rules for max *}
lemma smax_emptyI:
"finite Y \<Longrightarrow> Y \<noteq> {} \<Longrightarrow> ({}, Y) \<in> max_strict"
and smax_insertI:
"\<lbrakk>y \<in> Y; (x, y) \<in> pair_less; (X, Y) \<in> max_strict\<rbrakk> \<Longrightarrow> (insert x X, Y) \<in> max_strict"
and wmax_emptyI:
"finite X \<Longrightarrow> ({}, X) \<in> max_weak"
and wmax_insertI:
"\<lbrakk>y \<in> YS; (x, y) \<in> pair_leq; (XS, YS) \<in> max_weak\<rbrakk> \<Longrightarrow> (insert x XS, YS) \<in> max_weak"
unfolding max_strict_def max_weak_def by (auto elim!: max_ext.cases)
text {* Introduction rules for min *}
lemma smin_emptyI:
"X \<noteq> {} \<Longrightarrow> (X, {}) \<in> min_strict"
and smin_insertI:
"\<lbrakk>x \<in> XS; (x, y) \<in> pair_less; (XS, YS) \<in> min_strict\<rbrakk> \<Longrightarrow> (XS, insert y YS) \<in> min_strict"
and wmin_emptyI:
"(X, {}) \<in> min_weak"
and wmin_insertI:
"\<lbrakk>x \<in> XS; (x, y) \<in> pair_leq; (XS, YS) \<in> min_weak\<rbrakk> \<Longrightarrow> (XS, insert y YS) \<in> min_weak"
by (auto simp: min_strict_def min_weak_def min_ext_def)
text {* Reduction Pairs *}
lemma max_ext_compat:
assumes "R O S \<subseteq> R"
shows "max_ext R O (max_ext S \<union> {({},{})}) \<subseteq> max_ext R"
using assms
apply auto
apply (elim max_ext.cases)
apply rule
apply auto[3]
apply (drule_tac x=xa in meta_spec)
apply simp
apply (erule bexE)
apply (drule_tac x=xb in meta_spec)
by auto
lemma max_rpair_set: "reduction_pair (max_strict, max_weak)"
unfolding max_strict_def max_weak_def
apply (intro reduction_pairI max_ext_wf)
apply simp
apply (rule max_ext_compat)
by (auto simp: pair_less_def pair_leq_def)
lemma min_ext_compat:
assumes "R O S \<subseteq> R"
shows "min_ext R O (min_ext S \<union> {({},{})}) \<subseteq> min_ext R"
using assms
apply (auto simp: min_ext_def)
apply (drule_tac x=ya in bspec, assumption)
apply (erule bexE)
apply (drule_tac x=xc in bspec)
apply assumption
by auto
lemma min_rpair_set: "reduction_pair (min_strict, min_weak)"
unfolding min_strict_def min_weak_def
apply (intro reduction_pairI min_ext_wf)
apply simp
apply (rule min_ext_compat)
by (auto simp: pair_less_def pair_leq_def)
subsection {* Tool setup *}
ML_file "Tools/Function/termination.ML"
ML_file "Tools/Function/scnp_solve.ML"
ML_file "Tools/Function/scnp_reconstruct.ML"
ML_file "Tools/Function/fun_cases.ML"
ML_val -- "setup inactive"
{*
Context.theory_map (Function_Common.set_termination_prover
(ScnpReconstruct.decomp_scnp_tac [ScnpSolve.MAX, ScnpSolve.MIN, ScnpSolve.MS]))
*}
end